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What controls the future
phytoplankton change over the
Yellow and East China Seas under
global warming?

Dong-Geon Lee1, Ji-Hoon Oh1, Kyung Min Noh1,
Eun Young Kwon2, Young Ho Kim3 and Jong-Seong Kug1*

1Division of Environmental Science and Engineering, Pohang University of Science and Technology
(POSTECH), Pohang, Republic of Korea, 2IBS Center for Climate Physics, Pusan National University,
Busan, Republic of Korea, 3Department of Oceanography, Pukyoung National University,
Busan, Republic of Korea
The Yellow and East China Seas (YECS) are productive continental shelves where

essential nutrients for phytoplankton growth aremainly supplied by the intrusion of

the Kuroshio Current, riverine inputs, and atmospheric deposition. Surface

temperatures in YECS are increasing due to global warming, and are projected

to increase further. In this study, future changes in YECS biogeochemical

processes were evaluated using Coupled Model Intercomparison Project Phase

6 (CMIP6) Earth System Models. We found a great diversity in predictions of future

changes in chlorophyll-a over the YECS region. This diversity was determined to be

closely related to the extent of phosphorus (P) limitation for phytoplankton growth.

Models simulating positive chlorophyll changes tend to simulate increased

Dissolved Inorganic Phosphate (DIP) supplies under future global warming. Our

study also demonstrated that the intrusion of the Kuroshio Current into the YECS

plays a critical role in future changes in DIP and chlorophyll-a by transporting

relatively DIP-rich subsurface water from the Kuroshio Current into the

marginal sea.

KEYWORDS

phytoplankton, chlorophyll, Yellow & East China Sea, Kuroshio Current (KC),
global warming
1 Introduction

The Earth’s climate is warming due to the accumulation of greenhouse gases in the

atmosphere. Uncertainty in the global carbon cycle related to biogeochemical feedbacks is

one of the major challenges facing future climate projection (Friedlingstein, 2015). In

particular, marine phytoplankton plays an important role in net primary production, both

in the oceans and in estuarine–coastal ecosystems (Behrenfeld et al., 2006; Beardall et al.,
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2009; Cloern et al., 2014; Käse and Geuer, 2018). Consequently,

identi fying spatiotemporal variations in phytoplankton

concentration and primary production in the oceans is important

for understanding the carbon cycle and constraining ocean

biogeochemical processes. In recent years, rapid increases in sea

surface temperature (SST) have occurred due to industrialization

and population growth around East Asian seas along the Kuroshio

Current. The Yellow and East China Sea (YECS) face the most serious

challenges and contribute significantly to aggravating global warming

effects on a regional scale (Belkin, 2009; Yeh and Kim, 2010; Sasaki

and Umeda, 2021).

The YECS region is bordered by China and the Korean Peninsula

and is among the largest continental shelves (<100 m) in the

Northwest Pacific Ocean (Ichikawa and Beardsley, 2002; Zhang

et al., 2019; Shirota et al., 2021). The YECS region also has great

economic importance as it is surrounded by population centers

totaling hundreds of millions of people (Xie et al., 2002; Oh et al.,

2005; Murray et al., 2014). The Kuroshio Current, which is the most

representative western boundary current flow adjacent to the YECS

region, plays a critical role in transporting heat and nutrients

northward (Hsueh, 2000; Yuan et al., 2008; Chen et al., 2021). The

YECS region is a highly productive sea into which several rivers flow,

including the Yangtze (Chang-jiang river) and Huang He (Yellow

river), two of the largest rivers in the world (Zhang, 1996; Liu et al.,

2003; Zhao and Guo, 2011; Tong et al., 2015). In addition, the YECS

region is one of the most turbid in the world due to the high level of

sediment supply from rivers; the Yangtze river is responsible for more

than 90% of the total river discharge and sediment to the YECS

(Zhang et al., 2007; Shi and Wang, 2012; He et al., 2013). In general,

primary production in the ocean is limited by nitrogen (N); however,

the YECS region, featuring large amounts of riverine water input from

the Yangtze river, has a strong phosphorus (P) limitation due to the

excessive supply of N compared to P (Wang et al., 2003; Kim et al.,

2011; Lee et al., 2017; Zhang et al., 2019; Moon et al., 2021). Therefore,

changes in ocean surface P concentration can potentially modulate

primary production in this region.

