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Material transport around the headland has received more attention. To reveal

the material transport pattern and its response to the topography in the Yellow

River Estuary (YRE), in this paper, three Lagrangian analysis methods, including

Lagrangian residual current, particle tracking model, and Lagrangian coherent

structures (LCSs), are used to analyze the material horizontal transport near the

headland in the YRE. The results of the study show that the headland plays an

important role in the hydrodynamic processes and material transport in the

YRE. Due to the current shear induced by the topography, materials easily

diffuse, forming a front around the headland. Due to the blocking and shading

effects of the headland, the materials tend to accumulate on the right side of

the headland (facing the sea). The above three Lagrangian methods can

describe the characteristics of the material distribution, but the LCS method

is superior in comparison. Due to their more stable spatial structure, LCSs can

be used to analyze the transport of pollutants, larvae, microplastics, etc. in

the YRE.

KEYWORDS

headland, Yellow River Estuary, material transport, horizontal transport barriers,
Lagrangian coherent structures
1 Introduction

The headland is known to influence coastal flows and the movement of suspended

materials along the shoreline (George et al., 2018). Flow around coastal topography such

as headlands typically involves strong wakes with vigorous recirculation after shoreline

separation (O’Byrne et al., 2007). These dynamical structures impact the physics of

coastal systems and play an important role in biological, ecological, and geological

processes (Magaldi et al., 2008). Much work has been done to study the effect of
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headlands through field experiments and numerical simulations

(Alaee et al., 2004; Dong and McWilliams, 2007). Because of

the significant ecological, social, cultural, and economic value of

the headlands, it is more meaningful to study their impact on the

estuary. In this paper, we focus on the headland in the Yellow

River Estuary (YRE). We will reveal the effect of the headland on

material transport, which is important to understand material

distribution, such as pollutants, plankton, pelagic fish eggs, and

larvae. The study results can provide a reference for the selection

of key monitoring areas and sampling stations for water quality.

Also, it is necessary to improve the management and design of

marine protected areas (MPAs).

The Yellow River (YR) is one of the most sediment-laden

rivers in the world, providing about 6% of the estimated global

flow of river sediments to the ocean (Milliman and Meade,

1983). In 2021, the annual runoff (from Lijin Station in the lower

reaches of the Yellow River) was 4.41 billion × 109 m3 and the

annual sediment discharge was 2.43 billion × 109 t (Ministry of

Water Resources of the People’s Republic of China, 2022). A

large amount of sediment discharged by the Yellow River into

the Bohai Sea gave rise to the Yellow River Delta (YRD). The

YRD has changed significantly over the past 30 years (mainly

due to several regulated river channel migrations; Saito et al.,

2000). As a result, the coastline of the YRE has changed

dramatically, and a headland has gradually developed, as

shown in Landsat satellite images (Figure 1).

In the YRE, most studies have mainly focused on the

changes in marine dynamics (Wang et al., 2015), sediment

transport, and seabed erosion (Wang et al., 2010; Zhou et al.,

2014). However, the headland-induced transport process and

distribution structure in the YRE have received less attention.

Here, three Lagrangian approaches—Lagrangian particle

trajectories, Lagrangian residual currents, and Lagrangian

coherent structures (LCSs)—are applied to study the effects of

the headland on the surface material transport around the
Frontiers in Marine Science 02
headland (red circle in B) in YRE. The first two approaches

are traditional Lagrangian methods to describe long-term mass

transport (Feng, 1986; Havens et al., 2010), which are unstable

owing to their sensitivity with respect to initial conditions. By

contrast, as a locally strongest repelling or attracting material

surface (Haller and Yuan, 2000), LCSs are robust features of

Lagrangian fluid motion. In recent years, LCS has been widely

used to study the structures of flow fields in the ocean,

atmosphere, and human blood (Nolan et al., 2019; Ghosh

et al., 2021; Mutlu et al., 2021), as well as transport and

mixing structures near the islands and headlands (Suara et al.,

2020). In this study, the three Lagrangian approaches are

combined to descr ibe the transport and diffusion

characteristics of the material in YRE.

