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The anthropogenic introduction of significant amounts of reactive nitrogen in

the coastal zone particularly since the discovery and application of the Haber-

Bosch process has profound consequences over organic carbon storage and

transformations at both regional and global scales. Here, we review our current

knowledge on cause-effect chains for nitrogen, especially dissolved inorganic

nitrogen, on organic carbon cycling in coastal tropical systems. We focus on

the feedback mechanisms for turnover of different organic carbon species to

nitrogen excess and links to current environmental and climate changes. We

pay special attention to organic carbon dynamics in tropical coasts due to their

high primary productivity, rapid sedimentation, and significant needs of

nitrogen for agriculture and industry usages. Together with land-use changes

and economy development, we highlight the vulnerability of carbon storage in

tropical coasts triggered by nitrogen overloading and outline possible industrial

strategies with low carbon cycling disturbance to benefit the development of

tropical countries.
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Introduction

Coastal belts are zones of intense organic carbon storage and cycling due to the close

interaction between the land, the sea, the benthic compartment and the atmosphere.

Enhanced local productivity adds to the transport of terrestrially-derived organic

material through surface loading or submarine groundwater discharge (Bianchi et al.,

2018; Jiang et al., 2020). As the electron donor (energy provider) in heterotrophic

biogeochemical reactions, the importance of organic carbon on element cycling is

fundamental. Similarly, nitrogen is an essential element for life and frequently
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enriched in coastal zones due to its vast and intensive application

in agriculture and industry (Hutchins and Capone, 2022).

Nitrogen is particularly mobile in the biosphere due to its

large range of chemical forms and redox states, participating

in a wide range of biogeochemical reactions. Both the quantity

and quality of organic carbon are important drivers of benthic

heterotrophic nitrogen reaction pathways (Ibánhez and Rocha,

2017), which in turn control the abundance and composition of

benthic microbiota or pelagic plankton species (Rocha et al.,

2022). Moreover, the autotrophic reactions in nitrogen cycling,

e.g., nitrification, are also tightly linked to carbon sources since

the labile fraction of organic carbon (e.g., amino acids and

polypeptide) is essential in benthic metabolism (Castaldelli

et al., 2019). The high primary production characteristic of

coastal zones compared to the open ocean together with

carbon transport from the continent lead to high standing

stocks of organic carbon. In tropical coastal systems, a

significant fraction of this carbon is preserved in different

compartments such as mangroves, seagrass meadows,

macroalgae forests and phytoplankton, with different retention

time scales (Spivak et al., 2019). The high sequestration rates in

the tropical zone accumulate substantial quantities of organic

carbon, in layers even reaching several meters in thickness (e.g.,

peat) along coastal lines (Wu et al., 2019). Despite the

importance of the tropical coastal organic carbon pool in the

global carbon cycle, the feedback mechanisms between organic

carbon and dissolved inorganic nitrogen (DIN) are barely

explored though a tight reaction chain between carbon and

nitrogen exists. Here, we review organic carbon storage and

cycling patterns and reactive linkages between DIN and organic

carbon in tropical coastal zones. In addition, the economic

dimension of these processes is discussed, with a focus on

industry development targeting reduced carbon emissions and

national economy development of tropical countries.
Organic carbon cycling in
tropical coasts

The high temperature and intense precipitation

characteristic of tropical shores (frequently > 2000 mm yr-1)

accelerate the hydraulic cycle and hence favor the transport of

terrestrial organic carbon (both dissolved: DOC and particulate:

POC) across the land-ocean interface (Moore et al., 2013;

Figure 1A). Additionally, large forest coverage in river

catchments enhances terrestrial carbon content in river water.

Rivers flowing through tropical peatland contain substantial

humic materials and the DOC concentration in tea-color river

waters can reach >2000 mM even in small river catchments (e.g.,

Maludam River, Malaysia; river catchment of 432 km2; Martin

et al., 2018). Even in tropical rivers without peat coverage (e.g.,
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Wenchang River, China), the riverine DOC level still ranges

