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The Persian Gulf is a thermally extreme environment in which reef corals have

adapted to survive through temperature ranges that would be lethal to corals

from other regions. Despite offering a unique opportunity to better understand

how corals from other regions may adapt in the future, through a changing

climate, much of the Gulf coral and fish communities remain to be described.

In the southwestern Gulf nation of Qatar few reef sites have been described to

date. We here characterize reef communities from 16 sites around the Qatar

Peninsula, encompassing depths from 3 to 25m. We found the healthiest coral

reef communities to be in deeper offshore reefs, with high coral and fish

species richness and high coral abundance, likely a result of their occurrence

below summer thermocline depths and distance from urban pressures. In

contrast, we found shallow reefs, both nearshore and offshore, to have low

species richness and abundance relative to deeper reefs, presumably due to

impacts from recurrent bleaching events and development pressures over

recent decades. The results of this work underscore the Qatar Peninsula as

being at the biogeographic epicenter of the wider Gulf. However, further

temperature increases may push both fishes and corals over their

physiological limits. Management efforts at both the regional and global level

are needed to reduce thermal stressors and preserve the rich reef ecosystems

found in the waters surrounding Qatar.
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Introduction

Coral reefs around the world are at threat from climate

change (Morrison et al., 2019; Cornwall et al., 2021; Obura et al.,

2022). Global warming and temperature anomalies have already

resulted in the degradation of up to 50% of the world’s coral reefs

with 14% loss just in the last decade (IPBES, 2019; Souter et al.,

2021). This has caused a loss of 50% of ecosystem services

provided by coral reefs since 1950, including a decline in 60% of

coral reef associated fishes catch per unit effort (Eddy et al.,

2021). In some regions of the world, coral reefs may be better

prepared than others to these changing conditions, having

already experienced extreme environmental conditions over

the past centuries (Burt et al., 2020).

The Persian Gulf, also referred to as Arabian Gulf (thereafter

termed “the Gulf”), is one of the most thermally extreme marine

environments in the world that contain reef coral communities

(Coles, 2003; Vaughan et al., 2019). Summer seawater

temperatures often reach 36°C in shallow waters with these

warm temperature sustained down to ~15 meters depth, and

winter temperatures sit around 20°C, although they have

occasionally been recorded to drop down to 12°C (Coles, 2003;

Rakib et al., 2021). Salinity in the Gulf is also higher than in other

coral reef ecosystems, with values of 44 psu on average, and

living corals observed in regions of the Gulf where salinity was

measured at 50 psu (Sheppard, 1988; Coles, 2003). Although

coral diversity in the Gulf is lower than elsewhere as a result of

the environmental stress, the Gulf harbors a number of coral

species that have adapted to an environment where corals from

other regions of the world would not survive (Coles, 2003).

Similarly, the fishes of the Gulf have developed the ability to

persist in environmental conditions that would be lethal to fishes

in other parts of the world (Feary et al., 2010; D’Agostino et al.,

2020), with winter temperatures well below the optimal range for

coral reef fishes in the Indo-Pacific, and summer temperatures

reaching values that would cause respiratory failure in fishes

from other regions (Nilsson et al., 2009; Gardiner et al., 2010).

In the southwestern Gulf, the coastline of the Qatar

Peninsula was historically bordered by thriving coral

assemblages, extending over 200 km of coastline and heavily

dominated by Acropora table corals (Shinn, 1973; Shinn, 1976).

But the combination of a cold-water bleaching event, recurrent

warm bleaching events, dredging, industrial development,

increased sedimentation from extensive coastal development,

and pollution from the industrial sector, resulted in the

functional extinction of coastal coral communities between the

1960s and the late 2000s (Maghsoudlou et al., 2008; Burt et al.,

2016). In deep offshore sites, corals were typically less impacted

over time but the global 1998 bleaching event resulted in

widespread mortality even at these deeper sites (Rezai et al.,

2004; Riegl and Purkis, 2009). One recent study examined the

coral communities of Qatar, at one deep (~18m) offshore site
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and two shallow (~3m) inshore sites (Burt et al., 2016). The

authors found that the deeper site had high coral cover and coral

richness but that it remained impaired compared with earlier

observations. In contrast, one inshore site was dominated by

extensive dead coral rubble amongst which a small number of

corals had survived, indicating the site was once populated by a

healthy coral community. The other inshore site was dominated

by bare rock and sand, with a low coral cover despite carrying a

species richness of eleven coral species (Burt et al., 2016).

Currently, the coral reefs of the Gulf and their associated

fishes are at risk (Sheppard et al., 2010; Sheppard, 2016). The

region is exposed to repetitive temperature anomalies in the

warmest months of the year, exacerbating the already extreme

environment (Riegl and Purkis, 2015; Burt et al., 2019), and the

Gulf is warming at a rate more than double the global average

(Lachkar et al., 2021). With the increase in bleaching events, less

time is available for recovery, and only some of the most

resistant coral species may be selected over time (Burt et al.,

2011a; Riegl et al., 2018). In Qatar, the effects of bleaching events

are currently hard to quantify given the limited availability of

baseline quantitative surveys. In one recent study that surveyed

coral communities in Qatar, the surveys were isolated to just

three known reefs (Burt et al., 2016). Additionally, there are no

quantitative surveys of coral reef fishes in Qatar published to

date. We here present a comprehensive spatial analysis of coral

reef communities in Qatar. We investigated 16 sites around the

Qatar Peninsula, including shallow inshore sites (3-6 m), and

deeper sites (up to 25m). We studied both reef coral and fishes

communities, and investigated patterns of species richness,

abundance, composition, and communities.
Materials and methods

Survey sites and transects

Benthic surveys were conducted at sixteen coral reef sites

throughout Qatar’s territorial waters and fish surveys were

conducted at nine of these sites (Figure 1). Shallow coral sites

(3-6 m depth) mostly include some three-dimensional reef

structure, while deeper sites have a flatter topography with

non-accreting coral communities lying directly on limestone

domes amongst the surrounding dominant sedimentary sea bed

(Sheppard et al., 2010). Each site had minimal depth variability.

