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Sea ice recognition is one of themain tasks for sea icemonitoring in the Arctic and

is also applied for the detection of other ocean phenomena. The Surface Wave

Investigation and Monitoring (SWIM) instrument, as an innovative remote sensor

that operates at multiple small incidence angles, is different from existing sensors

with moderate and normal incidence modes for sea ice monitoring. Sea ice

recognition at small incidence angles has rarely been studied. Moreover, SWIM

uses a discrimination flag of sea ice and seawater to remove sea ice from seawave

products. Therefore, this research focuses on sea ice recognition in the Arctic

based on SWIM data from October 2020 to April 2021. Eleven features are first

extracted, and applied for the analysis of the waveform characteristics using the

cumulative probability distribution (CPD) and mutual information measurement

(MIM). Then, random forest (RF), k-nearest neighbor (KNN) and support vector

machine (SVM) classifiers are built, and their abilities of sea ice recognition are

assessed. The optimal classifier is the KNN method with Euclidean distance and k

equal to 11. Feature combinations are also used to separate sea ice and sea water

based on the KNN method to select the optimal combination. Thus, the optimal

classifier-feature assembly at each small incidence angle is established, and the

highest overall accuracy reaches 97.1%. Moreover, the application of the optimal

classifier–feature assemblies is studied, and its performance is fairly good. These

assemblies yield high accuracies in the short- and long-term periods of sea ice

recognition, and the overall accuracies are greater than 93.1%. So, the proposed

method satisfies the SWIM requirement of removing the sea ice effect. Moreover,

sea ice extents and edges can be extracted from SWIM sea ice recognition results

at a high level of precision greater than 94.8%. As a result, the optimal classifier–

feature assemblies based on SWIM data express the effectiveness of the SWIM

approach in sea ice recognition. Our work not only highlights the new sea ice

monitoring technology of remote sensing at small incidence angles, but also

studies the application of SWIM data in sea ice services.

KEYWORDS

sea ice, Surface Wave Investigation and Monitoring (SWIM), Arctic, small incidence
angles, waveform features, k-nearest neighbor method
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2022.986228/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.986228/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.986228/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2022.986228&domain=pdf&date_stamp=2022-09-13
mailto:xi.zhang@fio.org.cn
https://doi.org/10.3389/fmars.2022.986228
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2022.986228
https://www.frontiersin.org/journals/marine-science


Liu et al. 10.3389/fmars.2022.986228
1 Introduction

Sea ice plays an important role in global climate change,

shipping, navigation and the extraction of natural resources

(Komarov and Buehner, 2021), and influences the detection of

other ocean phenomena; for example, sea wave retrieval requires

the removal of sea ice ‘pollution’ (Ren et al., 2021; Wang J.K.,

et al., 2021). Thus, sea ice recognition has become a main task

performed to meet the scientific and operational requirements of

national and commercial ice services, which provides sea ice

edge, extent, and concentration products (Cheng et al., 2020; de

Gélis et al., 2021). Microwave remote sensors, including

synthetic aperture radar (SAR), scatterometers, and altimeters,

have become the main tools used for sea ice monitoring in the

Arctic. These sensors operate at incidence angles of 0° or 20–60°.

SAR is an imaging radar with multiple bands including L, C and

X bands and a high spatial resolution of less than 1 m at 20–60°.

Based on the available microwave backscattering information

and image characteristics, SAR provides data mainly used to the

regional distribution and change of the sea ice. Karvonen et al.

(2005) proposed a segmentation technique based on intensity

autocorrelation using C-band RADARSAT-1 SAR images; the

accuracy of sea water recognition was 90%, and no results were

reported for sea ice. Berg and Eriksson (2012) utilized a neural

network to separate sea ice and sea water based on C-band

ENVISAT and RADARSAT-2 SAR images, and the accuracies of

sea ice and sea water identification were 87% and 94%,

respectively. Asadi et al. (2021) proposed a multilayer

perceptron (MLP) neural network for sea ice and sea water

distinguishing based on RADARSAT-2 images, and the overall

accuracy reached 82%. Komarov and Buehner (2021) presented

a new method that could be applied at multiple spatial scales for

automatic distinction between sea ice and sea water using

RADARSAT-2 images, and the maximum overall accuracy

reached 99%. At present, SAR has been used to obtain sea ice

products for the Arctic region. Scatterometers can detect sea ice

across the Arctic region at a coarse spatial resolution (several to

tens of kilometers) and at two major frequencies: the C band

(e.g., ASCAT and ERS-1/2) and the Ku-band (e.g., QuickSCAT

and OSCAT). Sea ice recognition depends on the microwave

backscattering powers of the horizontal and vertical

polarizations, as well as the image reconstruction method

(Gohin and Cavanie, 1994; Remund and Long, 1999; Rivas

and Stoffelen, 2011; Otosaka et al., 2018). Haarpaintner and

Spreen (2007) refined the detection method of low sea ice

concentration using QuikSCAT data and improved the

extraction accuracies of sea ice edges. Presently, operational

sea ice edge, extent and concentration products in the Arctic

have been generated for a long time, and sea ice recognition

accuracies have reached 90% (Cavalieri et al., 1996; Breivik et al.,

2012; Rivas et al., 2012; Remund and Long, 2014; Bi et al., 2018).

Altimeters are mainly used for sea ice thickness retrieval based

on large-scale and coarse spatial resolution observations similar
Frontiers in Marine Science 02
to those of scatterometers; however, extracted sea ice and sea

water information is needed to improve retrieval accuracies

(Zhang et al., 2021). Some classifiers, such as the random

forest (RF), k-nearest neighbor (KNN), and support vector

machine (SVM) classifiers, are used for sea ice recognition

based on the waveform features of echo signals which include

the backscattering coefficient (s0), maximum power (MAX),

pulse peakiness (PP), inverse mean power (IMP), leading edge

width (LEW), and trailing edge slope (TES). The waveform

features of airborne Ku-band radar altimeters were first used to

discriminate the rough and smooth surfaces of sea ice, and a

higher waveform peak and steeper trailing edge were associated

with smooth surfaces (Drinkwater and Carsey, 1991). Laxon

(1994) mapped sea ice extents based on PP and standard

deviation of surface height extracted from ERS-1 radar

altimeter data, which suggested clear operational applications

in polar sea ice detection. Currently, the accuracies of sea ice and

sea water recognition have reached 92% and 95%, respectively

(Zygmuntowska et al., 2013; Rinne and Similä, 2016; Müller

et al., 2017; Shen et al., 2017a; Shen et al., 2017b; Shu et al., 2019).

However, the surface characteristics, snow coverage, and other

factors certainly affect the stability of sea ice recognition

accuracies, which needs further exploration. And these

methods should be verified by more data in different study

regions and long periods. Therefore, sea ice recognition using

altimeters is still under study.

The Surface Wave Investigation and Monitoring (SWIM)

instrument adopts a new observation mode with multiple

small incidence angles (0° to 10°) for the detection of sea

surface waves (Hauser et al., 2016; Hauser et al., 2017; Wang

et al., 2019; Xu et al., 2019; Hauser et al., 2020). SWIM with a

maximum latitude of 83°N can cover sea ice regions in the

Arctic and be used for sea ice recognition. Moreover, SWIM

sea wave products are influenced by the sea ice, resulting in

that SWIM data should be labeled by the discrimination flag of

sea ice and sea water. Thus, SWIM data with the new

observation mode can be used for sea ice recognition and

contribute to sea ice monitoring methods and operational

techniques. Our previous study focused on sea ice type

classification (Liu et al., 2021; Liu et al., 2022), and a

method to distinguish between sea ice and sea water was not

fully established. In addition, two new features (Inverse mean

power, IMP; Trailing edge slope, TES) were introduced for

first-year ice (FYI) and multiyear ice (MYI) separation,

but these features were not used for sea water recognition.

