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The use of habitat suitability
modelling for seagrass: A review
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1Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom, 2Project
Seagrass, Bridgend, United Kingdom
Coastal ecosystems, including coral reefs, mangroves, and seagrass, are in

global decline. Mitigation approaches include restoration and other managed

recovery interventions. To maximise success, these should be guided by an

understanding of the environmental niche and geographic limits of

foundational species. However, the choices of data, variables, and modelling

approaches can be bewildering when embarking on such an exercise, and the

biases associated with such choices are often unknown. We reviewed the

current available knowledge on methodological approaches and

environmental variables used to model and map habitat suitability for coastal

ecosystems. While our focus is on seagrass, we draw on information from all

marine macrophyte studies for greater coverage of approaches at different

scales around the world. We collated 75 publications, of which 35 included

seagrasses. Out of all the publications, we found the most commonly used

predictor variables were temperature (64%), bathymetry (61%), light availability

(49%), and salinity (49%), respectively. The same predictor variables were also

commonly used in the 35 seagrass Habitat Suitability Models (HSM) but in the

following order: bathymetry (74%), salinity (57%), light availability (51%), and

temperature (51%). The most popular method used in marine macrophyte

HSMs was an ensemble of models (29%) followed by MaxEnt (17%). Cross-

validation was the most commonly used selection procedure (24%), and

threshold probability was the favoured model validation (33%). Most studies

(87%) did not calculate or report uncertainty measures. The approach used to

create an HSMwas found to vary by location and scale of the study. Based upon

previous studies, it can be suggested that the best approach for seagrass HSM

would be to use an ensemble of models, including MaxEnt along with a

selection procedure (Cross-validation) and threshold probability to validate

the model with the use of uncertainty measures in the model process.

KEYWORDS

habitat suitability modelling (HSM), seagrass, macrophyte, restoration, ensemble,
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Introduction

To manage environmental changes and aid conservation of

biodiversity, it is vital that we increase our understanding of the

relationships between species distribution and their surrounding

environment (Bellamy et al., 2013; Matthiopoulos et al., 2020).

However, there is often a lack of systematic biological survey

data available (Elith et al., 2011) making it impossible to account

for all individuals of a species at all times. Recent economic crises

have seen major cuts in government spending with

environmental protection agencies one of the sectors to suffer,

exacerbating this lack of systematic biological data collection

(Borja & Elliott, 2013). Habitat suitability models (HSMs) and

species distribution models (SDMs) can be used to predict the

likelihood of species occurrence based on an understanding of

the environmental variables that determine species distribution

(Hirzel & Le Lay, 2008; Elith et al., 2011), so that understanding

of species-habitat associations can be developed even when

biological datasets are limited. HSMs are relied upon for

species reintroduction (Adhikari et al., 2012), species

management (Vinagre et al., 2006) and restoration projects

(Barnes et al., 2007) and can be developed without the need

for comprehensive biological datasets. More recently these

models have been used to forecast the likely responses to

future disturbances and climate change (Jueterbock et al.,

2016; Davis et al., 2021), including changes in temperature,

ocean acidification and sea level (Convertino et al., 2012; Valle

et al., 2014; Wesselmann et al., 2021).

Global decline, resulting from multiple, often synergistic

pressures is particularly acute in coastal ecosystems, including

coral reefs, mangroves, salt marshes, and seagrass (Waycott

et al., 2009; Silliman, 2014; Spivak et al., 2019; Stafford et al.,

2021). Typical of these, seagrasses are distributed globally and

are among the most ecologically valuable habitats, providing

numerous ecosystem services, including carbon sequestration,

sediment stabilisation, support for biodiversity, nursery grounds

for commercial species, and water purification (Fourqurean

et al., 2012; Nordlund et al., 2016; Kerr, 2017; Röhr et al.,

2018, Unsworth et al., 2019b) yet these ecosystems are in

global decline and face threats from numerous natural and

anthropogenic factors (Waycott et al., 2009).

To combat the impacts of coastal ecosystem decline,

restoration efforts are increasing in the marine environment,

especially of coral reef, mangrove, but also seagrass habitats

(Kairo et al., 2009; Guarnieri et al., 2019; Gamble et al., 2021).