At each site, six parallel 30m-long transects were laid along the

seafloor at a 5-10 m distance from each other, serving as

reference for both fish and benthic surveys. All surveys were

conducted on SCUBA. At sites where both fish and corals were

surveyed (see Table 1 for details), fish surveys were conducted as

the transect tape was being laid out and were followed by the

benthic surveys. Due to safety issues related to depth and

currents only five transects for fishes were able to be
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completed at two sites (Mushroom Garden and Fasht

East Halul).
Fishes surveys

Coral reef fishes were surveyed at nine surveys sites. At each

site, fishes were visually censused with all fishes observed within

30 m x 1 m belt transects identified to species and enumerated.

This approach has been widely used elsewhere in the Gulf in the

past (Burt et al., 2011b; Burt et al., 2013b; Vaughan et al., 2021),

and the narrow transect width reflects the relatively high local

turbidity that can affect accuracy on wider transects (Sale and

Sharp, 1983). As reef fishes communities in the Gulf are known to

be seasonally dynamic, surveys were performed during the

summer/autumn season when reef fishes communities exhibit
Frontiers in Marine Science 03
peak annual species diversity and abundance (McCain et al., 1984;

Coles and Tarr, 1990; Burt et al., 2009; Vaughan et al., 2021), with

fish surveys conducted at four sites in October 2016 (Bulhambar,

Fasht East Halul, Sheraoh Island and Fasht al Udayd) and the

remaining sites (Um al Arshan, Mushroom Garden, Ras Dhow,

Fasht al Hurabi, and Al Ashat) surveyed in August 2017.

Each fish species was classified into one of four trophic

guilds: planktivores, herbivores (including grazing and browsing

species that incidentally consume small invertebrates, such as

parrotfishes), pelagic carnivores (targeting fishes, cephalopods

and other large animals), and benthic carnivores (targeting

benthic invertebrates). Classification was based on the major

dietary component described in Fishbase (www.fishbase.org),

Randall (Randall, 1995) or from local dietary studies where

available (Shraim et al., 2017), with the closest congener used

where data were unavailable for a particular species.
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FIGURE 1

Map of the 16 coral reefs at which benthic composition was assessed. In blue: deep coral reef (18-25m). In teal: medium-depth coral reef (10-
16m). In yellow: shallow coral reef (3-6m). In orange: sites where fish surveys were conducted. The map was produced in R (R Core Team,
2019), using the packages ggplot2 (Wickham, 2016), rnaturalearth (South, 2017), and sf (Pebesma, 2018).
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Benthic surveys and photoquadrat
analysis

At each site, an underwater camera mounted on a frame

captured a 0.25 m2 photoquadrat image every 3m along each

transect, for a total of 11 photoquadrats per transect, or 66

photoquadrats per site. This approach has been successfully used

to characterize benthic community structure in several coral

assemblages within the Gulf (e.g., Burt et al., 2013a; Bento et al.,

2016; Burt et al., 2016; Burt et al., 2019). The photoquadrat

surveys were performed in 2016–2017, with the exception of the

deep site North-3, which was surveyed in 2015. All sites initially

surveyed were revisited in 2017, during which no change in

benthic community were observed.

The photoquadrat images were analyzed using CoralNet

(https://coralnet.ucsd.edu), an online platform for analyzing

coral reef images (Beijbom et al., 2012; Beijbom et al., 2015;

Williams et al., 2019; Chen et al., 2021). Each image was

automatically assigned 50 random points by CoralNet. All

points were then manually annotated by an expert coral

scientist. Scleractinian corals were identified to the species

level; non-scleractinian-coral invertebrates were identified as

anemone, ascidian, bryozoan, bivalve, sea urchin, hydrozoan,

octocorallia, sponge, zoanthid, or other invertebrate; algae

were categorized as crustose coralline algae (CCA), freshly

algae or turf algae; and substrate categories included dead

coral, rock pavement, broken coral rubble, sand, shell

hash/gravel, and shadow. Once all the points were

annotated, the percent cover of each benthic category was

calculated within each quadrat and the data was exported into

Microsoft Excel for further analyses.
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Statistical analyses

All fishes abundance data were converted to density 100 m-2

prior to analyses, and density and richness data were log(n+1)

transformed prior to statistical analyses. Benthic cover data were

converted to percentages. Nested Analyses of Variance

(ANOVAs) were used to test for differences in fish species

richness, fish density, and coral cover. Normality of residuals

was ver ified with a Shapiro‒Wilk normal i ty tes t .

Homoscedasticity and independence were verified visually by

plotting the model residuals against the fitted model. The fish

analyses were based on two depths (deep & medium versus

shallow) and coral analyses were based on three depths (deep,

medium, and shallow). For each nested ANOVA, sites were

nested within depth. Where significant differences occurred,

post-hoc tests were used to identify significantly different

groups using unequal-N Tukey’s for fishes, and least square

means pairwise comparisons with Tukey adjustment for

multiple comparisons for corals. Differences in coral richness

among depths were analyzed with a Kruskal-Wallis test with a

Dunn’s multiple comparison posthoc test.

