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Editorial on the Research Topic

Influence of environmental variability on climate change impacts in
marine ecosystems
Phenotypic responses and selection in populations that lead to ecosystem shifts are

often driven by environmental variability and extremes (Grant et al., 2017; Al-Janabi

et al., 2019). Marine environments, particularly coastal and shallow-water habitats,
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experience strong fluctuations of abiotic drivers at multiple

temporal scales (Boyd et al., 2016; Pansch and Hiebenthal,

2019). This environmental variability can arise from biological

activity, irradiance variation, tides, weather-driven changes in

water level, waves, and up/downwelling events, but also from

seasonal, annual, and semi-decadal cycles such as El Niño and La

Niña (Boyd et al., 2016; Choi et al., 2019). Diurnal and seasonal

temperature fluctuations (driven by irradiation cycles) form

basic cycles on top of which stochastic processes operate

(Lima and Wethey, 2012; Wang and Dillon, 2014). These

include marine heatwaves (MHWs; Oliver et al., 2018), which

can have strong and lasting negative impacts on the physiology

of marine species and the composition of entire ecosystems

(Pansch et al., 2018; Smale et al., 2019). Likewise, the seawater

carbonate system (and oxygen tension) varies in response to the

same drivers (Hofmann et al., 2011), although this can be more

strongly influenced by the metabolism of organisms in areas

with high biomass and high seawater residence times (Rivest

et al., 2017; Noisette et al., 2022).

There has been increasing research interest in how

organisms respond to environmental variability and how this

will interact with future effects of anthropogenic climate change.

In habitats where organisms are near, or at, their physiological

limits, environmental variability will exacerbate future effects of

climate change (Cornwall et al., 2018; Morón Lugo et al., 2020).

Alternatively, some fluctuations and cycles can mimic the mean

conditions expected due to ongoing ocean warming or

acidification, which can precondition resident taxa to greater

tolerance (Pansch et al., 2014; Vargas et al., 2017). In all cases,

environmental variability can lead to periods where

environmental conditions are favorable (Cornwall et al., 2014;

Wahl et al., 2018; Vajedsamiei et al., 2021), and variability has

therefore been proposed to also provide temporal refugia in a

future ocean.

This special issue hosts a range of research that explores

concepts relating to environmental variability and climate

change. From microbes to corals, and microns to ocean basins,

these studies explore the effects of variability in light,

temperature, and seawater carbonate chemistry.

Including environmental variability in our projections is

essential if we are to accurately assess the impacts of climate

change. McClanahan et al. demonstrate that projections of the

impacts of MHWs and thermal stress are much more accurate if

models include components of variability such as bimodality

and standard deviation in temperature, rather than more

simplistic assumptions of cumulative thermal stress such as

the degree heating day/week models (Maynard et al., 2008;

Cornwall et al., 2021). MHWs are complex and comprise

different components, such as intensity, duration, and

frequency, that will all change in the future (Frölicher et al.,
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2018). Wolf et al. demonstrate that longer continual MHWs

have stronger negative effects on sea star physiology than

equivalent MHWs that are broken up into several shorter

periods of heat stress (and therefore allow for recovery from

stress). Vajedsamiei et al. demonstrate that MHWs may select

for mussel recruits with higher heat tolerance and such tolerance

may be mediated by lower metabolic demand, but also that

mussels’ capacity for beneficial heat acclimation is limited.

Samuels et al. indicate that MHW intensity controls responses

of diatoms, but that past thermal history and genotypic

differences modulate responses further. Collectively, these

works exemplify the complexity of MHWs, and show that

projections based on traditional research models of slow onset

of thermal stress (simulating ocean warming/acidification), or

which ignored sequential phases of impact and recovery, should

be considered with caution.

Historical variability in temperature can affect species’

responses to MHWs or ongoing ocean warming, such that

populations exposed to greater extremes in temperatures often

have higher thermal tolerances than populations of the same

species not exposed to such extremes (Schoepf et al., 2015;

Marshall et al., 2018; Moyen et al., 2020). Kunze et al.

demonstrate that responses of phytoplankton to temperature

fluctuations vary depending on the frequency of the fluctuations,

with faster fluctuations having more positive outcomes. Hennigs

et al. indicate that the responses of mysids to temperature

fluctuations are dependent on their sex, with females being

metabolically more active than males, and female ingestion

rates being negatively impacted by temperature fluctuations.