Therefore, based on our previous study, several key problems

are explored in this study:
• New feature introduction and waveform analysis at

small incidence angles to assess the use of different

waveform features for separating sea ice and sea water;

• Classifier selection and assessment of the abilities for

different classifiers with different settings;
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• Establishment of the optimal classifier–feature assembly

at each incidence angle; the assembly is established by

combining the selected classifier and feature

combinations. It can achieve sea ice recognition with

high accuracy based on SWIM data obtained in the new

detection mode;

• Application analysis of the optimal classifier–feature

assemblies at small incidence angles, that is, whether

these assemblies can be applied to remove sea ice from

SWIM sea wave products and extract sea ice extents and

edges for sea ice operational services.
Section 2 introduces the SWIM, SAR and sea ice chart

data from the Arctic obtained between October 2020 and

April 2021. Moreover, the waveform features of SWIM data

are extracted, and classifiers for sea ice recognition are

identified. Section 3 reveals the waveform analysis, and the

overall accuracies of different classifiers and feature

combinations, then, the optimal classifier-feature assembly

for the SWIM data is established at each small incidence

angle. Furthermore, the application of the optimal classifier-

feature assemblies is also analyzed. Section 4 discusses the

results in this study. Section 5 presents the conclusions and

future work.
2 Data and methods

2.1 Data

There are three data sets used in this paper: SWIM, Sentinel-1

and sea ice chart data.
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2.1.1 SWIM
The SWIM is loaded on the Chinese-French Oceanic

Satellite (CFOSAT), which was successfully launched on

October 29, 2018 (Wang et al., 2019; Xu et al., 2019). SWIM is

the first spaceborne real aperture radar system that can operate

at six small incidence angles (0° to 10°), the entire azimuth angle

range (0–360°) and 13.575 GHz (Hauser et al., 2016; Hauser

et al., 2017; Hauser et al., 2020). The main objective of SWIM is

to provide wave spectra for the sea surface. SWIM spans nearly

90 km from 0° to 10° on the ground, and its footprint at 10° is

approximately 18 km, as shown in Figure 1. SWIM can reach the

northern and southern latitudes up to 83°. SWIM’s orbit assures

a complete Earth coverage at the end of the cycle (13 days)

except for small holes around the equator. The mid- and high-

latitudes are very well covered as required by the mission. Level

1A SWIM data, which can be used to extract waveform features

to recognize sea ice and sea water, are used in this study.

2.1.2 Sentinel-1
Sentinel-1 was the first of five missions launched as part of

the Copernicus Initiative of the European Commission (EC) and

the European Space Agency (ESA). Sentinel-1 is in a near-polar,

sun-synchronous orbit with a 12-day repeat cycle and 175 orbits

per cycle for a single satellite. Sentinel-1A/B SAR can obtain all-

weather, all-day images in the C-band in single-polarization

(HH or VV) and dual-polarization (HH+HV or VV+VH)

modes. Sentinel-1 SAR operates in four exclusive modes:

stripmap (SM) mode, interferometric wide swath (IW) mode,

extrawide swath (EW) mode and wave (WV) mode.

Additionally, four products are provided: Level-0, Level-1

Single Look Complex (SLC), Level-1 Ground Range Detected

(GRD) and Level-2 Ocean (OCN) data.
BA

FIGURE 1

SWIM detection schematics for six incidence beams. (A) The projection geometries of the six beams in one macrocycle. One macrocycle
represents six successive beams transmitting at small incidence angles with a discontinuous azimuth. (B) Samples of several macrocycles over
the Earth’s surface (antenna aperture: 2°×2°).
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Sentinel-1A/B can support effective ice services, for example,

the monitoring of sea ice extent, concentration and types in the

Arctic (de Gélis et al., 2021, Li et al., 2021; Scharien and

Nasonova, 2022). In this study, Sentinal-1 SAR images are

used to evaluate sea ice recognition results of SWIM data.

Considering the 18 km spatial resolution of SWIM products,

we use the wide swath (about 400 km) and low resolution (about

90 m) SAR images of Lever-1 GRD products.

2.1.3 Sea ice charts
The sea ice charts used in this study are from the Arctic and

Antarctic Research Institute (AARI) (AARI, 2022), and the

National Snow and Ice Data Center (NSIDC) (Cavalieri et al.,

1996; NSIDC, 2022).

(1) AARI

The AARI usually releases sea ice charts on Thursday. One

sea ice chart covers three days from Sunday to Tuesday,

including sea water and sea ice types (nilas, young ice, first-

year ice and multiyear ice) in one Arctic ice year from October to

April (AARI, 2022). In this study, only sea ice and sea water are

separated in the Arctic from October 2020 to April 2021, and sea

ice regions of different types are merged. During this period,

thirty charts were issued, including 90 days. In general, multiyear

ice (MYI) and sea water are the primary categories in the Arctic

in October, and nilas (NI) and young ice (YI) only appear in

small regions. Then, the sea ice rapidly develops from November

to December. The sea ice distribution is stable from January to

March and varies slowly in April. The characteristics of the sea

ice distribution in April are similar to those from January to

March. According to the characteristics of the sea ice

distribution in the Arctic, sea ice development in one Arctic

ice year can be divided into three stages: the first is October

(Stage 1), the second is November to December (Stage 2), and

the third is January to April (Stage 3).

(2) NSIDC

The NSIDC provides a sea ice concentration data set

generated from the brightness temperature extracted from

radiometer data, and one cell size is 25 ×25 km in the polar

stereographic projection (Cavalieri et al., 1996; NSIDC, 2022).

Notably, sea ice concentration products are generated daily. One

cell where sea ice concentration is not lower than 15 percent is

classified as sea ice, and the others are classified as sea water.

Thus, the sea ice extents and edges are extracted and can be used

to evaluate SWIM results.
2.1.4 Data matching and filtering
In this research, SWIM waveforms are matched and filtered

for sea ice and sea water distinguishing in the Arctic based on the

following criteria:
Fron
(1) SWIM data in the Arctic ice year from October 2020 to

April 2021 are selected.
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(2) The SWIM data in the coverage region of AARI sea ice

charts are chosen. Then, these data are also matched to

the observation time of each AARI sea ice chart in a

three-day period from every Sunday to Tuesday

mentioned in the Section 2.1.3.

(3) The waveforms of SWIM are labeled as sea ice or sea

water based on matching with the AARI sea ice charts

from the same dates. The sea ice distribution changes

very slowly in the Arctic over three days in winter,

especially when data with a coarse spatial resolution

(tens of kilometers) are used. And, remote sensors with

similar spatial resolution also do this method to obtain

the information of the categories (Shen et al., 2017a;

Shen et al., 2017b; Shu et al., 2019).

(4) If the powers of gates in one waveform are negative or

higher than the maximum threshold value, the

waveform is removed.
2.1.5 SWIM features
According to our previous work and other researches, eleven

waveform features are extracted to assess the echo characteristics

of SWIM at six small incidence angles (Laxon, 1994;

Zygmuntowska et al., 2013; Rinne and Similä, 2016; Shen

et al., 2017b; Shu et al., 2019; Liu et al., 2022). These features

reflect the different waveform characteristics, for example, the

power, structure, and overall characteristics of echo waveforms.