Non-metric multidimensional scaling (nMDS) ordination

plots based on Bray-Curtis distance matrices were used to

graphically illustrate differences in community structure in

fishes and corals, among sites and depths. Vector plots were

used to illustrate the strength and direction of any species having

strong correlation with either ordination axis (Pearson’s r >0.5).

A similarity permutation (SIMPER) analysis was used to identify

the fish species driving differences between deep/medium-depth

and shallow reef sites and to determine the strength of their

contribution to these differences. In order to reduce the influence
TABLE 1 List of sites surveyed in Qatar, and which survey type (fishes and/or benthic) was conducted at each site.

Site Name Site Code Depth GPS Benthic Surveys Fish Surveys

North-3 N3 Deep 26.690840°N, 51.281131°E ✔

Binzayan (N-1) BZ Deep 26.609920°N, 51.290210°E ✔

Um al Arshan UA Deep 26.515235°N, 51.296836°E ✔ ✔

Mushroom Garden MG Deep 26.227378°N, 51.882917°E ✔ ✔

Fasht East Halul FEH Deep 25.713847°N, 52.639386°E ✔ ✔

Bulhambar BB Medium-depth 25.969904°N, 51.877779°E ✔ ✔

Um al Shaer US Medium-depth 26.150056°N, 51.700639°E ✔

Ras Dhow RD Medium-depth 25.901134°N, 52.129525°E ✔ ✔

Halul HL Medium-depth 25.688135°N, 52.425176°E ✔

Kharaze KH Medium-depth 25.423883°N, 52.556861°E ✔

Maydan Mahzam MM Medium-depth 25.507481°N, 52.516733°E ✔

Fasht al Dibal FD Shallow 26.264922°N, 50.951706°E ✔

Fasht al Hurabi FH Shallow 25.548341°N, 51.625082°E ✔ ✔

Sheraoh Island SI Shallow 25.031000°N, 52.229556°E ✔ ✔

Fasht al Udayd FU Shallow 24.779056°N, 51.767694°E ✔ ✔

Al Ashat AA Shallow 24.790757°N, 51.641661°E ✔ ✔
The site codes are used in Figure 2 instead of the site names, due to space constraint. Depth: deep = 18-25 m; medium-depth = 10-16 m; shallow = 3-6 m.
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of outliers, species occurring in less than 5% of samples (13

species) were removed prior to multivariate analyses as

recommended by McCune and Grace (McCune and Grace,

2002). An analysis of similarity (ANOSIM) was used to verify

that coral community patterns were significantly different

among depth categories. Pairwise ANOSIM tests with

Bonferroni correction were then conducted to identify which

groups were different. The species driving the differences were

identified using a species indicator analysis. All fishes analyses

were conducted in Primer, and all coral analyses were conducted

in R (R Core Team, 2019) with the packages car (Fox and

Weisberg, 2019), FSA (Ogle et al., 2019), ggplot2 (Wickham,

2016), indicspecies (Cáceres and Legendre, 2009), lsmeans

(Lenth , 2016) , mul tcomp (Hothorn et a l . , 2008) ,

multcompView (Graves et al., 2015), nlme (Pinheiro et al.,

2019), rcompanion (Mangiafico, 2019), and vegan (Oksanen

et al., 2015).
Results

Fishes richness

In total, 46 species of fishes from 23 families were observed

on the coral reefs in this study (Supplementary Material; Table

S1), and species richness varied among sites (Figure 2A). The

total species richness observed at each site ranged from 3 to 25

species, with the highest total richness tending to occur at the

deep offshore sites (Um al Arshan, Mushroom Garden, and

Fasht East Halul) where total richness averaged 21.7 ± 1.8 species

site-1, double the species richness observed at shallow sites

(mean: 10.8 ± 2.6 species site-1 from Fasht al Hurabi to Al

Ashat). In the medium-depth sites, Bulhambar had a richness

comparable to the deep northern sites (23 species) while Ras

Dhow had richness comparable to the shallow, southern sites

(12 species).

A nested ANOVA of the mean species richness observed

within transect at each site reflected these observations, showing

significantly higher species richness in the deep offshore and

medium-depth midshore sites compared with the shallow sites

(F(1,41) = 90.9, p< 0.001) along with differences among sites

within depths (F(7,41) = 74.7, p< 0.001). With the exception of

one species (the redtoothed triggerfish, Odonus niger) all species

observed in Qatar have been reported elsewhere in the Gulf in

earlier records (see Supplementary Material; Table S1). O. niger

is a common species on coral reefs in the Gulf of Oman and

throughout the western Indian Ocean (Randall, 1995), but its

occurrence in Qatar represents the first record that we are aware

of for this species occurring within the Gulf.
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Fish abundance

Overall the mean density of individual reeffishes was 169.7 ±

17.9 individuals 100 m-2 across Qatar, but there was broad

variation in abundance among sites (Figure 2C). In contrast with

the species richness patterns, the mean density of fishes at the

deep offshore reefs and medium-depth midshore reefs (136.3 ±

6.6 ind. 100 m-2) was significantly lower than at the shallow reef

sites, where there were > 50%more fish (214.7 ± 4.4 ind. 100 m-2;