The remainder of the paper is organized as follows: Data and

methods are presented in Section 2. In Section 3, an ideal model

test is performed to present the influence of the headland on the

structure of material transport. Then, Lagrangian particle

tracking, Lagrangian residual current, and LCS methods are

applied to describe the transport of floating materials near the

YRE. Sections 4 and 5 present the discussions and conclusions of

this study.
2 Materials and methods

2.1 Data

The data used in this study are generated by an unstructured

grid, Finite-Volume, primitive equation Community Ocean

Model (FVCOM), that is well suited to simulating the

circulation in regions characterized by complex irregular

coastlines, islands, inlets, creeks, and intertidal areas. For more

information on FVCOM, see the reference Chen et al. (2006).

The modeled area in this study covers the entire Bohai Sea, and
FIGURE 1

Landsat satellite images of the YRD in 1989 (A) and 2015 (B). (https://earthobservatory.nasa.gov/world-of-change/YellowRiver).
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the open boundary (from Chengshantou to Dandong City) is

shown in Figure 2. In the nearshore area, with the tide as the

main forcing factor, the model is forced by four primary tidal

constituents (M2, S2, K1, and O1) on the open boundary and

freshwater. The horizontal grid resolution ranges from 200 m in

the YRE to 5,000 m outside the study area, and 5 -coordinate

layers are used in the vertical. The bottom roughness height is set

to a constant of 0.001 m. The model is the same as the reference

model (Lou et al., 2022) and has been calibrated and verified

with field observations.
2.2 Lagrangian description methods

2.2.1 Lagrangian particle tracking
Material transport and mixing in the ocean are governed by

two fundamental physical processes (advection and diffusion).

The effect of the diffusion process may be negligible over short

time intervals relative to the advection timescale [t0, t1]

(Hadjighasem, 2016). In this case, the trajectories of the

passive tracers coincide with the trajectories of the fluid

particles. Therefore, the motions of the fluid particles satisfy

the differential equation:

d ~x=d t  =  ~v (~x (t; t0, x0), t) (1)

where~x(t; t0, x0) is the particle position at time t, d ~x=d t the

derivative of~x with respect to time t, and~v (~x(t; t0, x0), t) the flow

velocity generated by the FVCOM model. A 4th order partial

time step Runge–Kutta scheme was used to update the

particle locations.

2.2.2 Lagrangian residual current
The Lagrangian residual current is defined as the net

Lagrangian drift displacement of a marked water parcel in a
Frontiers in Marine Science 03
tidal period Tt and divided by Tt (Cheng and Casulli, 1982). In

the nearshore zone, the dynamic system is nonlinear due to

seafloor friction and obstruction by the tortuous coastline. For

highly nonlinear systems, numerical methods based on particle

tracking can calculate the Lagrangian residual circulation. The

LRC also depends strongly on the initial release time and

integration time (Muller et al., 2009). The particle trajectory

equation is presented in Equation (2):

~ulr(X0, t0) =
~Y(X0, t0 + Tt) − ~Y(X0, t0)

Tt
(2)

where Tt is a tidal period, X0 and ~Y(X0, t0) the location and

the trajectory of the labeled fluid parcel on the horizontal plane

at time t0, ~Y(X0, t0 + Tt) the trajectory at time t0 + Tt. In this

study, the tracking trajectories of particles are calculated based

on flow field data calculated using FVCOM.
2.2.3 Lagrangian coherent structures
LCSs provide a new way to understand transport in complex

fluid flows (Peacock and Haller, 2013). Many LCS diagnostics

have been developed to detect different types of structures,

among which finite-time Lyapunov exponents (FTLE) are

simple and objective algorithms (Hadjighasem et al., 2017).

The FTLE is a finite-time average of the maximum

expansion rate for a pair of particles advected by the flow

during the period from t to t + T (Shadden et al., 2005;

Peacock and Haller, 2013). The FTLE is given by:

FTLE(x0) =
1

t1 � t0j j ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l(D)max

p
=

1
Tj j ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l(D)max

p
(3)

D = j* � j (4)
A B

FIGURE 2

The topographic map of Bohai (A) and water depth in the main study area of Yellow River Delta (B).
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where T is the integration length, l(D)max is the maximum

eigenvalue of a symmetric matrix D and j the spatial deformation

gradient tensor of the motion trajectory from t to t + T, and j*
denotes the matrix transposition of j.