(1) Maximum power (MAX)

MAX is the maximum power of the echo in one footprint,

which can reflect the surface properties of observed objects

(Zakharova et al., 2015). MAX is defined by the following

formula:

MAXq =  max Piq
� �

,   iq = 1,   2,   3,  …, nq  ,   q = 0 °,   2 °,   4 °,   6 °,   8 °,   10 °,

n q = 256,  765,  933,  2771,  2639,  3215

(1)

where Piq is the power in the i-th range gate and nq is the

maximum range gate in one footprint at the incidence angle q.
(2) Medium power (MED)

MED, as the medium power of all gates in one footprint, is a

new feature of echo waveforms. This variable reflects the

distribution of echo powers. MED is expressed as:

MEDq =  medium Piq
� �

,   iq = 1,   2,   3,  …, nq (2)

The backscattering coefficient (s0) was the main parameter

used for sea ice and sea water distinction in previous studies. s0 is
expressed by the radar frequency, polarization and incidence angle

and depends on the surface properties of the observed objects, such

as their roughness, geometry and dielectric characteristics. For

altimeters at 0°, many methods are used to calculate the s0 values
of a footprint, and the offset center of gravity (OCOG) approach is

popular. Incidence angles of 2–10° in SWIM can support new
frontiersin.org
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modes of sea ice detection, and these angles approximate 0°. Thus,

OCOG and the mean value of one waveform are used to calculate

s0 at 2–10° in this paper. Moreover, the mean value is an

important feature for sea ice and sea water identification at 0°.

(3) Mean power (MEA)

MEA is the mean power of all gates in one footprint.

MEAq = o
nq
iq=1

Piq
nq

(3)

(4) Offset center of gravity (OCOG)

OCOG is defined by:

OCOGq =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
onq

iq=1
P4
iq

onq
iq=1

P2
iq

s
(4)

(5) Pulse peakiness (PP)

PP is related to the specular return of echo signals and is

defined by the ratio of MAX to the accumulated echo power:

PPq =
Pmaxq

onq
iq=1

Piq
� nq (5)

PP increases as the surface becomes smoother at 0°

(Zygmuntowska et al., 2013).

(6) Stack standard deviation (SSD)

SSD is the standard deviation of the waveform and reflects

the dispersion and stability of the waveform. Additionally, this

variable depends on the surface roughness at 0°.

SSDq =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
onq

iq¼1 Piq −MEAq
� �2

nq

s
(6)

In the discussion of our previous study, the inverse mean

power (IMP) was useful to discriminate FYI and MYI (Liu et al.,

2022). In this study, IMP is also introduced for sea ice and sea

water separation.

(7) Inverse mean power (IMP)

IMP is the ratio of the maximum range gate to the total

power in one footprint and is scaled by 2 × 10−13; it increases as

the surface becomes rougher at 0° (Aldenhoff et al., 2019).

IMP   =
nq

onq
iq¼1Piq

· 2 · 10−13 (7)

IMP can improve the contrast of signals when waveforms do

not exhibit obvious peaks.

(8) Leading edge width (LEW)

LEW represents the gate range at the leading edge, and the

two gates are chosen at 5% and 95% of the maximum echo

power; which can filter the effect of the thermal noise of the

leading edge.

A1 q   =  MAXq · 0:95;  A2 q   = MAXq · 0:05;  LEWq 

=  G A1 qð Þ − G A2 qð Þ (8)
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where G(A1q) and G(A2q )represent the gates at 5% and 95%

of the maximum echo power at the incidence angle

q, respectively.
(9) Trailing edge width (TEW)

TEW represents the gate range at the trailing edge, and the

two gates are chosen at 5% and 95% of the maximum echo

power. TEW increases as the diffuse reflection of rough surfaces

increases at 0°.

A1 q   =  MAXq · 0:95;A2 q   = MAXq · 0:05;  TEWq    

=  G A2 qð Þ − G A1 qð Þ (9)

Our previous study indicated that LEW and TEW did not

yield satisfactory results, and the echo power (MAX) and

waveform shape (TEW) could be combined to improve the

effects on distinguishing between FYI and MYI (Liu et al., 2022).

In this study, we expand this method to separate sea ice and

sea water.

(10) Leading edge slope (LES)

LES is MAX divided by LEW and expresses the rate of rise at

the leading edge of the waveform.

LESq   =  
MAXq

LEWq
: (10)

(11) Trailing edge slope (TES)

TES is MAX divided by TEW and expresses the rate of

decline at the trailing edge of the waveform.

TESq   =  
MAXq

TEWq
(11)

LES and TES consider the power and structure of an echo

waveform, similar to PP, SSD and IMP, can reflect the overall

properties of the waveform.

The above features can be used to construct 2047 feature

combinations including 11 single features and multifeature

combinations at each incidence angle. The feature

combinations are represented by the ID Numbers, and are

listed in the ‘Supplementary Material’ file. For single features,

MAX, MED, MEA, OCOG, PP, SSD, IMP, LEW, TEW, LES, and

TES are represented by the ID Numbers of F1–F11, respectively.

For multifeature combinations, for example, the ID Number of

F67 represents the feature combination (F{1,2,3}) including F1,

F2 and F3 that are MAX, MED and MEA.

2.1.6 Waveform analysis
The cumulative probability distribution (CPD) and mutual

information measurement (MIM) are applied to analyze

SWIM waveforms using the eleven features at six small

incidence angles.

(1) CPD

The CPD of a discrete random variable with a real value is

defined as follows:
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FX xð Þ = Pr X ≤ xð Þ (12)

CPD represents the sum of the occurrence probabilities of

the variable X that are less than and equal to a certain value x. X

represents one of the waveform features.

(2) MIM

Mutual information measures the mutual dependence of two

discrete random variables. The MIM of discrete random

variables X and Y is defined by the following formula:

I X, Yð Þ = H Xð Þ −H(YjX) (13)

where H(X) is the information entropy of X and H(Y|X)

represents the conditional entropy of Y if X is known. The

variables X and Y represent two waveform features of

one footprint.
2.2 Methods

The overall accuracy (OA) and F1 score (F1s) that are

defined as seen in ‘Supplementary Material’ file are used to

evaluate the abilities of classifiers for sea ice recognition. The

introduction of classifiers is in terms of our previous work and

other researches (Liu et al., 2015; Rinne and Similä, 2016; Shen

et al., 2017a; Shen et al., 2017b; Jiang et al., 2019; Liu et al., 2022),

so three classifiers are chosen for sea ice and sea water separation

in this study, including the random forest (RF), k-nearest

neighbors (KNN) and support vector machine (SVM). Then,

the optimal classifier is chosen from the three ones, which is used

to obtain the best feature combination. Thus, the optimal

classifier-feature assembly is developed. We conduct random

selection of 10 percent of all samples for training purposes and

the rest samples for validation. So, the testing data are

independent of the training dataset.

2.2.1 Optimal classifier selection
(1) RF

The RF method is a flexible approach based on ensemble

learning techniques and regression decision trees. An RF can

have many trees. In each tree, its training data are bootstrap

sampled from all training data (Chan and Paelinckx, 2008;

Hoekstra et al., 2020), and the features are selected randomly.

Classification decisions are made by each individual decision

tree. An RF can classify a large number of data sets in high-

dimensional feature spaces (Shen et al., 2017a; Shen et al.,

2017b). The RF method in this study includes 10–100 trees,

with a step of 10.

(2) KNN

The KNN method is one of the most popular approaches for

distinguishing between sea ice and sea water based on altimeter

data (Rinne and Similä, 2016; Shen et al., 2017a; Shen et al.,

2017b; Jiang et al., 2019). To assign the category of a sample in

the validation space, a KNN needs to search for k points in the
Frontiers in Marine Science 06
training space that are the closest neighbors around the sample.