Nested ANOVA F(1,41) = 30.2, p< 0.001). However, there were

also significant differences among sites when controlling for

depth (Figure 2C; nested ANOVA: sites(depth) F(7,41) = 39.7, p<

0.001), with the high density of fish at Fasht al Udayd (450 ± 33

individuals 100 m-2) being significantly more abundant than at

all sites except Fasht East Halul (Figure 2C). Excluding this site,

the average density of fishes in deep and shallow sites were

virtually identical (deep/medium-depth mean: 136.4 ± 16.2 vs

shallow mean: 136.3 ± 20.7 individuals 100 m-2).
Fishes composition

There was broad variation in the major families

characterizing reef fish communities at the deep and shallow

sites (Figure 2E). At the deeper offshore and midshore sites, the

major contributors to abundance were Pomacentridae (mean:

24.3% of total fish abundance) and Labridae (19%), with the

largest contribution (42.7%) coming from “other families”,

reflecting the significantly higher species diversity at these sites

(Figure 2A). In contrast, at shallow sites Pomacentridae were

rare (2.9%) and Labridae entirely absent (0%), with nearly three-

quarters of the total fish abundance instead represented by

Lutjanidae (50.2%) and Nemipteridae (22% of total abundance).

Of the 46 species observed in this study, 54% (25 species)

were classified as benthic carnivores, 17% (8) as pelagic

carnivores, 9% (4) as planktivores and the remaining 20% (9)

as herbivores. Because abundance varied among species, the

relative contribution of trophic groups to overall abundance

differed slightly from the taxonomic breakdown, with benthic

carnivores contributing 56% of overall abundance, 34% as

pelagic carnivores, 8% as planktivores, and only 2.1% of

abundance made up of herbivores. However, the relative

contribution of trophic groups varied significantly between

depths and sites within depths (Figure 2G; multivariate nested

ANOVA: depth F(4) = 45.6, sites(depth) F(28) = 14.5, p< 0.001

each). Benthic carnivores made up the largest component of the

fish communities at seven of the nine reef sites (Figure 2G), and

while there was significant variation among sites within depths

(nested ANOVA F(7,41) = 20.7, p< 0.001), they did not differ in
frontiersin.or
g

https://doi.org/10.3389/fmars.2022.989841
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Bouwmeester et al. 10.3389/fmars.2022.989841
abundance between deeper and shallow reefs (F(1,41) = 4.0, p >

0.05). A similar pattern was observed with the rarest group,

herbivores, which did not differ in abundance between deeper

and shallow reefs, although there was variation among sites

within depths (F(1,41) = 2.7, p > 0.05 and F(7,41) = 17.2, p< 0.001,

respectively). In contrast, both pelagic carnivores and

planktivores did vary between depths (F(7,41) = 119.4, p< 0.001

and F(7,41) = 24.6, p< 0.001, respectively). Pelagic carnivores
Frontiers in Marine Science 06
made up nearly half (49%) of the total fish abundance at shallow

sites, and were the most abundant member of the fish

community at two of these shallow sites, while at deep reefs

they made up just 11% of total abundance, on average. The

inverse pattern was observed for planktivores, which were

relatively common on deep reefs (20% of abundance, on

average), but were entirely absent from all shallow

reefs (Figure 2G).
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(A, B) Total species richness per site in (A) fishes and (B) scleractinian corals. The color coding refers to the depth of the sites (see Figure 1 for
details). (C) Mean density of fishes (100 m-2, ± SE) per site. Different letters indicate a significant difference (ANOVA post-hoc: Tukey’s unequal-
N test, a = 0.05). (D) Percent cover (± SE) of scleractinian corals per site. Different letters indicate a significant difference (ANOVA post-hoc:
comparison of least square means with Tukey adjustments, a = 0.05) (A-D) Sites with similar colorations are located at similar depths. (E)
Breakdown of differences in the density of the five most abundant families of fishes (per 100 m2, ± SE). The remaining 17 “other families” each
contributed < 5% to total abundance. (F) Breakdown of differences in the percent cover of the seven most abundant families of scleractinian
corals. (G) Breakdown of major trophic groups of fishes at each site (100 m-2, ± SE). (H) Breakdown of major benthic categories at each site. All
sites are organized from left to right from deeper to shallower. See Table 1 for the list of site names that match the site codes used here.
frontiersin.org

https://doi.org/10.3389/fmars.2022.989841
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Bouwmeester et al. 10.3389/fmars.2022.989841
Coral richness

In total, 34 scleractinian coral species were identified in

transects in this study (Supplementary Table S2). Total

richness at each site varied between 3 and 24 species, with

the highest richness in the deeper sites (Figure 2B). Overall, the

deep sites had a richness of 21 ± 1.0, the medium-depth sites

had a richness of 15.3 ± 0.7, and the shallow sites had a richness

of 5.0 ± 0.8. A nested ANOVA of the mean species richness

observed within transect at each site supported the pattern,

showing significant differences among sites within depths (F

(15,77) = 165.8, p< 0.0001), with a Krukal-Wallis test revealing

that species richness was significantly different among each of

the three depth ranges surveyed ( X2
(2) = 68.7, p = 1 × 10-15).