The repelling LCS (rLCS) from t0 to t1 is a local

maximization curve or peak of the FTLE. The attracting LCS

(aLCS) from t1 to t0 is a peak of the FTLE field in back time,

which can be understood as the accumulation line or the

boundary of the accumulation zone during material

transportation (Haller, 2001b; Haller, 2002). Using the finite-

difference method with the values of neighboring grid points,

the spatial gradient of the flow map at each initial grid point is

obtained (Haller, 2001a; Shadden et al. , 2005). The

deformation gradient tensor j in two-dimensional spaces is

calculated as:

j =

xi+1,j(t+T)−xi−1,j(t+T)
xi+1,j(t)−xi−1,j(t)

  
xi,j+1(t+T)−xi,j−1(t+T)

yi,j+1(t)−yi,j−1(t)

yi+1,j(t+T)−yi−1,j(t+T)
xi+1,j(t)−xi−1,j(t)

  
yi,j+1(t+T)−yi,j−1(t+T)

yi,j+1(t)−yi,j−1(t)

2
64

3
75 (5)

where x and y are spatial coordinates, and i and j grid

node numbers.

In this study, the code used to calculate the FTLE field was

programmed in MATLAB, which is the same as that in the

reference (Lou et al., 2022). In order to prove the feasibility of the

code, we test the code on the time-varying double-gyre flow field,

and the FTLE field at t = 0 is consistent with that by

Jakobsson (2012).

The double gyre flow field is defined in a domain W:{x ∈
[0,2],y ∈ [0,1]} by the stream function Y:
Frontiers in Marine Science 04
y (x, y, t) = A  sin (p f (x, t)) sin (py) (6)

f (x, t) = a(t)x2 + b(t)x, a(t) = ϵ sin (wt), b(t)

= 1 − 2ϵ sin (wt) (7)

The velocity field is:

ux =
∂y
∂ y

,   uy = −
∂y
∂ x

(8)

where A = 0.1, ϵ = 0.25, w = 2p/10.
Since the instantaneous distribution of the buoyant material

approximates the attracting material curves, which are related to

the backward FTLE, we compared the distribution obtained from

particle tracking with aLCSs. The particles are released from the

red and black areas at t = 0 (Figure 3A). The particle distributions

at t = 16 s, 18 s, and 20 s are shown in Figures 3B-D superimposed

on the aLCSs at the corresponding times. The particles accumulate

on both sides of the banded aLCSs. This indicates that the aLCSs

actually act as barriers in the material transport process, making

the material unevenly distributed. LCS provides a powerful

method for describing transport phenomena that are not

revealed by instantaneous measurements.

~v(t) = ~V0 · cos (p=6)tð Þ
2.2.4 Idealized models
Particle tracking experiments were conducted in an ideal sea

area 20 km long and 10 km wide. The model is forced by the
A B

DC

FIGURE 3

Plot of tracer particles injected at t = 0 s (A) and position of the particle at t = 16 s (B), 18 s (C), and 20 s (D), superimposed aLCSs at the
corresponding time on the base map.
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alternating flow on the western and eastern open boundaries:

~v(t) = ~V0 · cos (p=6)tð Þ (9)

in which t is the time and ~V0 the amplitude of the velocity.