Seagrass restoration projects have been attempted globally but

with varying degrees of success (Marion & Orth 2010; van

Katwijk et al., 2016; Unsworth et al., 2019a; Tan et al., 2020),

partly due to the dynamic environment seagrasses are often

found to grow (McDonald et al., 2016). Large-scale restoration

efforts lead to more effective results with a higher proportion of

seagrass survival and increases in population growth rate (van

Katwijk et al., 2016). Furthermore, ecosystem services have been
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seen to return following seagrass restoration (Reynolds et al.,

2016), in particular where this has been achieved at scale (Orth

et al., 2020). However, the use of HSM for informing the

restoration of habitats is relatively unexplored, with the

majority of marine studies until recently focused on theoretical

ecology, movement of non-native species, conservation planning

and climate change (Robinson et al., 2017). There is, therefore,

the need to understand the environmental niche required for

successful seagrass restoration, in order to map that onto suitable

habitat across multiple locations which is the motivation of this

review of wider marine macrophyte habitat suitability

modelling approaches.

The most important variables in predicting habitat suitability

can be influenced by the scale of the study, for example, Valle et al.

(2013) found that wave exposure and current velocity were the key

variables predicting Zostera marina distribution when using

broadly distributed data, whereas slope and depth were

important at predicting species distribution of conservative

presence areas. This will have implications for the creation of

HSMs for informing restoration and may require the need for

different models and variables dependent on the scale, local

topography, and location in question.

For the context of seagrass restoration, it should be

considered that the environmental requirements for seeds to

germinate and seedlings to be able to establish may differ from

those of established mature plants that are able to reduce water-

flow rates, sediment resuspension and have considerable

anchorage within sediments (Maxwell et al., 2016). This

difference in environmental requirements may also be the case

for transplanted mature shoots. The feedback mechanism that

occurs within an established meadow can improve localized

conditions for plant growth and for new seedlings to establish.

This will be dependent upon meadow characteristics such as

shoot density, with sparse and patchy areas having little effect on

stabilizing conditions (Maxwell et al., 2016). These factors could

have significant effects on successful seagrass restoration. The

use of presence data over the range of environmental gradients

seagrasses are found is therefore likely to give broader suitability

outputs in HSMs. It may also be beneficial to integrate

experimental (flume) knowledge into HSM on the physical

stability of individual seedlings and plants in varied

environments. The availability of fine-scale hydrodynamic data

would prove extremely useful in focusing planting efforts.

The aim of this paper was to review the development and use

of HSMs in marine macrophyte ecosystems in order to optimize

the use of HSM on seagrasses for facilitating restoration. Our

specific objectives were to i) interrogate the current body of

research using HSM for marine macrophytes, ii) review the

selection of appropriate environmental predictor variables, and

iii) review the statistical modelling approach used to draw the

species-habitat association (including choice of algorithm for

model parameterization, model selection (relative goodness-of-

fit), and model validation (absolute goodness-of-fit)).
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Methods - Literature review of
macrophyte HSM studies

We collated data on studies using HSMs to determine the

distribution of marine macrophytes. A recent systematic review by

Robinson et al. (2017) assembled papers of marine HSM studies

published between 1950 and 26 July 2016. Publications fromRobinson

et al. (2017) that contained marine macrophytes were included in our

review and a further search for publications with keywords ‘marine

macrophyte’+’macroalgae’+’ seagrass’+’HSM’+’SDM’ was performed

using ISI Web of Science (http://apps.webofknowledge.com/) and

Google Scholar (https://scholar.google.co.uk/) for papers published

between 2016 and 20 Jan 2022. We identified 75 publications, 35 of

which were on or included seagrass.

For each of the publications identified, the main factors of

interest were extracted into a database, based upon the methods

outlined by Robinson et al. (2017). These factors included

geographical area and scale of study, taxa, species, approach to

modelling, model method (algorithm, selection and validation) and

environmental variables used (Supplementary Data, Table S1).

This database was used to cross-examine trends in studies

and to elucidate methods currently in use for carrying out HSM.