Chlorophyll-a is the most widely used and reliable proxy for

estimating the primary production of the ocean arising from

phytoplankton biomass because it is colored and common to all

primary producers (Huot et al., 2007; McCluskey et al., 2022). Many

previous studies of the YECS region have investigated its productivity

using in situ (cruise) data for chlorophyll-a distribution and primary

productivity (2006; Gong et al., 1996; Gong et al., 2003; Kim et al.,

2009). Satellite ocean color data have also been widely used in the

study of the spatiotemporal variability of chlorophyll-a (Kiyomoto

et al., 2001; Yamaguchi et al., 2012; Zhang et al., 2018; Liu et al., 2019);

however, although the role of the ocean in carbon cycle process is

increasing due to global climate change, few studies have considered

future changes in biogeochemical factors in the YECS region under

global warming.

In this study, we explore future phytoplankton changes in the

YECS region in response to 21st century global warming simulated by

the Coupled Model Intercomparison Project Phase 6 (CMIP6) Earth

System Models. In particular, we analyze the inter-model diversity of

changes in chlorophyll-a across the YECS region using the CMIP6

models and evaluate which factors determine the observed diversity.
Frontiers in Marine Science 02
2 Materials and methods

To investigate future changes in phytoplankton concentrations

across the YECS region under global warming, we used a total of 13

CMIP6 Earth System Models (ESMs) (Supplementary Table 1).

However, since all the variables are not available in the 13 CMIP6

ESMs, all 13 models were used only for the chlorophyll-a data. In the

case of DIP data, 12 models were used because the DIP data of the

CanESM5model is not available. For the calculation of PO4 transport,

11 models were used because the ocean current data are not available

in the GFDL-ESM4 and CanESM5 (Supplementary Table 1). For

historical changes, we analyzed the total historical period (1850–

2014) (Eyring et al., 2016). We used a period of the last 30 years

(2071–2100) for warm climate simulations using the SSP5-8.5

(Shared Socioeconomic Pathways 5–8.5) scenario in CMIP6 ESMs,

which represents high emission scenarios to produce a radiative

forcing of 8.5 Wm-2 in 2100 (O’Neill et al., 2016). Here, monthly

mean data were used and future changes in variables were calculated

according to the differences between the means of the historical

period (1850–2014) and the future warm climate period (2071–

2100). In addition, to investigate the Mixed Layer Depth (MLD) we

used Simple Ocean Data Assimilation (SODA), version 3 (Carton

et al., 2018), from 1980 to 2015.

All CMIP6 ESMs used in this study have different original

resolutions; as such, all data were re-gridded into the same by 1 ×1

latitude/longitude grids. Only the vectors representing PO4 transport

by the Kuroshio Current to the YECS region were re-gridded to a

higher resolution of 0.5 × 0.5.

In order to evaluate the statistical significance of the results, the

bootstrap non-parametric method was applied by random sampling

10000 times to replace as many as the number of the used CMIP6

ESMs. To evaluate the degree of factors affecting phytoplankton

growth, multiple regression for SST, Shortwave radiation (SW),

nutrient (PO4) was conducted based on annual mean data for the

historical period (165 years). To compare relative importance,

multiple regression is conducted after all variables were normalized

by their standard deviations.
3 Results

To examine future changes in surface chlorophyll-a

concentrations over the YECS region (34.5°N–40.5°N, 118°E–126°E;

Red box region in Figure 1A), we analyzed differences in the average

surface layer (upper 30 m depth mean) chlorophyll-a (SCHL)

concentrations between historical climate period (1850–2014) and

the future climate period (2071–2100) using 13 CMIP6 ESMs.