Mean species richness was the highest at deep offshore sites,

was intermediate in medium-depth sites, and was the lowest at

shallow sites.
Coral cover

Coral cover varied from 3% to 39% (Figure 2D). Except for

North 3 which only had 5% coral cover, all deep sites had a

higher percent cover (27-39%) of reef-building corals than the

medium depth (3-17%) and shallow sites (7-20% coral cover). A

nested ANOVA of the mean coral cover observed within each

quadrat at each site showed significant differences among sites

within depths (F(15,1026) = 145.32, p< 0.0001), with a Krukal-

Wallis test revealing that coral cover was significantly different

among each of the three depth ranges surveyed ( X2
(2) = 229.3, p<

2 × 10-16). Mean coral cover was the highest at deep offshore sites

and was the lowest at medium-depth sites.
Coral composition

Coral composition was variable across sites and depths

(Figure 2F) but one family, the Merulinidae, was dominant in

nearly all sites, representing 63.5% of all scleractinian coral

cover. The second most common family was the Poritidae,

also present at all sites, representing 17.5% of total coral cover.

Agariciidae (2.8%) and Dendrophylliidae (2.6%) were only

present in deep sites. Psammocoridae 6.0%) were found in

deep and medium-depth sites but only in one of the five

shallow sites. Acroporidae (2.1%) were patchy and only found

in 5 sites (Binzayan, Fasht East Halul, Um al Schaer, Halul and

Sheraoh Island) but were not restricted to a single depth range.

The Incertae sedis family (comprising Leptastrea and

Pleasiastrea) were absent from three shallow sites and one

medium-depth site. All other families represented less than 5%

of the total coral cover and were grouped as “other”.
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Benthic composition

Live scleractinian corals represented 15.8% of all substrate,

throughout sites and depths (Figure 2H). The most common

living category overall was algae (35.2%), which were present at

all sites. The algae category included mostly turf algae but also

some filamentous algae. Crustose coralline algae (CCA, 1.9%)

were mostly found at shallow and medium-depth sites.

Octocorals (0.2%) were only found in a handful of locations.

The site Mushroom Garden hosted a soft coral (octocoral)

community covering 2% of the benthos and composed solely

of the coral Junceella juncea. Sponges (0.7%) were found at all

sites but in low abundance. All other categories were non-living,

represented mostly by shellhash (20.2%) and sand (15.5%).
Fishes community patterns

Multivariate analyses were used to explore patterns in the

overall fish community and to identify particular species driving

divergence between deep and shallow sites. An ordination of the

overall fish assemblage showed that fish communities clustered

into two distinct groups representing fish communities at the

deep and medium depth offshore sites and those of the shallow

sites (Figure 3A), and these groups differed significantly (nested

PERMANOVA Pseudo-F(1,49)=6.1, p = 0.01). Transects from

deeper sites were relatively tightly grouped and overlapping for

most sites, indicating a high degree of similarity in community

structure. The only site which deviated from this main cluster

was Ras Dhow, with the broad spread for this site reflecting the

greater variability of fish among transects in this low abundance

site (see above), although it still largely overlapped with the deep

site communities. The fish communities at shallow sites grouped

together, although transects were more tightly clustered within

sites rather than broadly overlapping, indicating that

communities were relatively more site-specific. Variation in

communities along the first axis was primarily driven by

differences in the relative abundance of the shrimp goby

Cryptocentrus lutheri. Differences between deep and shallow

reef fish communities were primarily aligned on the second

axis. Lutjanus ehrenbergii and Pomacanthus maculosus were

highly associated with shallow sites, while six species were

strongly associated with deep sites (five of which were absent

from shallow sites, Cephalopholis hemistiktos excluded).

A SIMPER analysis was performed to determine which

species were driving differences between deeper and shallow

sites, and their relative contribution. Overall, there was 85.2%

dissimilarity between communities in deep/medium depth and

shallow sites. The ten most important species identified as

driving differences between the deeper and shallow reef fish

communities are listed in Table 2, which together contributed
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TABLE 2 The ten most important species driving differences between deep and shallow reef fish communities as identified from SIMPER analysis,
ranked by importance.

Abundance Dissimilarity Contribution

Species Deep Sites (Mean ± SE) Shallow Sites (Mean ± SE) Mean Stand. Dev. Individual (%) Cumulative (%)

Lutjanus ehrenbergii 6.3 ± 1.4 98.0 ± 13.0 9.99 1.26 11.73 11.73

Scolopsis ghanam 10.2 ± 2.1 36.4 ± 10.3 5.62 0.97 6.6 18.33

Pomacanthus maculosus 5.1 ± 1.4 20.7 ± 3.5 5.45 1.07 6.41 24.74

Halichoeres dussumieri 16.2 ± 3.5 0.0 ± 0.0 4.82 1.57 5.67 30.4

Pomacentrus leptus 13.4 ± 2.6 0.0 ± 0.0 4.59 1.47 5.39 35.79

Chromis xanthopterygii 21.4 ± 7.8 0.0 ± 0.0 4.33 1.32 5.08 40.87

Pseudochromis aldabraensis 12.5 ± 2.4 0.0 ± 0.0 3.81 1.09 4.47 45.34

Acanthopagrus bifasciatus 1.6 ± 0.8 5.1 ± 1.6 3.69 1 4.33 49.67

Cephalopholis hemistiktos 7.1 ± 1.8 0.7 ± 0.4 3.56 1.39 4.18 53.85

Thalassoma lunare 9.5 ± 3.3 0.0 ± 0.0 3.45 1.23 4.05 57.9
Frontiers in Marine Scienc
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Abundance is determined by the density of each fish species per 100 m2. The density of the group with the higher density is in bold. Individual and cumulative contribution to dissimilarity
between depths is provided for each species.
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FIGURE 3