Results

HSM studies of marine macrophytes dated back to 2007,

with seagrass studies beginning in 2009. Although initially there

were more macroalgae HSM studies than seagrass there has been

a marked increase in seagrass HSM publications since 2016 (77%

of published in 2016 and since) so that seagrass studies are more
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equal (Figure 1). Just over half of macrophyte HSM papers

studied multiple species (51%), whereas seagrass studies appear

to be more species focused, with 31% covering multiple species.

Seagrass species targeted for studies so far, include, Z. marina

(Canal-Vergés et al., 2016; Beca-Carretero et al., 2020), Z. noltei

(Valle et al., 2011; Valle et al., 2014), Z. japonica (Shafer et al.,

2016), Posidonia oceanica (Bakirman & Gumusay 2020; Catucci

& Scardi 2020), Cymodocea nodosa (Chefaoui et al., 2016),

Enhalus acoroides (Lanuru et al., 2018) and Halophila

stipulacea (Wesselmann et al., 2021).

The vast majority of HSM studies on macrophytes have been

carried out in the temperate northern Atlantic region (48%), the

majority of which on macroalgae then seagrasses. This is

followed by temperate Australasia (12%) where macroalgae are

also dominant above seagrass studies, and central Indo-Pacific

(11%) where seagrass is the dominant taxa followed by

mangroves (Figure 2).

From the 75 marine macrophyte studies, temperature (usually

sea surface, SST) was the most frequently used predictor variable

(64%), followed by bathymetry (61%), light availability (4 9%), and

salinity (49%). When filtered to only seagrass studies (n=35),

bathymetry was most frequently included (74%), followed by

salinity (57%), light availability (51%), and temperature (51%).

Substrate, wave energy and slope were the next most utilized

variables in seagrass HSMs (Figure 3).

In our review, we found a total of 18 algorithms had been

used. An ensemble of algorithms was the most dominant

method and was used in 22 publications (29%), followed by

Maximum entropy (MaxEnt) (n = 15; 20%), and Generalized

Additive Models (GAMs), Generalized Linear Models (GLMs)

and GIS based algorithms, which were each used in 7-8
FIGURE 1

Trends in taxa used as focus within marine macrophyte HSM studies with year of publication and cumulative number of seagrass studies on
secondary y axis.
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publications (9-11%) (see Supplementary Data; Table S1).

Alternatively, 27% of the algorithms were used just one time

(e.g. Welch’s test, Cellular automata, and Production-

environmental suitability model). An ensemble was also the

most popular in seagrass HSM publications, with 5 publications

using two or more models.
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Of the studies found within the review, the majority (40%)

were focused on a local scale, covering a relatively small area

such as an individual bay or estuary, followed by regional scale

studies covering larger areas, such as a whole country or sea

(30.7%). 16% of studies were over an intermediate area or scale

(>100km coastline), and only 8% at a global scale. Ensemble was
FIGURE 2

Proportion of taxa studied in HSM publications divided by geographical region.
FIGURE 3

Most common environmental variables used in macrophyte HSM based on literature review. Data are divided into number from seagrass HSM
(orange) and other macrophyte HSM (blue).
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found to be used at a most scales; local, intermediate and

regional, but not in any of the global studies. MaxEnt was

more popular for larger scale studies including majority of

global studies (66.7%), and regional (26%), but only 3 (9.7%)

at a local scale. Local studies utilized the same environmental

variables overall, with temperature, salinity (both 23%) and

bathymetry (22.7%) the most commonly used followed by

light (20%), substrate (16%) and wave energy (13%).

There are a total of 11 selection procedures present from the 75

publications. The most popular procedures were cross-validation,

variable contribution and stepwise (n = 11, 9, and 8 publications

respectively). Cross-validation was also the selection procedure

most used in the seagrass HSM publications. When an ensemble

of algorithms was used the most popular selection procedure was

Cross-validation (29%), yet when the MaxEnt algorithm was used,

variable contribution was the most commonly used selection

procedure (86%).