Jimenez et al. find sex-related responses to temperature

fluctuations in intertidal crabs, where thermal extremes but

not latitudinal gradients explain the responses. These three

studies collectively reinforce earlier findings that the impacts

of thermal variability in experimental work and the impacts of

past exposure to temperature variability are complex and

context-dependent and that these cannot easily be generalized.

This complexity must be well understood and acknowledged if

we are to accurately project the impacts of climate change

(McClanahan et al.). In this issue, Sylvester et al. support this

premise, showing that it is difficult to tease apart the response of

krill population growth to ocean warming from responses to the

large natural temperature variability in the Southern Ocean.

Further complications arise when accounting for the impacts of

environmental variability on microbial adaptive plasticity and

evolution. The review by Arromrak et al. indicates the

importance of these aspects, but also points out the apparent

knowledge gaps around the interplay of climate change,

environmental variability, and adaptation, as a vast majority of

past research has focused on single drivers applying constant

environmental regimes.
frontiersin.org

https://doi.org/10.3389/fmars.2021.778121
https://doi.org/10.3389/fmars.2021.790241
https://doi.org/10.3389/fmars.2021.660427
https://doi.org/10.3389/fmars.2021.600343
https://doi.org/10.3389/fmars.2021.812902
https://doi.org/10.3389/fmars.2022.883265
https://doi.org/10.3389/fmars.2022.883265
https://doi.org/10.3389/fmars.2022.858280
https://doi.org/10.3389/fmars.2021.778121
https://doi.org/10.3389/fmars.2021.669508
https://doi.org/10.3389/fmars.2022.864797
https://doi.org/10.3389/fmars.2022.994756
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Pansch et al. 10.3389/fmars.2022.994756
Variability in drivers besides temperature, such as light,

water motion, and seawater carbonate chemistry, are also

important for the physiology of marine species. For example,

the quality and quantity of fluctuating light can radically alter the

physiology of photosynthetic species. Neun et al. demonstrate

that responses to light variability of phytoplankton are species-

specific. Light also modifies indirectly the seawater chemistry

experienced by many marine organisms in nearshore

ecosystems. In an extreme example, Houlihan et al. show that

increasing light (and therefore photosynthesis) and decreasing

water velocity increase pH and the thickness of the diffusion

boundary layer (Hurd et al., 2011; Cornwall et al., 2015; Noisette

et al., 2022) of crustose coralline algae, which represents µm to

mm habitats in which sea urchin larvae settle. However, during

the night, respiration processes impose contrasting pH shifts

leading to strong diurnal pH variability.

This special issue highlights the complex and context-

dependent nature of environmental variability. It shows that

responses to variability cannot be generalized from concepts

such as Jensen’s inequality and from experimental studies

applying constant environmental regimes. In addition,

previous experience (carry-over effects, stress memory and
Frontiers in Marine Science 03
cross-stress tolerance, ecological memory, or trans-

generational plasticity; Jackson et al., 2021) can all change

organisms’ responses to (multiple) fluctuating drivers.

Nonetheless, environmental variability is fundamentally

important and must be considered in future research that

investigates the impacts of climate change on marine taxa.

We propose (Figure 1) future research combining

experimental and conceptual/theoretical studies that

investigate the effects of multiple (including biotic)

fluctuating environmental drivers across relevant spatial and

temporal scales on marine organisms and ecosystems. Ideally,

drivers would be applied along a species’ performance gradient,

i.e., from optimal to stressful conditions. Experiments testing

whether performance curves are adaptive in the short- (via

phenotypic plasticity) or the long-run (by evolution) will be a

highly valuable contribution to the existing literature. Thus, the

complexity of this rapidly growing research field may be

overcome only by integrating disciplines (from physiology

and evolutionary biology to behavioral biology and ecology)

and by combining studies from the Petri dish to large-scale

mesocosm infrastructure and field observations across

environmental gradients.
FIGURE 1

Aspects to be considered in theoretical to experimental research that aims to delineate the consequences of environmental variability and
climate change for marine life.
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