The model area contains a 3.5 km long and 1.75 km wide

headland, and the water depth in the model is 15 m. Three

experimental scenarios were set up (Figure 4), with the velocity

magnitude V0 being 0.1, 0.3, and 0.5 m/s, respectively. Particles

were released during flood time after the model spin-up. On the

southern and northern boundaries, reflection boundary

conditions are adopted.
3 Results

3.1 Material transport for the
idealized models

The particle distribution patterns in tests A, B, and C are

similar. The particles are advected by the flow around the

headland, and an expansion zone with a low particle density

area appears and forms a particle distribution front. After the

same period, the increase in velocity causes test B to have a

stronger mixing or diffusion area than test A. When the current

velocity increases to 0.5 m/s (test C), the particle distribution

pattern obviously changes, and the strong scattering zone
Frontiers in Marine Science 05
extends mainly on the western and eastern sides of the

headland for a longer distance and a larger area. However,

particles accumulated in front of the headland, and the

distance between the headland and the underlying front

became shorter. When t = 360 h (Figure 4C-3), a zone of

particle accumulation formed in front of the headland.
3.2 Lagrangian particles tracking

Virtual particles representing floating trash, fish eggs, larvae,

phytoplankton, etc. are uniformly released in the study area. The

orbits of individual particles are affected by the released time, but

over several tidal periods, the effect will be weakened. Figure 5

shows the particle distribution after 300 h. Particles released at

low tide and high tide showed similar results after 300 h.

Due to the influence of the headland and the freshwater of

YR, a strong turbulent mixing or material diffusion zone (the

area with few particles) appears in front of the headland, the

boundary of which is about 10 km from the coast. Compared to

the idealized model in Section 3.1 (see Figure 4), the material

distribution structure is more similar to test C, i.e., the edge of

the strong material diffusion area in front of the headland widens

towards the coast. The material diffusion zone southeast of the

headland is deformed into a narrow band. The boundary of the

strong turbulent mixing or material diffusing zone leads to a
A-1 A-2 A-3

B-1 B-2 B-3

C-1 C-2 C-3

FIGURE 4

Particle distribution after t = 60 h (A-1, B-1, C-1), 120 h (A-2, B-2, C-2), 360 h (A-3, B-3, C-3) Under the action of three different flow velocities
V0 = 0.1 m/s (A), 0.3 m/s (B), and 0.5 m/s (C),. The box with black lines is the initial release area of the particles.
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material accumulation zone, which can be considered the front

of a headland. The particle trajectory analysis method for

material distribution in instantaneous time is very intuitive,

but it is difficult and complex to analyze the transport process

through the particle orbit.
3.3 LRC in the Yellow River Estuary

In this article, LRC is calculated by the numerical method-

based Equation (3). When the particles are released at high tide,

there is a clockwise LRC vortex to the south of the headland (red

arrows in Figure 6B). This is consistent with the conclusion of
Frontiers in Marine Science 06
Wang et al. (2015). If the particles are released at low tide, there

is a tongue-like LRC (red box in Figure 6A).

In general, under the influence of the headland shape drag, the

turbulent eddy appears in the lee of the headland or near the

headland (Figure 6). The LRC becomes a more regular coastal

flow about 10 km from the headland. This indicates that there is a

strong turbulent mixing zone or a material diffusion zone around

the headland. This is consistent with the particle tracking results.

The structure of the LRC around the headland influences the

transport of materials and reveals the pathways and accumulation

zones of pollutants in Laizhou Bay (LZB). This is very useful for

understanding the pollution mechanism and formulating

reasonable water pollution control measures in the LZB.
FIGURE 5

Particles released at low tide (A) and high tide (B), respectively, and particle distribution after 300 h.
FIGURE 6

Lagrangian residual current velocity with respect to time t = 300 h at low tide (A) and high tide (B) in the LZB.
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3.4 LCSs in the Yellow River Estuary

The LCSs can be obtained by extracting the FTLE edge based

on Formula (2), which is easily identified from the FTLE field by

intuitive observation without complex LCS extraction

techniques. Figure 7 shows the backward FTLE field over a

200-hour time interval, in which (A) corresponds to particles

released at low tide and (B) corresponds to particles released at

high tide. The two FTLE distributions are nearly consistent,

suggesting that the FTLE is a more stable Lagrangian variable

than either the single particle trajectory or the LRC.

The ridge of the back FTLE fields (Figures 7A, B) is

considered aLCSs. They are considered transport barriers and

prevent material exchange between the two sides. To the

southeast of the headland, there is a banded aLCS that extends

eastward. This causes the material from the YR to be blocked

here and then transported to the east of the bay. These structures

together form the tidally induced headland front in the YRE.