Seven model validations were identified in the review of marine

macrophyte HSM papers (Chi-squared, Cross-validation,

Independent dataset, Markov Chain Monte Carlo, Multimodel

inference, Regression methods and Threshold probability); the

most popular was Threshold probability (33%). Just 9% of all

marine macrophyte HSM publications calculated uncertainty

measures, mainly through predictive power.
Discussion

This review shows the increase in trend for using HSM for

marine macrophytes, particularly seagrasses in more recent

years (since 2016). As a tool HSM is recognized as a viable

option for interpolating spatial data for predicting where

environmental conditions are conducive to habitat forming

species such as seagrasses, macrophytes and mangroves. This

information clearly has uses for informing restoration work,

although this is still new to the field and as of yet, little evidence

can be found to show its actual efficacy. Nonetheless, HSM is a

useful tool for focusing efforts of restoration which can be a labor

intensive and expensive to carry out.
Predictor (environmental) variables
and selection

The majority of studies used over 5 predictor variables,

although this ranged from only 1 to over 16 factors (Fabbrizzi

et al., 2020). However, if too many environmental parameters are

added to an HSM it can lead to over or underfitting a model,

therefore, it has been suggested that species presences in a model

should be 10 X greater than the number of environmental

predictors (Singer et al., 2017). The variables that are used most

are not necessarily the most important for determining species

presence but could be more commonly used due to data availability.
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For example, years of climate modelling has refined models used to

forecast factors such as sea surface, seabed temperature and

salinities at a global scale. The most popular variable used in

macrophyte HSM was temperature, but when only seagrass

studies were looked at, bathymetry became the most popular. The

majority of seagrass studies focused on a single species, with Z.

marina the most common. This species has wide geographical

range and can tolerate a range of temperatures and salinities (Blok

et al., 2018). At a regional scale, temperature is not likely to fluctuate

greatly and so is arguably not as important as other parameters such

as light availability (Abe et al. 2003; Bertelli & Unsworth, 2018).

However, localized studies utilized similar environmental variables

as the overall average of studies, with few using fine-scale

hydrodynamic data for example. The importance of this data is

highlighted by Valle et al. (2013), which found current velocity to be

the most important variable in determining Z. marina distributions

within the Ems estuary (Netherlands) in the Wadden Sea, followed

by wave exposure and depth. Good environmental data availability

is key to providing the data needed for HSMs to run successfully.

It is suggested that including environmental variables that

correlate may impede the performance and interpretation of the

study (Georgian et al., 2019). Therefore, the removal of correlated

variables is a valid method for assisting the selection of model

parameters. For MaxEnt, there is a selection criteria called

‘MaxEntVariableSelection’ which could be used to increase the

performance of the model by detecting the most important

environmental variables that are not correlated (Jueterbock et al.,

2016). The removal of correlated variables is always recommended

for variable selection to improve model functionality which can

easily be achieved using VIF (Variance Inflation Factor) tests

(vifstep and vifcor) in R, (Guisan et al., 2017).
Model algorithm

HSM approaches are varied across studies and models have

been designed for different types of data. For example, there are

specific models in place for presence-only data such as

Ecological Niche Factor Analysis (ENFA) (Valle et al., 2011),

MaxEnt (Yesson et al., 2015), and Relative Environmental

Suitability (RES) (Davis et al., 2016); and for presence-absence

data, including Generalized Linear Models (GLMs) (Adams

et al., 2016), and Generalized Additive Models (GAMs)

(Nyström Sandman et al., 2013). However, if reliable absence

data is not available for a species some studies and methods

allow the creation of pseudo-absences or background points to

use in their models (Chefaoui et al., 2016).

Various algorithms have been tested to model seagrass

(Z. marina) distribution at a local scale, including Machine

learning methods; Boosted Regression Trees (BRT), MaxEnt,

Artificial Neural Networks (ANN), Random Forest (RF), and

Regression-based models; GAMs, GLMs and Multivariate

Adaptive Regression Spline (MARS) (Valle et al., 2013). The
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models used were a mix of presence-absence and presence-only

models. Valle et al. (2013) compared these algorithms with

presence-only data and pseudo-absences which were created in

areas never occupied to avoid overlap with presence data. In this

study machine learning methods were found to perform better

than regression-based models. However, according to the main

findings from comparative studies (listed in chapter 11, Guisan

et al., 2017), it is suggested that machine learning methods do not

provide better results than regression based models, but can be

represented in a more informative format and reveal other

properties not always available from other approaches (Guisan

et al., 2017). It must be taken into account that when using

machine learning approaches, that they are calculated numerous

times as outcomes will differ each time, unlike GLM, ENFA or

BIOCLIM that will give the same result for the same species

presence datasets (Sillero & Barbosa, 2021).