Non-metric multidimensional scaling plots illustrate community composition and clustering in (A) fishes and (B, C) corals in Qatar. (A) Each
point represents the fish community in one transect with dark blue symbols indicating deep sites and yellow symbols representing shallow sites.
Vectors are used to indicate the strength and direction of species strongly correlated with either axis (only species with r > 0.6 are included); the
outer circle represents a scale for a correlation of r = 1). (B) Each point represents the coral community in one transect (C) Ordination plot of
the scleractinian coral communities.
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nearly 60% of the total dissimilarity between these groups. The

three most important species driving differences between depths

were primarily associated with shallow sites, and these three

species together contributed a quarter of all dissimilarity

between shallow and deep reef fish communities (L.

ehrenbergii, Scolopsis ghanam and P. maculosus). Only one

additional important driver species, Acanthopagrus bifasciatus,

was more common to shallow sites, and this contributed an

additional 4.5% to dissimilarity. The remaining six of the top ten

driver species identified by SIMPER were more abundant in

deep sites, and together these species contributed an additional

29% of the total variation between deep and shallow sites. Five of

these six species were entirely absent from shallow sites

(Table 2), with the one exception, Cephalopholis hemistiktos,

being an order of magnitude less abundant at the shallow sites.
Coral community patterns

As for fishes, multivariate analyses were used to explore

patterns in the coral community. An NMDS ordination plot of

the coral assemblages showed that corals clustered into three

distinct groups, representing coral communities from deeper

offshore sites, from medium-depth midshore sites, and shallow

inshore sites (Figure 3B). These groups were significantly

different from each other (ANOSIM, R = 0.56, p< 0.0001;

pairwise comparisons, R(shallow-medium) = 0.72, R(shallow-deep) =

0.77, R(medium-deep) = 0.19, adj. p< 0.0003). The first NMDS axis

separated shallow site communities from the deep and medium-

depth site communities, and the second NMDS axis separated

the deep communities from the medium-depth communities.

Variation in communities along the first axis was primarily
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driven by differences in the relative abundance of Cyphastrea

microphthalma, Cyphastrea serailia, and Porites harrisoni, which

characterized the shallower sites, and Dipsastraea pallida, which

characterized the deeper sites (Figure 3C). The separation

between medium-depth and deep sites along the second

NMDS axis, was primarily driven by differences in the

abundance of Porites harrisoni and Acropora downingi, which

characterized the medium-depth sites, and Turbinaria

reniformis, T. peltata, Goniopora spp., and Dipsastraea favus,

which characterized the deep sites. An indicator species analysis

(De Cáceres et al., 2010) revealed that 21 species were

significantly associated with one or two depth groups

(Table 3). The three most important species were Dipsastraea

favus (deep indicator species), Psammocora stellata (deep

indicator species), and Cyphastrea microphthalma (shallow

indicator). Medium-depth sites only had one significant

indicator species, Psammocora profundacella.
Discussion

Coral reefs are the most diverse and productive ecosystems

in the Gulf (Sheppard and Sheppard, 1991). While coral

assemblages have been described in most countries around the

Gulf, this is the first study to date that has extensively and

quantitatively described coral assemblages and coral reef fishes

in Qatar. We found the healthiest coral reef communities to be in

the deeper offshore reefs, with high coral and fish species

richness and high coral abundance.

Forty-six species of reef fishes from 23 families were

observed in this study. Although this is only a minor fraction

of the 302 reef-associated species occurring across the Gulf
TABLE 3 List of significant indicator coral species, associated with one or two depth groups. r is a correlation statistic.

Deep group Medium-depth group

Indicator species r p-value Indicator species r p-value

Dipsastraea favus 0.663 0.0001 Psammocora profundacella 0.298 0.0084

Psammocora stellata 0.625 0.0001

Pavona decussata 0.575 0.0001 Shallow group
Turbinaria peltata 0.564 0.0001 Indicator species r p-value
Dipsastraea speciosa 0.537 0.0001 Cyphastrea microphthalma 0.660 0.0001

Turbinaria reniformis 0.456 0.0001 Porites harrisoni 0.419 0.0001

Favites pentagona 0.429 0.0004 Cyphastrea serailia 0.281 0.0039

Goniopora spp. 0.426 0.0001

Psammocora albopicta 0.424 0.0001 Deep + Medium-depth group
Platygyra lamellina 0.409 0.0001 Indicator species r p-value
Psammocora sp. 0.370 0.0003 Dipsastraea pallida 0.494 0.0001

Plesiastrea versipora 0.307 0.0049 Porites lutea 0.391 0.0002

Pavona cf explanulata 0.258 0.0004 Favites acuticolis 0.362 0.0008

Echinophyllia aspera 0.236 0.0264
fronti
ersin.org

https://doi.org/10.3389/fmars.2022.989841
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Bouwmeester et al. 10.3389/fmars.2022.989841
(Grandcourt, 2012), it is comparable to the diversity observed in

neighboring nations during short-term surveys performed at

spatial scales similar to those conducted here (Saudi Arabia: 52

species (McCain et al., 1984), Bahrain: 55 species (Smith and

Saleh, 1987), Gulf coast of UAE: 29 species (Burt et al., 2011b).

This observed species richness is likely still under-representative

of the total diversity of reef fishes on Qatar reefs, as surveys were

conducted only once per site and on six or fewer transects.