from 150 to 560 mM (Fu et al., 2013), frequently higher than

similar rivers located in sub-tropical and temperate zones, e.g.,

Changjiang (108 to 133 mM, Bao et al., 2015), Rhine River (240

mM) and Thames River (298 mM; Painter et al., 2018). Highly

turbid rivers (e.g., Rajang, Malaysia) are also major contributors

of land-derived POC to the tropical coast (Zhu et al., 2020). This

tropical riverine carbon transport gains disproportionate

importance during tropical storms and erosive transport of

POC to the coast (Hilton et al., 2008). Tropical rivers are

estimated to account for about ~60% of the global continental

carbon transport to the coast (Ludwig et al., 1996). The

acceleration of the hydrologic cycle also increases the transport

of organic carbon through submarine groundwater discharge

(SGD), of particular importance in tropical islands (Moosdorf

et al., 2015). The continental endmember of SGD is frequently

enriched in high-molecular DOC species derived from plant

tissue decomposition and hence SGD is a non-point source of

complex DOC to tropical coasts (Wu et al., 2021).

The volatile fractions of DOC would evaporate from land into

the atmosphere and reach coastal zones via dry and wet

deposition (Chow et al., 2010). Atmospheric transport can be

also a relevant source of POC to the tropical coast, particularly

during fire events as black carbon (Liu et al., 2022) and aeolian

dust, particularly in the tropical Atlantic originated from the

Sahara and the Sahel (Eglinton et al., 2002; Ibánhez et al., 2022).

The high temperature of tropical zones further enhances coastal

ventilation and terrestrial volatile compounds are rapidly spread

through Walker Circulation to long distances from the source

(Jiang et al., 2021a). The in-situ production of DOC and POC in

tropical coastal ecosystems mainly due to the activity of different

primary producers is also a large source of organic carbon due to

the general high productivity of tropical coasts (Figure 1A). Decay

and decomposition of this primary production and resulting

debris feeds the coastal and benthic organic carbon inventory.

Before setting on the seabed, a fraction of DOC and POC,

typically labile fractions (L-DOC), e.g., oligosaccharides and

amino acids, is rapidly consumed in coastal waters by a wide

range of microbiota-mediated reactions (Nelson and Wear,

2014). Generally, the residence time of highly labile DOC in

ocean waters is up to approximately one week (Hopkinson et al.,

2002). The fate of this reactive DOC pool includes adsorption

onto mineral substances, biological assimilation and fully

consumption to carbon dioxide (CO2). Organic matter

mineralization generally increases with increasing temperature

and thus, it is particularly intense in tropical coastal ecosystems

(Cardoso et al., 2014). The recalcitrant DOC fraction dispersed

in coastal waters, such as humic materials, presents residence

times that can reach years to decades (Opsahl and Benner, 1997).

Apart from exportation to the adjacent open ocean, persistent

organic matter fractions are buried in coastal sediments via

diagenesis, undergoing benthic aerobic (surface 2 to 10 cm
frontiersin.org

https://doi.org/10.3389/fmars.2022.996655
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Jiang et al. 10.3389/fmars.2022.996655
depth) and anaerobic (frequently below 10 cm depth)

transformations (Bianchi et al., 2018). Currently, the global

flux of carbon from land to coastal oceans is assumed to be

616 Tg yr-1, of which approximately 210 Tg yr-1 is retained in

coastal sediments (Barrón and Duarte, 2015). Tropical

mangroves alone are responsible for ca. 26 Tg yr-1 of organic

carbon burial, i.e., about 12% of the global burial rate of global

coastal sediments (Breithaupt et al., 2012).
Frontiers in Marine Science 03
Biogeochemical feedbacks of
nitrogen to carbon cycling

Coastal zones also receive substantial reactive nitrogen,

mainly derived from a series of anthropogenic activities, such

as agriculture, sewage disposal, petrochemical industry,

fermentation engineering, etc. (Jiang et al., 2019). The

geographical overlap between DIN and organic carbon
A

B C

FIGURE 1

Sketch of carbon storage and transport routes in coastal zones (A). This figure also shows the main transport routes of terrestrial DIN to the coast;
(B) Biogeochemical cycling of N in marine environments with different pathways. ON indicates organic nitrogen. In the figure, reactions with dash
lines indicate autotrophic reactions while the solid indicates heterotrophic reactions; (C) transformation among SOC, labile DOC (L-DOC),
recalcitrant DOC (R-DOC), POC and CO2 in sediment environments coupled with different N reaction pathways (including priming effects).
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enrichment in coastal zones defines the tightly biogeochemical

interaction of these elements. According to the compartment,

the influence of DIN on carbon cycling and storage in tropical

coastal zones is summarized as:

Benthic environments: In cohesive sediments, the effects of

DIN additions on carbon storage vary significantly under

aerobic and anaerobic conditions. In aerobic layers, mainly the

top layer (from a few mm to 1-2 cm), nitrate (NO3
-) and nitrite

(NO2
-) compete with a series of strong oxidants, especially

dissolved oxygen (DO) and ferric iron (Song et al., 2021). In

this environment, NH4
+ production via mineralization and

ammonification requires the supply of organic matter,

indicating carbon consumption (Figure 1B). Due to the

relatively weak oxidation potential compared to dissolved

oxygen, NO3
- and NO2

- may participate in benthic carbon

cycling via stimulating microbial growth and adding POC in

both oxic and anoxic sediments (Figure 1C). The importance of

NO3
- and NO2

- as oxidants gains relevance in anoxic sediments

due to the oxidation of organic carbon (production of CO2) via

the denitrification process (Figure 1C). Heterotrophic

denitrification may include the oxidation of both DOC and

sediment organic carbon (SOC) in sediment columns (Plummer

et al., 2015, Figure 1C), Even the degradation of recalcitrant

organic pollutants in mangrove sediments could be accelerated

by the presence of NO3
- likely via carbon-dependent

denitrification (Jiang et al., 2016). Similarly, organic carbon,

especially labile fractions, such as phytoplankton debris, is also

needed for the dissimilatory nitrate reduction to ammonium

(DNRA) process in coastal cohesive sediments (Hardison et al.,

2015). The presence of other low-molecular organic compounds,

such as oxalate, citrate and glucose, could also markedly enhance

DNRA rates (Liu et al., 2016). In fact, DNRA rates showed

higher sensitivity to labile carbon additions than denitrification

(Robinson et al., 2018). Heterotrophic denitrification and DNRA

compete for electron donors from variable carbon sources in

benthic systems (Figure 1C). Although the fermentative DNRA

process is still poorly understood, highly reducing and organic

rich conditions, high NO3
- and high C to N ratios in the organic

matter all seem to favor DRNA over canonical denitrification

(Fazzolari et al., 1998; Tomaszek and Rokosz, 2007). As such,

DNRA seems to be a dominant nitrate reduction process in

tropical cohesive sediments (Dong et al., 2011). Although both

heterotrophic processes produce the potent greenhouse gas N2O

as byproduct, the potential prevalence of DNRA over

denitrification has strong implications for C and N cycling in

coastal tropical ecosystems: the end-product of DNRA is

ammonium, thus recirculating N into bioavailable forms,

eventually reaching surface waters where it can feed the N2O-

producing nitrification process and enhance primary

production. Another anoxic, microbially-mediated DIN

process is the autotrophic Anammox (anaerobic ammonium

oxidation), that reduces nitrite with ammonium to produce N2.
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Notably, anammox doesn’t produce N2O as byproduct (Van De

Graaf et al., 1996). In cohesive marine sediments, anammox

shows a negative correlation with the labile organic carbon

content (Rich et al., 2020). In permeable sediments, DO

penetration depths that can be orders of magnitude higher

than in cohesive sediments, favoring the creation of anoxic

microniches thus placing oxic and anoxic DIN processing in

close proximity (e.g., Jiang et al., 2021b). The injection of NO3
-

into permeable sediment porewaters has been identified to

enhance denitrification rates, although porewater DOC

content, even the labile fractions, seems not to be the preferred

carbon source when SOC is present (e.g., Jiang et al., 2018a; Jiang

et al., 2021b). DNRA in permeable sediments also significantly

relays on carbon sources. More importantly, DNRA could have

stronger carbon mobilization potential than denitrification due

to a higher relative proportion in NO3
- removal in permeable

sediments compared to cohesive sediments as found in the

northern Baltic Sea (Hellemann et al., 2020). The high organic

matter breakdown capacity of permeable sediments prevents the

accumulation of large quantities of organic matter. These

organic carbon-poor conditions could favor the occurrence of

the autotrophic anammox process by limiting heterotrophic

nitrate reduction pathways as observed in temperate latitudes

(e.g., Kroeger and Charette, 2008). Adding to the commonly

found organic C limitation of the local microbial community, N

seems to be also in deficit in these environments. In temperate

permeable sediments, the sudden availability of DIN within the

porewater seems to act as a “primer” of SOC decomposition by

precluding N limitation of the local community and increasing

their ability to process refractory SOC (Ibánhez and Rocha,

2014; Ibánhez et al., 2021). Consequently, DIN addition

accelerates SOC processing, limiting the ability of permeable

sediments to store organic C. Despite the low sedimentary

organic carbon content characteristic of coastal permeable

sediments, their large volume suggests this may be an

important mechanism of organic C mobilization. Whether this

effect occurs in tropical permeable sediments is yet to

be confirmed.