Figure 1A shows the ensemble mean of the changes in SCHL

concentrations of these models. The entire YECS domain excluding

the YECS region shows significant decreasing trends. These changes

can be explained by a reducing nutrient flux to the upper ocean as a

result of an enhanced ocean stratification with the increased SST due

to global warming (Behrenfeld et al., 2006; Doney, 2006;

Lewandowska et al., 2014). Although SCHL changes over the YECS

region indicate an increasing trend, these changes are not statistically

significant, suggesting large model diversity. To evaluate this model
frontiersin.org
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diversity, changes in the SCHL of the YECS region were calculated

using individual models (Figure 1B). Whereas the ensemble mean is

positive, only three models simulate strong positive changes; the

others simulate negative changes. The different signs of these

responses clearly suggest large model diversity. To evaluate the

factors determining this model diversity, we classified the models

into two groups: a positive group (CESM2, CNRM-ESM2-1, and

MIROC-ES2L) and a negative group (GFDL-ESM4, UKESM1-0-LL,

CESM2-WACCM, and IPSL-CM6A-LR), characterized by strong

positive and negative SCHL changes, respectively. In the case of

three models classified as a positive group (CESM2, CNRM-ESM2-1,

MIROC-ES2L), the concentration of SCHL increased by 110%

(0.25mg/m3), 42% (0.42mg/m3), and 27% (0.14mg/m3) compared

to the historical period and the SCHL concentration of the four

negative models decreased by 27% (-0.06 mg/m3), 9% (-0.1mg/m3),

10% (-0.12mg/m3) and 20% (-0.08mg/m3) compared to historical

period, respectively (Supplementary Figure 2). There is a considerable

increasing (27% to 110%) and decreasing (-9% to -27%) trend

compared to the historical period. As expected, the positive group

shows strong positive changes in the YECS region, especially along

the eastern coastal regions of China, the coastal regions of the

Shandong peninsula, and in the Bohai Sea (Figure 1C). In the case

of the negative group, overall negative changes are shown across the

entire East Asian seas and negative SCHL responses are stronger in

the eastern coastal regions of China at wider latitudes (25°N-40°

N) (Figure 1D).
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To further characterize model diversity, nutrient limitation was

examined. It is well-known that phosphorus (P) concentrations are

more important than nitrogen (N) concentrations for influencing

primary productivity in the YECS region (Lee et al., 2017), since N

supplies are relatively high owing to river discharge (Wang et al.,

2003; Kim et al., 2011; Lee et al., 2017; Zhang et al., 2019; Moon et al.,

2021). Therefore, changes in ocean primary productivity in the YECS

region are closely related to changes in P concentration. To evaluate

the relative contribution of limiting factors affecting surface

chlorophyll-a, we conducted the multiple regression for the

historical period for SST, SW, PO4 for 12 models as follows:

SCHL = a*SST   + b*SW + c*PO4 +   ϵ

Table 1 shows the relative contribution of each limiting factor that

affects the phytoplankton variability from the historical period

simulation. Except for the ACCESS-ESM1-5 model, the relative

contribution of SST is very low in all models. It is interesting that

the models which were not classified into the positive or negative

groups show weak sensitivity to the nutrient, except for the MPI-

ESM1-2-LR. Their SCHL variabilities tend to be mainly contributed

by the Shortwave radiation, so they can be not sensitive to the nutrient

supplies under greenhouse warming. Among the four negative

models, three models show the strongest sensitivity to the nutrient.