The KNN method is mainly based on two variables: the number

of nearest neighbors (k) and the distance function which

includes the Euclidean distance, Manhattan distance, or

Mahalanobis distance.

(3) SVM

The SVM method, as a classic supervised machine learning

technique, is also a popular and efficient approach for sea ice and

sea water distinguishing based on altimeter data (Liu et al., 2015;

Jiang et al., 2019); it produces appropriate nonlinear boundaries

for discriminating categories based on kernel functions. There

are three kernel functions applied in this paper: a Gaussian

kernel, a linear kernel, and a polynomial kernel. The polynomial

kernel includes the order q, and q is set to 2 and 3 in this study.

2.2.2 Optimal classifier-feature
assembly establishment

After the classifier is selected from the abovementioned

options, feature combinations derived from 11 waveform

features are input into the selected classifier to obtain the

subsequent overall accuracies and F1 scores. The feature

combination and classifier that yield the highest accuracy are

selected to establish the optimal classifier–feature assembly.

Then, the application of the optimal classifier–feature assembly

is analyzed.
3 Results

3.1 Waveform analysis

3.1.1 CPD
CPD illustrates the distribution ranges and probabilities of

feature values for sea ice and sea water at six incidence angles, as

shown in Figure 2. The eleven features are normalized in the

range of [−1, 1]. The CPDs reveal that the distributions of

the features at 0–10° for sea ice and sea water are different. Thus,

the incidence angles can be separated into three sets: 0–2°, 4–6°,

and 8–10°. The CPDs of most features of sea ice and sea water

cover small ranges. Only TEW values for both sea ice and sea

water distinctly cover large ranges, and they are relatively

uniformly distributed. The features of which the CPDs are

obviously different for sea ice and sea water at six small

incidence angles are shown in Table 1. At 0–2°, the widths of

the PP and LEW distributions for sea ice and sea water exhibit

evident differences, suggesting that the two features may be

useful for sea ice recognition; the TEW for both sea ice and sea

water covers wide ranges but exhibits small difference, and LES

displays a slightly larger width range. However, the remaining

seven features span small ranges. At 4–6°, MED and MEA

exhibit obvious discrepancies in terms of their distributions for

sea ice and sea water. Additionally, MED and MEA exhibit

obvious differences at 8°. The CPDs of single features do not
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exhibit distinct differences at 10°, and by comparison, the most

obvious features are MED and MEA, as listed in Table 1. The

CPDs indicate that the properties at 4–6° are more similar to

those at 8–10° than at 0–2°. Therefore, the CPD of one feature

implies the separation ability of sea ice and sea water.

3.1.2 MIM
Eleven features can be used to establish 66 feature pairs, and

the corresponding MIMs at six small incidence angles are shown

in Figure 3. Larger MIMs of feature pairs imply higher

redundancy or relevance, and MIMs larger than 0.65 indicate

strong correlations (Zhang et al., 2021), as shown in Table 2. At
Frontiers in Marine Science 07
0–2°, three feature pairs, {OCOG–MAX}, {SSD–MAX} and

{SSD–OCOG}, display high redundancy. At 4–6°, {OCOG–

MAX} and {MEA–MED} pairs are most strongly correlated.

At 8–10°, only the {MEA–MED} pair displays high relevancy.

Thus, features at 4–6° may display the characteristics of features

at both the 0–2° and 8–10°. More features with less redundancy

at 8 – 10° may imply the independence of these features. The

MIMs exhibit some consistency with the CPDs; for example,

MEA and MED have high relevance and display similar CPD

distributions at 4–10°. Consequently, a high MIM value

indicates the high repeatability and redundancy of the two

features in sea ice and sea water separation.
B

C D

E F

A

FIGURE 2

CPDs of eleven features at small incidence angles. (A) 0°; (B) 2°; (C) 4°; (D) 6°; (E) 8°; (F) 10°.
TABLE 1 The features of which the CPDs obviously differ for sea ice and sea water at six small incidence angles.

Angle 0° 2° 4° 6° 8° 10°

Feature PP PP MED MED MED MED

LEW LEW MEA MEA MEA MEA
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Considering that no one feature pair appears at all incidence

angles, all features are considered in subsequent research.
3.2 Three classifiers

All features are used in the KNN, SVM and RF methods, and

the model parameterization results are compared to the above

feature analysis results.

3.2.1 RF
The number of decision trees in the RF method is varied

from 10–100 with a step of 10, and the overall accuracies of
Frontiers in Marine Science 08
sea ice and sea water are shown in Figure 4A. This subfigure

shows that the accuracies are very steady under different

conditions of decision trees, features and incidence angles,

and the lines of maximum values are often very close to the

lines of minimum values. The accuracies decrease very

slowly as the number of trees increases, and the maximum

change in the accuracies is approximately 1.2%. As a result,

more trees do not produce higher accuracy for all features at

six small incidence angles, but the run time does notably

increase. Thus, the classification results of 10 decision trees

(Tree 10) in the RF are compared with the KNN and

SVM results.
FIGURE 3

MIMs of 66 feature pairs at small incidence angles.
TABLE 2 The feature pairs of which the MIMs are larger than 0.65 at six small incidence angles.

Angle 0° 2° 4° 6° 8° 10°

{OCOG–MAX} {OCOG–MAX} {OCOG–MAX} {OCOG–MAX} {MEA–MED} {MEA–MED}

Feature pair {SSD–MAX} {SSD–MAX} {MEA–MED} {MEA–MED}

{SSD–OCOG} {SSD–OCOG}
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3.2.2 KNN
Two parameters in the KNN method are tested: the k value

and distance. The value range of k is set to 1 to 13, and the

accuracy of the corresponding results is shown in Figures 4B–G.

At all incidence angles, the change in accuracy can reach 17%

before k = 5; then, the accuracy change remains at approximately

1.7% (only LEW of 2° is about 6.7%) for k values from 5 to 11,

and 1.0% for k values larger than 11. Thus, k is set to 11 in the

KNN model.

The three distances (Euclidean distance, Manhattan

distance, and Mahalanobis distance) are analyzed, and the

results are compared with those of the RF and SVM, as shown

in Figure 5. The run time of the model with Euclidean distance is

slightly shorter than that of the model based on the Manhattan

distance and much shorter than that of the model with the

Mahalanobis distance.

3.2.3 SVM
The SVM run times with different kernels are as follows in

ascending order: linear kernel, Gaussian kernel, polynomial
Frontiers in Marine Science 09
kernel with q equal to 2 (Polynomial 2), and polynomial

kernel with q equal to 3 (Polynomial 3). The accuracy results

are compared for eight cases, namely, ‘Tree 10’ for the RF with

10 trees, the KNN with k =11 and three different distance

measures, and the SVM with three different kernels, as shown

in Figure 5.

The overall accuracy results illustrate that the KNN model

with Euclidean distance yields better results than the other cases,

except for IMP at 0°, LEW and TEW from 0–4°, and LES at 4°.

Thus, the optimal classifier is the KNN method with Euclidean

distance and k equal to 11. The overall accuracies for single

features are shown in Table 3. The top-three features with the

highest accuracies at small incidence angles are marked in red.