Water column: DIN amendment enhances OC storage in

primary producers, while the assimilation of NO3
- likely

consumes DOC in cells (Figure 1B). N fixation function also

requires OC from phytoplankton cells while such losses could

rapidly be compensated by photosynthesis. DIN additions to

coastal water can trigger desorption of DOC from suspended

particle surfaces due to competition with sorption sites (Engel

and Chefetz, 2016). In surface waters, DOC and POC are

significantly influenced by photo-reactions, such as

photobleaching, particularly intense in the tropical zone (Zhou

et al., 2019). The breakdown of high-molecular carbon

compounds produces labile organic matter fractions for the

transformation of DIN via aerobic denitrification, typically

occurring on particle surfaces (Jiang et al., 2019) and hence
frontiersin.org
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accelerates the consumption of organic carbon by heterotrophs.

Moreover, apart from toxicity effects derived mainly from the

addition of NH4
+ (toxicity varied among species; Collos and

Harrison, 2014), DIN additions could significantly enhance the

biomass of primary producers in coastal waters and hence

increase biological POC and DOC pools promoting large

ecological changes (e.g., proliferation of harmful algae

blooms), eutrophication and oxygen decline (e.g., Peyman

et al., 2017). Eutrophication may provide water column low-

oxygen (micro)environments favoring the occurrence of

denitrification, anammox and DNRA in surface waters

(Broman et al., 2021). As an heterotrophic process,

denitrification decreases the organic carbon pool while

denitrifiers in anoxic water may preferentially utilize fresher

and labile autochthonous POC instead of DOC (Zeng et al.,

2019). DNRA in hypoxic waters also prefers autochthonous

carbon (Broman et al., 2021), while the preference between POC

and DOC is still undocumented. In the tropical zone, together

with high water temperatures, the loading of exogenous

nutrients may easily boost the carbon pool in waters, while the

organic carbon enrichment then accelerates decomposition via

heterotrophic pathways. Compared with denitrification, DNRA

still stores reactive nitrogen in the DIN inventory. Linked with

nitrification, DNRA continuously consumes pelagic organic

carbon and produces N2O. Anoxic C processing enhancement

together with accelerated N cycling drove by eutrophication

seems to enhance greenhouse gas production (CO2, CH4 and

N2O) in tropical estuaries (Nguyen et al., 2022).

Atmosphere: Atmospheric transport is a key fertilization

process to support surface ocean carbon fixation (Ibánhez et al.,

2022). In addition, aerosols are also a pool for organic carbon,

containing substance from terrestrial volatilization (Jiang et al.,

2021b) and emission of sea spray driven by waves (Rinaldi et al.,

2020). Organic fractions could be attached on the surface of

colloidal particles, while the residence time is still limited due to

the exposure to ultraviolet rays, varying from several hours to

weeks. The main interaction between DIN species and organic

carbon in the atmosphere is mainly via different photochemical

reactions in aerosols. In particular, the decomposition of organic

matter in aerosols near the ocean surface likely produces

substantial small molecular acids, such as oxalic acid and

formic acid (Carlton et al., 2007). NH4
+ in aerosols tends to

neutralize these acid compounds. The effect of nitrogen oxides

would be more complex. NO3
- in the humid atmosphere could

produce OH- and O(3P) after receiving ultraviolet rays. A similar

production of OH- is also obtained when NO2 and NO are

exposed to strong sunlight. Both OH- and O(3P) have a great

oxidation capability, accelerating the decomposition of organic

carbon in aerosols (Dominé and Shepson, 2002). Currently,

though research on the chemical dynamics related with

organic carbon and DIN in the tropical atmospheric

environment is limited, the strong sunlight exposure and high
Frontiers in Marine Science 05
temperature likely accelerates the organic carbon decomposition

and leads to lower DOC content of wet deposition.