Ensemble models have been shown to perform better than

individual models and are a way of avoiding dependence on a

single type of model (Georgian et al., 2019). Chefaoui et al., 2016

used pseudo-absence data and an ensemble of six models for

presence-absence data. The six presence-absence models were

GLM, GAM, GBM (Generalized Boosting Model), RF, MARS,

and FDA (Flexible Discriminant Analysis). GAM was most

accurate at predicting presences compared to the presence-

only MD (Mahalanobis Distance) model used for comparison.

MaxEnt was the second most popular algorithm to be used in the

reviewed marine macrophyte HSMs (Verbruggen et al., 2009;

Tyberghein et al., 2012; Jueterbock et al., 2013; Verbruggen et al.,

2013; Gormley et al., 2015; Yesson et al., 2015; Jayathilake &

Costello, 2018). MaxEnt, based on maximum entropy, has been

found to outperform many other models (Valle et al., 2014). The

principle of maximum entropy is that, allowing for constraints,

the best probability representation of species distribution that

best represents the data is the one with the greatest entropy, i.e.

the one which best reproduces the data (Guisan et al., 2017).

There is a standalone MaxEnt package available on Java platform

which is freely accessible for download with a user-friendly
Frontiers in Marine Science 06
interface (Paquit et al., 2017). This program models habitat

suitability from presence-only data (Elith et al., 2011). MaxEnt

has also been written into a number of SDM packages in R

including ‘sdm’, enabling it to be run from R.

Many marine HSM papers do not report uncertainty

measures but it has been suggested that all HSMs should be

accounting for uncertainty levels or estimates of errors as part of

the process (Robinson et al., 2017).
Conclusions

There is no set approach used to model habitat suitability of

marine macrophytes. Various sources are available to download

marine species presence data and it is recommended to use

distribution data with at least four years of monitoring, if

possible. The number of presences of a species in a model

should be 10 x more than the number of environmental

predictors. Bathymetry and light availability were popular

parameters and are also recommended as essential for seagrass

HSM. MaxEnt and ensemble approaches were the most popular

methods used in the review. Model choice will be dependent upon

presence data available (presence-absence or presence only) but we

suggest creating an ensemble approach to combine predictions

from several high-performance models to decrease dependence on

a single type of model (Table 1). Cross validation was the most

used selection procedure and threshold probability the most

common validation approach. Best practice measures and a

checklist of important model features that need to be reported in

marine HSMs are explained in Robinson et al. (2017). UsingHSMs

to predict the distribution of seagrass depending on environmental

variables around the UK will help identify areas that could be

suitable for seagrass growth and survival but do not currently show

signs of presence. The output of planned HSMs will give a good

indication of the most suitable locations with the highest chance of

survival and help provide guidance for the future restoration of

seagrass habitats around the UK.
TABLE 1 Model approaches from marine macrophyte studies and recommended model approaches.

Algorithm Model selection Model validation Uncertainty Comment

MaxEnt Stepwise selection (e.g.
‘MaxEntVariableSelection’)

Threshold probability N/A Presence-only data

Ensemble (RF, GBM, MARS, SVM, GAM) Cross-validation Independent data set
(Continuous Boyce Index)

Predictive
power

Presence-only data used
e.g. Folmer et al., 2016

Ensemble (GLM, GBM, GAM, FDA, MARS,
RF)

Cross-validation Threshold probability Predictive
power

Presence-only data but added
pseudo-absences.

e.g. Chefaoui et al., 2016

Ensemble (BRT, MaxEnt, ANN, RF, SVM,
GAM, GLM, MARS)

Multimodel Inference Threshold probability N/A Valle et al., 2013
RF, Random Forests; GLM, Generalized Additive Model; GBM, Generalized Boosting Model; SVM, Support Vector Machines; BRT, Boosted Regression Trees; ANN, Artificial
NeuralNetwork; MARS, Multivariate Adaptive Regression Splines; N/A, Not Applicable.
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