At 0–2°, PP and LES are common top features, and PP is also

noted as a top feature in the CPDs (Section 3.1.1). At 4–6°, the

results are similar to those at 8–10°, which is consistent with the

CPD results. At 8–10°, higher accuracies are observed than those

at other incidence angles. Moreover, at 4–6° and 8–10°, the two

incidence sets have the same top-three features (MED, MEA,

and IMP); both MED and MEA are effective for sea ice and sea
B C D

E F G

A

FIGURE 4

Overall accuracies of the RF method for different tree numbers and the KNN method for different k values at small incidence angles:
(A) Different numbers of RF trees: Mean values of the overall accuracies are expressed by the bars; The maximum value and minimum value of
the overall accuracies are indicated by two orange short lines on the bar, respectively; The upper line represents the maximum value, and the
lower line is the minimum value; (B) Different k values at 0°; (C) Different k values at 2°; (D) Different k values at 4°; (E) Different k values at 6°;
(F) Different k values at 8°; (G) Different k values at 10°.
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water separation in agreement with their CPDs and MIMs in

Section 3.1.
3.3 Optimal classifier-feature assembly

The eleven features can be used to construct 2047 feature

combinations at each incidence angle. These feature

combinations are input into the optimal classifier, that is, the

KNN classifier with Euclidean distance and k = 11; the resulting

F1 scores and overall accuracies are shown in Figure 6.

The optimal feature combination that yields the highest

accuracy at each incidence angle is shown in Table 4. The

highest overall accuracy reaches 97.1%. There are few identical

features in the optimal combinations of each incidence set

because of the large number of feature combinations. For
Frontiers in Marine Science 10
different feature combinations, the numbers of overall

accuracies better than 96% are 970, 948, 994, 1769, 1879, and

1430 at each incidence angles, respectively. As a result, we focus

on not only the optimal feature combinations but also the

feature combinations that score in the top-5 percent in terms

of overall accuracy. The occurrence probabilities of single

features in these top combinations are analyzed, as shown in

Figure 6D. The results for 6–10° are better than those at other

incidence angles.

At 0–2°, the optimal/top combinations mainly include MED,

MEA, OCOG, PP, SSD, LES and TES (F{2,3,4,5,6,10,11}). PP

(F5), as an important feature in altimeter-based sea ice

recognition, is common in the top combinations and is high

ranking in the above CPDs (Section 3.1.1) and single feature

classification results (Section 3.2). OCOG and SSD (F4, F6) are

relevant in MIMs, but are still functional in the optimal
TABLE 3 Overall accuracies of single features at small incidence angles using the optimal classifier (the KNN method with Euclidean distance
and k equal to 11).

ID Number Feature 0° 2° 4° 6° 8° 10°

F1 MAX 89.9% 80.6% 92.2% 95.1% 95.9% 96.2%

F2 MED 73.2% 93.8% 95.5% 96.7% 96.8% 96.7%

F3 MEA 68.5% 88.6% 95.3% 96.7% 96.8% 96.6%

F4 OCOG 86.1% 80.7% 93.6% 95.8% 96.3% 96.5%

F5 PP 96.7% 96.6% 93.0% 88.1% 84.7% 86.2%

F6 SSD 78.3% 71.9% 84.2% 91.3% 93.3% 94.4%

F7 IMP 68.5% 88.7% 95.2% 96.7% 96.7% 96.7%

F8 LEW 72.5% 90.8% 69.7% 69.7% 69.5% 69.6%

F9 TEW 69.8% 71.5% 71.5% 69.5% 69.7% 71.4%

F10 LES 88.5% 92.2% 70.5% 74.7% 78.8% 78.5%

F11 TES 74.8% 76.5% 90.7% 92.8% 93.4% 93.7%
frontiers
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FIGURE 5

Overall accuracies of the individual RF, KNN and SVM models with different settings: (A) 0°; (B) 2°; (C) 4°; (D) 6°; (E) 8°; (F) 10°. The result of the
Euclidean distance is expressed as the solid black line, and the other kernels, distances and Tree 10 are shown as bars based on the Euclidean
distance. Upward bars express their accuracies higher than the overall accuracies of the Euclidean distance, and the downward bars express
their accuracies less than the overall accuracies of the Euclidean distance.
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FIGURE 6

F1 scores and overall accuracies of 2047 feature combinations for sea ice and sea water discrimination at six small incidence angles. (A) F1
scores of sea ice; (B) F1 scores of sea water; (C) Overall accuracies; (D) Occurrence possibilities of single features in the top 5% feature
combinations. The numbers in (A) – (C) represent the ID Numbers of the feature combinations, seen in the ‘Supplementary Material’ file.
TABLE 4 Overall accuracy of the optimal feature combination at each small incidence angle using the optimal classifier (the KNN method with
Euclidean distance and k equal to 11).

ID Number Combinations OA/% ID Number Combinations OA/%

0° 2°

F441 F{3,4,5,11} 96.9% F1033 F{1,2,3,4,6,10} 96.9%

4° 6°

F1194 F{1,3,5,6,10,11} 96.7% F247 F{1,2,5,6} 97.1%

8° 10°

F578 F{1,2,3,6,10} 97.0% F797 F{2,3,5,6,11} 96.9%
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combination of F1033 at 2°, which implies that the two features

can play their own roles for sea ice recognition. At 4–6°, the

optimal/top combinations mainly include MAX, MED, MEA,

PP, SSD, LES and TES (F{1,2,3,5,6,10,11}). MED and MEA (F2,

F3) can also be effectively used to distinguish between sea ice and

sea water suggested by CPDs and single feature classification.

The two features have high relevance in MIMs, and they are the

important features in optimal combinations of F1194 at 4° and

F247 at 6°, respectively. At 8–10°, the optimal/top combinations

mainly include MAX, MED, MEA, PP, SSD, LES and TES (F

{1,2,3,5,6,10,11}). MED and MEA (F2, F3) are very useful to

discriminate sea ice and sea water indicated by CPDs and single

feature classification. MED and MEA are redundant in MIMs

and provide respective contributions in the optimal

combinations of F578 at 8° and F797 at 10°. MEA performs

better than OCOG for 4° to 10°, which indicates that MEA may

be more suitable to express s0 for 4° to 10°. The results at 4–6°

are similar to those at 8–10°, as observed in the CPDs and single

feature classification.

According to the above results, angles from 6° to 10° are best

for distinguishing between sea ice and sea water. The top feature

combinations display obvious consistency with the relevant CPD

results and single feature classification results. Moreover, these

results are in partial agreement with MIM analysis results.

Nevertheless, some features in redundant or relevant feature

pairs can play their own functions for sea ice and sea water

discrimination in the optimal combination. Therefore, optimal

classifier–feature assembly at each incidence angle can be used

for sea ice recognition based on SWIM data.
Frontiers in Marine Science 12
3.4 Application analysis of optimal
classer-feature assembly

3.4.1 Sea ice recognition accuracies in three
stages of sea ice development

The three stages of sea ice development in the Arctic ice year

of 2020/2021 are expressed specifically by combining the AARI

and NSIDC sea ice charts as follows. The first stage is from 4th to

27th October, 2020 (Stage 1), when the sea ice changed clearly. The

second stage is from 1st November to 29th December, 2020 (Stage

2), when the sea ice grew rapidly. The third stage is from 3rd

January to 27th April, 2021 (Stage 3), when the sea ice distribution

was stable. Several regions where sea ice and sea water do not vary

throughout each stage are selected according to sea ice charts in

the three stages. The selected invariant regions of the categories for

Stages 1–3 are as large as possible, as shown in Figure 7.

For each stage, five time intervals of one day (T1), three days

(T2), one week (T3), one month (T4) and one stage (T5) are

selected, and T4 and T5 are the same in Stage 1. The overall

accuracies are shown in Table 5.