To further describe the transport and distribution structure

of surface materials in the YRE, particles are released into the

adjacent sea area of the YRE at low tide. Particles to the north
Frontiers in Marine Science 07
and south of the banded LCSs are marked with different colors

(Figure 7A). The distribution of particles after 300 h and 500 h is

shown in Figures 7C, D. It can be seen that most of the black

particles, after being advected by the flow, move to the northeast

and then accumulate along the aLCS. Due to the existence of

aLCs and the vortex, the blue particles to the south are controlled

and captured by the aLCS. Notably, as in the ideal test C, in front

of the headland, the aLCS extends toward the headland, and

particles are captured and accumulated there.
4 Discussion

The material transport structure near the YRE is mainly

affected by the estuary shoreline and the periodically alternating

flow field. Eddies are easily formed around the headland (Tang

and Chen, 2012), which will capture the material such as

suspended sediment and plankton to form a front or patch

distribution. In this paper, an experiment has been carried out

to test the effect of the headland on the circulation and transport

of material in the YRE. In this experiment, the coastline in the
A B

DC

FIGURE 7

Particles were released at low tide and high tide in the study area, respectively, in the backward FTLE field (A) and (B) over a 200-hour time
interval. Points with different colors in the box in (A) are the initial positions of the particles released on the north and south sides of the LCS.
Particle distribution after 300 h (C) and 500 h (D) of release.
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YRE has been modified to follow a straight line, and the other

parameters remain unchanged. Take the LRC at high tide as an

example: without considering the headland, the clockwise

circulation in the west of the LZB will disappear, but instead, a

clockwise circulation will appear in the north of the LZB

(Figure 8A). Due to the changed circulation structure, materials

are easy to accumulate in the northwest of the LZB (Figure 8B).

The LCSs results also indicate that the local barrier and pathway in

the estuary will disappear without considering the headland.

Thematerial transport path and accumulation area proposed in

our study are consistent with existing research. Research by Huang

and Su (2002) also confirms this hypothesis and shows that the

transport pattern of prawn eggs and larvae has fundamentally

changed after the modification of the delta shoreline. Prawn eggs

and larvae outside the bay cannot enter the bay. In contrast, those to

the northwest are caught in an eddy at the tip of the YRE and

cannot reach the nearshore area. The research ofWang et al. (2017)

on phytoplankton community structure in the YRE also supports

this conclusion by providing evidence that depth-weighted

phytoplankton abundance and phytoplankton biodiversity indices

are high south of the YRE front. Ge et al. (2019) found that the area
Frontiers in Marine Science 08
with high values of the zooplankton Shannon–Weaner Index

(which indicates the percentage of community abundance)

appeared at the front of the YRE headland. The distribution of

eggs and larvae in the spring and summer horizontal features

obtained by Bian et al. (2010) also showed a similar pattern.
5 Conclusions

In this article, three Lagrangian approaches are applied to

describe the material transport and diffusion characteristics in

the YRE. The study results indicate that LCS calculated by the

ridge of the FTLE fields is a more robust description, compared

to LRC and particle trajectories. But we suggest it is essential to

combine these Lagrangian approaches in terms of material

transport and its dynamic mechanism.

The headland is shown to play a vital role in the transport and

mixing of the materials in the YRE. On the left and right sides of the

headland (facing the sea), there exist a pair of clockwise or

counterclockwise circulation vortices, which is the dynamical

mechanism of the material transport. Due to the effect of the
FIGURE 8

The Lagrangian residual current (A), particle distribution after 300 h (B), and backward FTLE field for 200 h (C) obtained from the model after
adjusting the coastline at the time are consistent with the high tide in Figures 5–7.
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headland, surface materials in the YRE are distributed in patches,

and an accumulation zone has formed southeast of the headland.

The pattern revealed by the Lagrangian approach is helpful

for understanding the process of material transport and

distribution, which has important ecological and economic

implications. For example, it can be applied to predict the

impact of a pollution accident. It can also provide a reference

for the selection of key monitoring areas and sampling stations

for water quality monitoring. In addition, it can provide

guidance for the management of the marine protected area.
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