Biota: Anthropogenic DIN enhances the growth of primary

producers and increases carbon sequestration but also

eutrophication and other deleterious effects over the coastal

biota (Howarth, 1988). In tropical ecosystems, apart from

phytoplankton and algae living in the water column,

mangrove forests and seagrass meadows contribute

substantially to carbon fixation. Nevertheless, seagrass

meadows are very sensitive to increasing DIN loads. For

instance, DIN enrichment decreases eelgrass shoot density and

biomass (Deegan et al., 2002). Anthropogenic DIN additions to

tropical seagrass ecosystems can promote toxicity to the

individuals and large ecological changes such as the growth of

epiphytes and algae with direct impacts over seagrass

populations (Burkholder et al., 2007). In contrast, the

amendment of NO3
- and NH4

+ to the surrounding water

column of mangrove forests could stimulate their growth even

when the loading level could be toxic to phytoplankton species.

Mangrove ecosystems generally buffer the transfer of redundant

N originated from land to the coast while stimulating their

growth (Wu et al., 2008). This growth stimulation promoted by

DIN addition varies among leaves, roots and stems. Incubation

experiments showed that the addition of NH4NO3 to mangrove

sediments follows the roots>leaves>stems route (Jiang et al.,

2016). Compared with stems and leaves, carbon retention rates

associated to roots in sediments is higher due to lower impacts of

hydraulic transport. This reinforces the significance of mangrove

systems in carbon sequestration along tropical coasts. Apart

from direct influence on root biomass, DIN amendment also

conditions the interaction between plant roots and sediments in

the rhizosphere (Jiang et al., 2016). The addition of DIN can

significantly stimulate root activity (Jiang et al., 2018b), thus

enhancing the release of low-molecular sugar and amino acids

(Weng et al., 2013). More importantly, mineralization of SOC in

the rhizosphere seems not accelerated by DIN additions

(Keuskamp et al., 2013). Overall, the organic carbon pool in

the rhizosphere might be enhanced by increasing DIN loadings

originated from land, reinforcing the large contribution of

mangrove forests to the global blue carbon pool. Nevertheless,

the long-term impact of N enrichment over the stored C pool of

mangrove ecosystems remains uncertain. Along coasts, coral

reefs (warm water species) are exclusive of tropical ecosystems

and N additions promote large impacts over them and related

carbon processing (Lønborg et al., 2018). Generally, coral reefs

are flourished in oligotrophic environments with a rapid internal

nutrient circling via decomposition and nitrogen fixation to

sustain their growth (O’Neil and Capone, 2008). Low-level NH4
+

likely enhance coral growth rate, while NO3
- addition increases

oxidative stress in corals (Zhao et al., 2021). The amendment of

excess DIN to coral reefs enhances the incidence of coral diseases

caused by predation on corals (Zhao et al., 2021) and hence
frontiersin.org

https://doi.org/10.3389/fmars.2022.996655
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Jiang et al. 10.3389/fmars.2022.996655
decreases the organic carbon pool in coral systems. More

importantly, eutrophication driven by DIN additions to coral

reefs likely increases algal bloom frequencies and invasion of

macro algae (Lapointe et al., 2019), leading to a permanent

change in organic carbon storage and carbon cycling in

these regions.
Economic evaluation
and development

The enhanced production of greenhouse gases due to

anthropogenic disturbance of tropical ecosystems promotes

profound negative feedbacks in the climate system and the

biosphere. To prevent further degradation, the emission of

greenhouse gases to the atmosphere has been regulated in a

series of global conventions. Consequently, carbon sequestration

represents now economic income from a market trading while

greenhouse gas emissions likely result in economic losses

(Ellerman et al., 2008). Organic carbon storage and

mobilization in tropical coasts is highly dynamic and strongly

linked to DIN cycling. Accordingly, increased N inputs likely

influence the local economy. For instance, high levels of NO3
- in

tropical waters trigger CO2 emissions via heterotrophic

pathways (Figure 1C). To completely reduce 10 mM of riverine

NO3
-, approximately equal levels of SOC/DOC need to be

transformed to CO2 in coastal environments. In a low

discharge tropical river (e.g., the Indus River, Pakistan, 5 km3

yr-1), such CO2 emission can lead to an economic loss of around

51, 000 Euro each year based on recent costs in the European

Climate Exchange (around 85 Euro ton-1 CO2 emission during

2022). In average discharge rivers (e.g., Rajang, Malaysia, 110

km3 yr-1), the annual economic losses to reduce 10 mM of

riverine NO3
- increases to ~1.2 million Euro. Logically, in

tropical rivers with large discharges (e.g., Amazon River) or

NO3
- heavily enriched conditions, such economic losses would

be much more significant.