In the three stages, the overall accuracies of the optimal

assemblies at small incidence angles in T1–T5 are higher than

90%. In addition, the accuracy generally increases as sea ice

development stabilizes. Moreover, the excellent accuracies may

be partly due to homogeneous characteristics in these areas

where boundary regions of sea ice and sea water are not

included. Therefore, optimal classifier–feature assemblies can

be effectively used for sea ice and sea water separation at all

incidence angles in short- and long-term periods.
B CA

FIGURE 7

Invariant regions of the sea ice distribution at each stage: (A) Stage 1; (B) Stage 2; (C) Stage 3.
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3.4.2 Sea ice extent and edge extraction
The sea ice recognition results based on SWIM data can be

applied to detect sea ice extents and edges. According to the

SWIM coverage, seven-day data are merged to build a grid image

with a resolution of 25 km × 25 km in the polar stereographic

projection, consistent with NSIDC sea ice products for the

Arctic. In one grid, the sea ice proportion can be calculated

based on the number of sea ice footprints divided by the total

numbers of sea ice and sea water footprints. The grids where the

sea ice proportion is not lower than 15% are set to sea ice

regions, and others are sea water regions; then, sea ice extents

and edges can be identified. Three SWIM results of sea ice

extents and edges, combining synchronous Sentinel-1 SAR

images from the ice year of 2020/2021, are used as examples

to assess the proposed approach during November 11th – 17th,

2020, February 11th – 17th, 2021, and March 11th – 17th, 2021.

Additionally, these results are also compared with the NSIDC

sea ice products. The time difference between the acquisitions of

the Sentinel-1 SAR images and the release of the AARI sea ice

charts or the NSIDC products is less than 1 day. And, when

SWIM results are evaluated by a SAR image, these results should

be obtained on one day (SR-1). Then, the time difference

between the acquisitions of the SAR image and SWIM data is

less than 1 day. Comparison of sea ice extents and edges between

SWIM and NSIDC are shown in Figure 8. For each grid, the type

of SWIM (in seven days, SR-7) and NSIDC (in one day, NR-1)

are compared, then the percentage of the grids with the same

type (sea ice or water) is found to be 94.8% (SR-7 from

November 11th – 17th, and SAR and NR-1 on November 11th),

97.7% (SR-7 from February 11th – 17th, and SAR and NR-1 on

February 17th), and 98.2% (SR-7 from March 11th – 17th, and

SAR and NR-1 on March 17th), respectively. These results reveal

that SWIM sea ice extents are consistent with those of NSIDC.

The obvious differences of sea ice extents between SWIM

and NSIDC mainly occur in coastal areas and sea ice edges. In

the coastal areas, the land information can influence the results

of sea ice recognition, and in sea ice edges, the confusion of sea

ice and sea water may also affect the results. The differences in

the sea ice edges are studied combining synchronous Sentinel-1

SAR images. And in order to clearly reveal these differences, only
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the sea ice edges of overlapping regions of NR-1 and SR-7 or SR-

1 are shown in Figure 9.

From November 11th – 17th, the SWIM sea ice edges are

matched with the Sentinel-1 SAR image obtained on November

11th. A comparison of the sea ice edges in the SWIM and NSIDC

products with the Sentinel-1 image indicates that the sea ice

distribution is overestimated in SR-7 and NR-1 products, and

the result of SR-7 is worse than that of NR-1, as shown by the

blue line and purple line in Figure 9H. Considering that sea ice

developed rapidly in November, SR-1 on November 11th is

chosen to build grids (Figure 9F–G), and many blank grids

(no data) appear; then, only regions with data are analyzed. The

sea ice edge of SR-1 product agrees with the Sentinel-1 image,

which is more accurate than NR-1 results. However, there is still

one grid incorrectly labeled as sea ice in SR-1 result. From

February 11th – 17th, sea ice edges of SR-1 are matched with the

Sentinel-1 SAR image obtained on February 17th. Sea ice regions

are overestimated in the NR-1 product, and slightly

underestimated in the SR-1 product. The sea ice edge result of

SR-1 is a bit better than that of NR-1. From March 11th – 17th,

the SWIM sea ice edges are matched with the Sentinel-1 SAR

image obtained on March 17th. The lead in the top left corner of

the Sentinel-1 image is marked with a red line. In this area, the

sea ice edges in the NR-1 product are more accurate than those

in the SR-1 product, and occur a little underestimated. The

misjudged regions in the SR-1 product are approximately the

width of 2–3 grids and may be due to multiple categories in one

footprint. Below the lead, compared with SR-1 results, the sea ice

edges in the NR-1 product are misjudged in some grids.

Therefore, for sea ice extents, the SWIM results are more

consistent with the NSIDC results in the stable sea ice stage.

Moreover, the sea ice edges in the SR-1 product are precise.

SWIM can be a new data source to generate practical sea

ice products.
4 Discussion

Our study mainly focuses on two objectives: the

development of a sea ice recognition method for the new
TABLE 5 The overall accuracies for Stages 1–3 using the optimal classifier–feature assembly at each small incidence angle.

Angle Stage 1 Stage 2 Stage 3

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

0° 94.8% 96.8% 96.9% 97.7% 97.7% 97.4% 98.4% 98.9% 99.2% 99.4% 99.8% 99.8% 99.8% 99.7% 99.7%

2° 98.9% 99.2% 99.4% 99.5% 99.5% 98.5% 99.2% 99.5% 99.8% 99.8% 99.9% 99.9% 99.9% 99.9% 99.9%

4° 98.5% 98.6% 98.9% 99.0% 99.0% 97.3% 98.1% 98.7% 99.2% 99.4% 99.9% 99.9% 99.9% 99.9% 99.9%

6° 97.2% 98.3% 98.5% 99.2% 99.2% 98.3% 98.9% 99.3% 99.6% 99.8% 99.7% 99.9% 99.9% 99.9% 99.9%

8° 95.2% 97.3% 97.2% 98.3% 98.3% 98.1% 98.8% 99.2% 99.5% 99.7% 99.3% 99.8% 99.8% 99.8% 99.8%

10° 93.1% 96.1% 95.9% 97.6% 97.6% 98.1% 98.7% 99.1% 99.4% 99.6% 99.1% 99.7% 99.7% 99.7% 99.7%
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SWIM observation mode and the application of SWIM data

using optimal classifier–feature assemblies.
4.1 Development of sea ice
recognition method

The six small incidence angles are divided into three sets

according to the analysis of CPDs and MIMs, and these

incidence sets exhibit distinct characteristics for sea ice

recognition. The results at 4–6° encompass characteristics of

those at 0–2° and 8–10° and coincide better with the results at 8–
Frontiers in Marine Science 14
10°. For single feature classification, IMP and TES in our

previous work were only used to separate FYI and MYI;

whereas, in this study, they are adopted for sea ice and sea

water separation, and the related feature LES is also used. In the

previous work, the OCOG was used for 0° and MEA for 2–10°;

whereas, in this study, both of them are used for all incidence

angles. MED is a new feature, and is rarely introduced in other

studies. At 0–2°, PP is the best feature, as previously reported for

altimeter-based methods (Rinne and Similä, 2016; Paul et al.,

2018; Jiang et al., 2019; Aldenhoff et al., 2019). From 4–10°,

MEA, which reflects the properties of s0, highly enhances sea ice
and water separation in conjunction with scatterometer and SAR
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FIGURE 8

Comparison of sea ice extents and edges between SWIM and NSIDC. (A) SWIM on Nov. 11th – 17th; (B) NSIDC on Nov. 11th; (C) Comparison of
SWIM and NSIDC on Nov. 11th – 17th; (D) SWIM on Feb. 11th – 17th; (E) NSIDC on Feb. 17th; (F) Comparison of SWIM and NSIDC on Feb. 11th –

17th; (G) SWIM on Mar. 11th – 17th; (H) NSIDC on Mar. 17th; (I) Comparison of SWIM and NSIDC on Mar. 11th – 17th.
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data (Otosaka et al., 2018; Zhang et al., 2019). Because LES and

TES combine the properties of LEW and TEW with MAX, they

yield higher accuracies than LEW and TEW in sea ice separation

in agreement with our previous work (Liu et al., 2022). Although

IMP is used in altimeter-based methods at 0° (Aldenhoff et al.,

2019), it is also important from 4–10°. MED, not only reveals

some of the characteristics of MAX but also describes the
Frontiers in Marine Science 15
distribution properties of echo waveforms, and it yields

excellent results from 2–10°. In general, the newly introduced

MED, LES and TES features are valuable for sea ice recognition.