Indeed, another 19 fish species have been reported to occur in

Qatar, in a subsample of six families: surgeonfishes, parrotfishes,

butterflyfishes, snappers, sea breams, and groupers

(Bouwmeester et al., 2020). For example, in the western Saudi

Arabian Gulf, more comprehensive surveys conducted over two

years brought the estimated richness from short-term surveys

from 52 species (McCain et al., 1984) to a total of 101 species

(Coles and Tarr, 1990). It is, therefore, recommended that a

broad scale, long-term monitoring program be established in

order to enhance the biodiversity estimates for fishes associating

with coral reefs in Qatar.

Our results showed that nearly twice as many species

occurred at deep, offshore reefs compared with shallow reefs,

with differences in composition underpinning broadly divergent

multivariate community structure between depths. This echoes

the results of other studies in the Gulf which have found that

species richness increases with depth (Smith and Saleh, 1987;

Coles and Tarr, 1990). Shallow reefs in the Gulf experience more

variable and extreme environmental conditions than the deep,

offshore reefs (Sheppard et al., 1992), and the extreme conditions

on shallow reefs may represent a direct physiological barrier that

is beyond the survival capacity for some fishes due to their

elevated respiratory demand (Shraim et al., 2017; Brandl et al.,

2020). The reduced richness at the shallow sites may also be an

indirect reflection of differences in the coral community. It is

well recognized that the best developed and most diverse coral

communities in the Gulf occur offshore as a result of the less

extreme thermal conditions (Sheppard et al., 1992), and the

greater three-dimensional complexity provided by corals at these

sites may also play a role in supporting the higher richness offish

species at these sites (Luckhurst and Luckhurst, 1978; Darling

et al., 2017).

The differences in fish species richness across depths were

echoed in the trophic structure of these communities. Similar to

earlier studies in the southern Gulf (e.g. Feary et al., 2010), we

found that benthic carnivores were the most common trophic

group on Qatar’s reefs. This group showed no variation across

depths, suggesting that the availability of food items was

relatively consistent across sites. Planktivores were significantly

more abundant at deep sites, while pelagic carnivores were more

common to shallow sites. The variation in these trophic groups

across depths is less likely to be based on food availability than to

the particular species associating with these groups. The

planktivores more common to the deep sites were almost

entirely made up by two damselfishes species (Chromis
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xanthopterygia and Neopomacentrus cyanomos), which did not

occur on shallow reefs here. These species are also extremely rare

on shallow reefs in the southern Gulf coast of the UAE (Feary

et al., 2010; Burt et al., 2011b) but are known to occur in high

abundance at shallow depths on the more environmentally

benign reefs of Saudi Arabia and Kuwait where they are often

among the most common species in transects (Downing, 1985;

Krupp and Almarri, 1996). This suggests that their distribution

on reefs in Qatar is likely structured more by environmental

conditions than food availability, with these fish unable to cope

with the extreme temperatures of the shallow sites in the

southern basin of the Gulf. In contrast, pelagic predators were

significantly more common to shallow sites. Here, the vast

majority of individuals making up this trophic group was the

snapper Lutjanus ehrenbergii, a species that is among the most

common fishes in shallow reef environments throughout the

southern basin of the Gulf as well as in southern Iran (Rezai and

Savari, 2004; Feary et al., 2010; Burt et al., 2011b; Vaughan et al.,

2021). This species was entirely absent from most deep reefs in

Qatar, and was only consistently observed in transects at a single

deep site (Fasht east of Halul). It is unclear why this species is

found at such low abundance on the deep sites in Qatar.

Damselfishes and other small-bodied fishes that could serve as

prey items are considerably more common at deep sites than

shallow sites, suggesting that food availability is unlikely to be

limiting L. ehrenbergii distribution on these sites. This species

has been suggested to aggregate on nearshore reefs during the

summer before migrating to deeper environments over the

winter (Vaughan et al., 2021), and it is possible that the timing

of our surveys in summer and early autumn captured this species

during a period of unusually high seasonal abundance on

shallow reefs. Further research on the temporal shifts in

community structure is warranted.

Coral reef fishes are generally very dependent on the health

of their coral reef habitats, relying on them for shelter, food, and

nurseries (Bell and Galzin, 1984; Friedlander and Parrish, 1998).

In Qatar reefs, we found 34 coral species from 13 families

throughout the photoquadrat surveys, out of the 66 coral

species reported for the entire Gulf (DiBattista et al., 2016).

Additional species (i.e. Turbinaria cf. patula, Goniopora spp.,

Alveopora tizardi, Montipora aequituberculata, Cycloseris

costulata, C. fragilis, Hydnophora pilosa) were observed on the

reefs surveyed but they were outside the transects (Bouwmeester

et al., 2020), and all located in the deeper offshore reefs.

Additional surveys in these deeper reefs will likely provide

quantitative information on the abundance and distribution of

these less common species.

In shallow sites, coral cover was generally low and was

replaced with abundant algal cover. Algae compete directly

with corals for light and space (McCook et al., 2001) and in

mesotrophic waters such as the Gulf, algae easily outcompete

corals if not regulated by herbivore species (Ledlie et al., 2007;

Cheal et al., 2010). We found that herbivorous fishes were mostly
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absent from these reefs, a surprising rarity that has also been

observed on other reefs in the southern Gulf (e.g. Feary et al.,

2010; Vaughan et al., 2021) most notably due to a near absence

of functionally important parrotfishes (Hoey et al., 2016; Hoey

et al., 2018). Without herbivores preventing overgrowth of corals

by algae and creating available substrate for coral larvae to settle

on and develop, the long-term sustainability of reef corals may

be compromised (Hughes et al., 2007; Green and Bellwood,

2009). With low coral cover and richness, shallow sites generally

contained few fishes, although in one site (Fasht al Udayd) fish

abundance was higher than elsewhere, with at least twice as

many fishes than any other surveyed site. The site had low coral

richness and abundance; however, it contained a three-

dimensional skeletal reef structure that provided an intricate

habitat for fishes (pers. obs.). This structure was no longer

formed by living corals and consisted in consolidated dead

coral skeleton covered in algae. The site may have once been a

thriving coral reef but for now, it serves as a habitat for fishes and

other marine life. If the reef architecture was to erode and fall

apart, the site would likely no longer be able to continue to

support the current fish communities. Indeed, after major coral

mortality events, fish communities may remain minimally

affected for as long as the reef architecture remains but

eventually they would decline as well, alongside the eroding

and flattening of the reef substrate (Garpe et al., 2006; Graham

et al., 2009).