Accordingly, proper management on N loading is urgent to

tropical countries, both from an environmental and economic

point of view. Currently, one of the most significant sources of

anthropogenic DIN loads to tropical coasts is the indiscriminate
Frontiers in Marine Science 06
use of fertilizers, which drives the leakage of both NH4
+ and

NO3
- into the coastal region coupled with hydraulic transport

(Table 1). The amount of chemical fertilizer applied in tropical

countries is one of the largest globally, such as 415 kg hectare-1

yr-1 in Vietnam, 569 kg hectare-1 yr-1 in Egypt and 2106 kg

hectare-1 yr-1 in Malaysia (https://data.worldbank.org/indicator/

AG.CON.FERT.ZS). Together with high precipitation rates, the

unconsumed fertilizer may directly drain from estuaries and

subterranean estuaries into tropical coasts (Lønborg et al., 2021),

which highlights the urgency and necessity of a better

dimensioning of fertilizer application and replacement from

chemical fertilizer to organic fertilizer and slow-release

fertilizer thus reducing application quantities (Liang et al.,

2022). Moreover, the potentiation of nitrogen-fixing legume

species, e.g., Soybean, Groundnut and Cowpea (Peoples and

Herridge, 1990), in the tropical agriculture, could favor a

balanced N application on land. DIN originated from

untreated sewage, i.e., a large pathway for NH4
+ discharge to

the coast, including both municipal and industry, is a global

threat to coastal ecosystems particularly near tropical megacities

(e.g., Eisenberg et al., 2016). The improvement of the water

sanitation network, the installation of highly-efficient treatments

in industries combined with small-scale treatments in rural areas

would significantly reduce anthropogenic DIN loads to the

tropical coast. As another significant contributor of NO3
- to

coastal systems, vehicles based on fuel combustion would

necessarily transit towards a different model based on cleaner

energy to reduce both greenhouse gas and anthropogenic N

emissions. Notably, these schemes and management actions

require financial support. In that regard, the economic

compensations from improving carbon sequestration in coasts

could act as an economic positive feedback mechanism in

tropical countries.

From a view of long-term development, a proper industry

improvement in the tropical countries would be needed to

guarantee the resilience of the stored coastal carbon. Target

on the traditional industries, such as agriculture, the

replacement of heavily fertilizer-dependent species would be

the selection, which requires a sharp understanding on the

global market requirement. In addition, the development of

eco-tourism in tropical coasts could be further encouraged by
TABLE 1 Anthropogenic Nitrogen sources and potential approaches to reduce DIN emissions to tropical coastal environments.

Sources Dominant DIN Species Scale Influences Potential improvements

Chemical Fertilizer NH4
+ & NO3

- Regional High Organic fertilizer and slow-release fertilizer replacement, optimization of application

Municipal Sewage NH4
+ Point source High Treatment improvement, technological advance

Industry Sewage NH4
+ Point source Medium Regulation improvement

Vehicle Exhausts NO3
- Regional High Energy replacement, railway transport

Garbage leak NH4
+ & NO3

- Point source Medium Enhanced regulation and recycling

Graziery Waste NH4
+ Point source Low Industrial recycling, use as fertilizer
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local governments taking advantage of investments from the

World Bank, IMF and international travel corporations. The

combination of environmentally friendly marine culture and

recovery of tropical primary production systems, such as

mangrove forests and seagrass meadows, could also enhance

carbon income from the global market from long-

term trading.
Conclusion

Tropical coastal ecosystems are a key node for global carbon

storage, while the organic carbon inventories in many

subsystems are significantly influenced by a wide range of

biogeochemical factors. This study reviewed the impact of

different DIN species (NH4
+, NO3

- and NO2
-) on organic

carbon storage in sediments, water column, atmosphere and

biological organisms of the tropical band. Generally, apart from

stimulation on primary producers, the amendment of NO3
- and

NO2
- significantly enhances consumption of SOC and DOC,

especially labile fractions in sediments and waters via

heterotrophic reactions. Currently, chemical fertilizer, sewage

and vehicle exhaust are key contributors to the DIN pool of

tropical coasts, while the management and regulation to

constrain DIN outputs require significant economic support.

Based on global trading on carbon storage, the financial benefits

of carbon sequestration along tropical coasts could act in

support of a changing paradigm of tropical coastal uses

and resilience.
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