The main features in the optimal/top feature combinations

at 0–2° are MED, MEA, OCOG, PP, SSD, LES and TES, agreeing

with the results of previous studies. Drinkwater (1991) suggested

that altimeters were sensitive to sea ice and that sea ice could be
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FIGURE 9

Sea ice edges based on SWIM and NSIDC data with synchronous Sentinel-1 SAR images. (A) Sentinel-1 SAR image, HV, at 18:04:46, Nov. 11th;
(B) Sea ice region of NSIDC on Nov. 11th; (C) Sea ice region of NSIDC on Nov. 14th; (D) Sea ice region of NSIDC on Nov. 17th; (E) Sea ice region
of SWIM on Nov. 11th – 17th; (F) Sentinel-1 image and SWIM data on Nov. 11th; (G) Sea ice region of SWIM on Nov. 11th; (H) Sea ice edge on Nov.
11th – 17th; (I) Sentinel-1 SAR image, HV, at 07:55:48, Feb. 17th; (J) Sea ice region of SWIM on Feb. 17th; (K) Sea ice region of NSIDC on Feb. 17th;
(L) Sea ice edge on Feb. 17th; (M) Sentinel-1 SAR image, HV, at 04:04:26, Mar. 17th; (N) Sea ice region of SWIM on Mar. 17th; (O) Sea ice region of
NSIDC on Mar. 17th; (P) Sea ice edge on Mar. 17th.
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detected based on waveform features such as pulse width

(similar to LEW plus TEW), PP and s0 based on studies with

a Ku-band airborne radar altimeter. Rinne and Similä (2016)

reported classification accuracies of 87–92% for sea water and

31–97% for sea ice in three periods using the KNN method with

PP, SSD, LEW, and LES based on Cryosat-2. Shen et al. 2017a;

Shen et al., 2017b;) obtained a maximum accuracy of 96.6% for

sea ice and 95.1% for sea water with an RF classifier using s0,

MAX, PP, SSD, LEW, and TEW. Shu et al. (2019) distinguished

between sea ice and sea water using an RF classifier with PP,

LEW, TEW, SSD, MAX, and s0 and obtained accuracies above

95%. Müller et al. (2017) investigated Arctic areas using KNN

and K-medoids classifiers with waveform features such as MAX

and achieved accuracies up to 94%. Jiang et al. (2019) separated

sea ice and sea water using KNN and SVM classifiers with wave

features such as the PP of Haiyang-2 A/B, and their accuracies

were approximately 80%. Thus, the classification accuracies in

this study are better than those previously reported, which may

be due to the using of more waveform features and the new

feature (MED) at multiple small incidence angles in this paper.

The analysis of optimal/top feature combinations is

consistent with that of the CPDs and it is partly consistent

with that of the MIMs. Moreover, some feature pairs display

high redundancy or relevance but play important roles in the

optimal combination. The redundancy or relevance of features

does not largely affect the performance of sea ice recognition

using feature combinations. Therefore, sea ice and sea water

recognition can be performed with high accuracy using the

proposed optimal classifier–feature assemblies at small

incidence angles. Moreover, our results are consistent with

those of previous studies and indicate better effects.
4.2 Application of the optimal classifier–
feature assemblies

The overall accuracies of sea ice recognition using the

optimal classifier–feature assemblies in Stages 1–3 are higher

than 90 percent. Sea ice development obviously affects the

accuracy of the proposed approach. The invariant distribution

of sea ice contributes to high overall accuracy. As a result, the

optimal classifier–feature assembly can be used to provide sea ice

recognition results with high accuracy, and sea ice can then be

removed from SWIM sea wave products. Moreover, SWIM can

be a valid data source for operational sea ice monitoring.

According to the sea ice recognition results based on SWIM

data, sea ice extents and edges can be extracted and compared

with Sentinel-1 SAR images and NSIDC sea ice products. SWIM

sea ice extents are consistent with those of NSIDC at a high level

of precision. And, SWIM provides a good one-day product of sea

ice edges. In this study, the threshold of the sea ice proportion is

15 percent, following the common threshold used for sea ice

recognition. However, one SWIM footprint may consist of both
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sea ice and sea water. In addition, areas with sea ice–water

mixing can generate complex waveform signals (March 17th,

2021, Figure 9P), and a fixed proportional threshold of sea ice

and sea water is not appropriate. As a result, the threshold for

SWIM data should be further studied. The sea ice edges on

March 17th are used as examples to analyze the threshold, and

the thresholds are set as 40%, 50%, and 60%, as shown in

Figure 10. Sea ice regions evidently decrease with increasing

threshold, and the threshold of 50% is most suitable for sea ice

edge extraction on March 17th, especially for the lead. Thus, the

threshold of 15% is not appropriate for all situations. In future

work, the threshold selection should be studied; for example, the

sea ice distribution and its development stage should be

considered. In addition, the probability that one SWIM

footprint is classified to sea ice or sea water using the optimal

classifier–feature assembly is extracted. As a result, one footprint

is not simply judged to sea ice or sea water. The probability is

used to calculate the sea ice proportion of one grid, which may

improve its accuracies.

The results of sea ice recognition in this study are compared

to those of sea ice classification in our previous study, and the

optimal classifier–feature assemblies at all incidence angles

proposed here yield better results. Therefore, sea ice

recognition can be accurately performed with the optimal

classifier–feature assemblies at small incidence angles in the

short- and long-term periods. And, the optimal classifier–feature

assemblies can satisfy the sea ice removal requirements for

SWIM products, and improve sea ice extent and edge

products. In order to further verify the optimal classifier–

feature assemblies, more sea ice charts should be introduced,

for example, sea ice products of Canadian Ice Service and the

University of Bremen (Shi et al., 2020; Komarov and Buehner,

2021). Moreover, new validation methods are also considered for

multiple sea ice charts (Wang J. et al., 2021). Our work can fill

the gap of sea ice recognition at the multiple small incidence

angles, then, achieve the sea ice recognition at normal-, small-

and mid-incidence angles.
5 Conclusion

SWIM, as a new type of microwave remote sensor at

multiple incidence angles, has been rarely used for sea ice

recognition. The main objectives of this study are to develop a

sea ice recognition method based on SWIM data with a new

observation mode and assess the application of the proposal

method, including waveform feature analysis, optimal classifier–

feature assembly construction (classifier selection and parameter

setting, and feature combination selection), and the

assembly application.

(1) Waveform feature analysis

Eleven waveform features of SWIM data in the Arctic from

October 2020 to April 2021 are extracted. CPDs and MIMs are
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used to analyze the characteristics of these waveform features.