Deep coral reefs hosted much higher coral cover and

richness than shallower sites. While several shallow sites were

known prior to this study (i.e. Fuwayrit, Fasht al Hurabi, Al

Ashat, Sheraoh Island) (Foster et al., 2013; Burt et al., 2016;

Kardousha et al., 2016; Warren et al., 2016), few deep sites had

been documented, other than Halul and Um al Arshan. This

study characterized an additional nine sites to the deep and

medium-depth sites that were previously undescribed. The

discovery of such a diverse and abundant ecosystem is of high

value at a time when shallow reefs in Qatar are heavily suffering

from global and local anthropogenic impacts (Sheppard et al.,

2010; Riegl et al., 2013; Sheppard, 2016). Indeed, shallow Qatari

reefs are heavily exposed to coastal constructions (Richer, 2008)

and the variability of sea surface temperatures is extremely high

between the summer and the winter (Coles, 2003; Rakib et al.,

2021). Although seawater temperatures are known to be

naturally hot in the summer, summer marine heat waves are

increasingly frequent (Riegl et al., 2018; Burt et al., 2019),

creating a slow but steady decline of the Gulf’s coral

communities, resulting in the loss of 40% of coral cover across

the region since the late 1990s (Burt et al., 2021). While the

shallow reefs of Qatar are declining, deeper reefs may

temporarily provide a more stable environment where Gulf

corals may be able to survive. Their distance from the shore

and land-associated anthropogenic stresses is a clear advantage,

and the depth currently offers cooler waters in the warmer

months of the years. Indeed, while the sea surface
Frontiers in Marine Science 11
temperatures can exceed 36°C, at the offshore locations 35°C

water temperatures occur from several meters below the surface

down to a thermocline at ~16m depth, below which

temperatures stabilized at ~32°C (pers. obs.), matching

previously reported summer temperature profiles in the Gulf

(Rakib et al., 2021), with deep-water coral assemblages occurring

below this thermocline depth, providing a vertical refuge from

heat stress. However, should Gulf seawater temperatures

continue to increase over time, then the thermocline may be

pushed further down, thus exposing the remaining deep coral

reef ecosystems to extreme thermal conditions similar to those

found in shallow inshore sites.

The results of this work reveal Qatar to be in a central

position to the ecological dynamics of the Gulf and present an

important starting point for quantitative coral reef ecology work

both in Qatar and in the remaining Gulf. The data collected

during this comprehensive baseline assessment serve as an

important foundation for the growing ecosystem-based

management approaches being adopted in Qatar (Burt et al.,

2017; Fanning et al., 2021), allowing development of a spatially

and temporally integrated long-term monitoring program. We

show that the deep, offshore seamounts in Qatar represent a

unique blend of the diverse, planktivore-dominated reef fish

communities of the northern Gulf, while the fish assemblages on

shallow reefs are more representative of those across the

environmentally extreme southern basin of the Gulf. The

unique position of Qatar at the interface between these two

divergent environments allows the persistence of quite distinct

reef fish and coral communities across a relatively narrow

geographic area, enhancing the overall biodiversity of the

nation. While these observations are positive and shed further

light on the importance of coral reef ecosystems in Qatar, the

long-term persistence of these ecosystems and their associated

fish communities are in question. Widespread coastal

development has resulted in the loss and degradation of many

nearshore reefs in Qatar and recent increases in sea surface

temperatures have caused recurrent bleaching events that have

eliminated much of the remaining shallow coral reefs around the

peninsula (Burt et al., 2016; Burt et al., 2017). While the deep

reefs have thus far escaped the worst of these impacts, there are

indications that changes are underway in these systems as well.

Acropora table corals that had reportedly been dominant

members of the coral communities at offshore, deep reefs in

Qatar, are now exceedingly rare (Foster et al., 2013; Burt et al.,

2016; Riegl et al., 2018). Given that such reef-building corals

provide important three-dimensional complexity known to be

important in supporting fishes (Graham and Nash, 2013), it is

likely that the loss of this formerly-dominant species is indirectly

impacting the reef-associated fish assemblage. Given the

projected increases in sea surface temperatures in the Gulf in

the coming decades (Sheppard, 2003), further losses of coral

cover and shifts in community structure may result in additional

indirect effects on reef fishes. In addition, given that many reef
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fish and corals are living near their thermal limits in the Gulf

(Coles and Tarr, 1990; Price et al., 1993; Feary et al., 2012), it is

also likely that further temperature increases may push many of

these organisms beyond their physiological capacity and cause

demographic changes that would translate to the population and

community levels (Pörtner and Farrell, 2008), particularly in

extreme shallow reef environments. Development of

management efforts aimed at reducing stressors that may

exacerbate these climate-related changes are warranted.
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