The results reveal that incidence angles can be divided into three

sets at 0–2°, 4–6° and 8–10°. These incidence sets display unique

distribution ranges and probabilities for each feature, and the

redundancy or relevance of each feature pair is evaluated.

(2) Optimal classifier–feature assembly construction

The RF, KNN and SVM classifiers are explored, and their

parameters are set according to the overall accuracies obtained

for single features. The KNN classifier with Euclidean distance

and k equal to 11 yields the optimal result. Then, feature

combinations with the KNN method are used to separate sea

ice and sea water and build the optimal classifier-feature

assembly for each small incidence angle. The results illustrate

that the highest overall accuracy at each incidence angle is

greater than 96% and can reach 97.1%. The newly introduced

features in this study, such as MED, perform very well.

(3) Optimal classifier–feature assembly application

The application of the optimal classifier–feature assemblies is

analyzed. On the one hand, the optimal assemblies are used to

distinguish between the sea ice and sea water in different growing
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stages, and the accuracies are higher than 93.1%, and can reach

99.9%. Then, the results can meet the requirements for SWIM-

based sea wave retrieval. On the other hand, sea ice extents can be

extracted from these SWIM results with high accuracies that are

higher than 94.8% and up to 98.2%, and SWIM provides a better

one-day product of sea ice edges than the NSIDC product. The

results indicate that SWIM can provide new data for operational

sea ice monitoring. Our results are also compared with those of

other studies and indicate better effects and consistency.

In conclusion, in this study, a sea ice recognition method

using optimal classifier–feature assemblies is proposed, and it

can not only perform sea ice recognition with high accuracy

using new-mode SWIM data but also provide discrimination

flags of sea ice in SWIM products. Moreover, our research on the

application of the proposal method can reliably provide sea ice

extent and edge products, then SWIM data can be used as a new

data source for operational sea ice monitoring.

In future work, more SWIM data from different ice years will

be used to verify the validity and robustness of the classifier–feature

assemblies. And, other classifiers, such as Bayesian, convolutional
B C

D E F

A

FIGURE 10

Sea ice edges based on SWIM data with different thresholds of the sea ice proportion. (A) Sea ice region of SWIM, 40%; (B) Sea ice region of
SWIM, 50%; (C) Sea ice region of SWIM, 60%; (D) Sea ice edges, 40%; (E) Sea ice edges, 50%; (F) Sea ice edges, 60%.
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neural network and propagation neural network classifiers, will be

studied to potentially improve sea ice recognition. Moreover, more

sea ice products such as the sea ice concentration and types will be

further studied in conjunction with SWIM data.
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et al. (2015). Sea Ice leads detection using SARAL/AltiKa altimeter. Mar. Geodesy.
38 (sup1), 522–533. doi: 10.1080/01490419.2015.1019655

Zhang, Z., Yu, Y., Li, X., Hui, F., Cheng, X., and Chen, Z. (2019). Arctic Sea ice
classification using microwave scatterometer and radiometer data during 2002–
2017. IEEE Trans. Geosci. Remote Sensing. 57 (8), 5319–5328. doi: 10.1109/
TGRS.2019.2898872

Zhang, X., Zhu, Y., Zhang, J., Wang, Q., Shi, L., Meng, J., et al. (2021).
Assessment of Arctic Sea ice classification ability of Chinese HY-2B dual-band
radar altimeter during winter to early spring conditions. IEEE J. Selected Topics
Appl. Earth Observat. Remote Sens. 14, 9855–9872. doi: 10.1109/
JSTARS.2021.3114228

Zygmuntowska, M., Khvorostovsky, K., Helm, V., and Sandven, S. (2013).
Waveform classification of airborne synthetic aperture radar altimeter over
Arctic Sea ice. Cryosphere 7, 1315–1324. doi: 10.5194/tc-7-1315-2013
frontiersin.org

https://doi.org/10.1109/IGARSS.1991.579499
https://doi.org/10.1080/01431169408954156
https://doi.org/10.1109/TGRS.2007.895419
https://doi.org/10.1109/TGRS.2017.2658672
https://doi.org/10.1117/12.2225619
https://doi.org/10.1109/TGRS.2020.2994372
https://doi.org/10.3390/rs12091425
https://doi.org/10.3390/rs11121490
https://doi.org/10.1109/LGRS.2005.847930
https://doi.org/10.1109/TGRS.2020.3000672
https://doi.org/10.1109/TGRS.2020.3007789
https://doi.org/10.1109/JSTARS.2014.2365215
https://doi.org/10.3390/rs14010091
https://doi.org/10.1109/PIERS53385.2021.9695052
https://doi.org/10.3390/rs9060551
https://nsidc.org/data/NSIDC-0051/versions/1
https://nsidc.org/data/NSIDC-0051/versions/1
https://doi.org/10.1109/TGRS.2017.2777670
https://doi.org/10.5194/tc-12-2437-2018
https://doi.org/10.1029/98JC02373
https://doi.org/10.1029/98JC02373
https://doi.org/10.1109/TGRS.2013.2281056
https://doi.org/10.1109/TGRS.2013.2281056
https://doi.org/10.1029/2020EA001505
https://doi.org/10.5194/tc-10-121-2016
https://doi.org/10.1109/TGRS.2010.2101608
https://doi.org/10.1109/TGRS.2011.2182356
https://doi.org/10.1109/LGRS.2020.3039739
https://doi.org/10.1109/LGRS.2017.2743339
https://doi.org/10.1109/RSIP.2017.7958792
https://doi.org/10.1109/RSIP.2017.7958792
https://doi.org/10.1109/TGRS.2020.2989037
https://doi.org/10.1109/TGRS.2020.2989037
https://doi.org/10.1080/01490419.2019.1671560
https://doi.org/10.1029/2020JC016885
https://doi.org/10.3969/j.issn.1671-0940.2019.01.004
https://doi.org/10.3969/j.issn.1671-0940.2019.01.004
https://doi.org/10.1109/TGRS.2021.3107840
https://doi.org/10.1007/s13131-019-1506-3
https://doi.org/10.1080/01490419.2015.1019655
https://doi.org/10.1109/TGRS.2019.2898872
https://doi.org/10.1109/TGRS.2019.2898872
https://doi.org/10.1109/JSTARS.2021.3114228
https://doi.org/10.1109/JSTARS.2021.3114228
https://doi.org/10.5194/tc-7-1315-2013
https://doi.org/10.3389/fmars.2022.986228
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	Sea ice recognition for CFOSAT SWIM at multiple small incidence angles in the Arctic
	1 Introduction
	2 Data and methods
	2.1 Data
	2.1.1 SWIM
	2.1.2 Sentinel-1
	2.1.3 Sea ice charts
	2.1.4 Data matching and filtering
	2.1.5 SWIM features
	2.1.6 Waveform analysis

	2.2 Methods
	2.2.1 Optimal classifier selection
	2.2.2 Optimal classifier-feature assembly establishment


	3 Results
	3.1 Waveform analysis
	3.1.1 CPD
	3.1.2 MIM

	3.2 Three classifiers
	3.2.1 RF
	3.2.2 KNN
	3.2.3 SVM

	3.3 Optimal classifier-feature assembly
	3.4 Application analysis of optimal classer-feature assembly
	3.4.1 Sea ice recognition accuracies in three stages of sea ice development
	3.4.2 Sea ice extent and edge extraction


	4 Discussion
	4.1 Development of sea ice recognition method
	4.2 Application of the optimal classifier–feature assemblies

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