In addition, all three positive models show strong sensitivity to the

PO4 concentration, suggesting that nutrient is the main limiting

factor to contribute to phytoplankton variability as consistent with
B

C D

A

FIGURE 1

(A) Spatial distribution of Multi-Model Ensemble Mean difference in surface (upper 30 m depth mean) chlorophyll-a (SCHL) concentrations between
historical climate period (1850–2014) and future climate period (2071–2100) using 13 CMIP6 models. (B) Area-averaged (Red box in Figure 1A) future
changes of SCHL concentrations in the Yellow and East China Sea (YECS) region (34.5°N–40.5°N, 118°E–126°E) using 13 CMIP6 models. Red bars
indicate models with an increase in SCHL concentrations in the future climate (positive group), and blue bars indicate models with decreasing SCHL
concentrations (negative group). The black bar represents the Multi-Model Ensemble Mean (MMM) of 13 models of future change in the SCHL
concentrations and crosses represent significance at the 95% confidence levels. (C, D) Spatial distribution of ensemble mean SCHL differences for
historical and future climate periods for the positive group and negative group, respectively. Black dots indicate points at which these differences are
significant at the 95% confidence level using the bootstrap method.
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the previous studies (Hecky and Kilham, 1988; Moore et al., 2013).

Therefore, to understand the difference between the positive and

negative groups, we conducted additional analyses focusing on PO4

concentration. Figure 2A shows future changes in DIP concentrations

simulated by the individual models. It is evident that all models in the
Frontiers in Marine Science 04
positive group simulate that increasing DIP concentrations in the

future whereas all models in the negative group simulate negative DIP

changes. The positive group shows significant strong DIP increases

only in the Yellow Sea (YS) region, though there are significant

decreases in other ocean areas (Figure 2B). The negative group
B
C

A

FIGURE 2

(A) Area-averaged future changes in surface (upper 30 m depth mean) Dissolved Inorganic Phosphorus (DIP) concentrations in the YECS region using 12
CMIP6 models (excluding the CanESM5 Model). The black bar represents MMM of 12 models of future change in the DIP concentrations and the crosses
indicate significance at the 95% confidence level. The order of the graph is aligned the same as that of the future change of the SCHL concentration.
(B, C) Spatial distribution of differences in the ensemble mean DIP concentrations of historical and future climate periods for the positive and negative
Groups, respectively. Black dots indicate points at which the differences are significant at the 95% confidence level using the bootstrap method.
TABLE 1 Multiple Regression coefficients of Sea Surface Temperature (SST), Shortwave radiation (SW), and PO4 for 12 CMIP6 models of historical climate
period (except for CanESM5 which DIP data are not available).

Model Name a (SST) b (SW) c (PO4)

GFDL-ESM4 -0.07 -0.15 0.8

IPSL-CM6A-LR -0.06 -0.32 -0.01

UKESM1-0-LL 0.1 -0.19 0.85

CESM2-WACCM -0.05 -0.11 0.87

ACCESS-ESM1-5 0.43 0.66 0.36

NorESM2-LM -0.001 0.5 -0.17

MPl-ESM 1-2-HR -0.18 0.16 0.18

NorESM2-MM 0.02 0.51 -0.32

MPl-ESM1-2-LR -0.15 0.44 -1.01

MIROC-ES2L 0.04 -0.01 0.86

CESM2 -0.06 -0.13 0.86

CNRM-ESM2-1 -0.06 -0.09 0.6
fron
▆: Negative Group
▆: Negative Group
The order of models in the table is aligned in the same as that of the future change of the SCHL concentration in Figure 1B. The calculation was conducted after normalizing all the values (SST, SW,
PO4). The multiple regression was carried out based on annual mean time scale (165 years) and the area-averaged over the YECS region for all the values respectively.
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simulates an overall negative DIP change in the YECS region,

consistent with the SCHL changes (Figure 2C). Based on these

results, the future change in SCHL concentrations seems to be

largely related to changes in DIP concentrations in the YECS

region. Whereas the DIP concentrations of the positive group

(CESM2, CNRM-ESM2-1, MIROC-ES2L) increased by 38%

(0.16mmol/m3), 225% (0.54mmol/m3), and 135% (1.23mmol/m3),

respectively, the DIP concentrations of the negative group decreased

by 50% (-0.22 mmol/m3), 20% (-0.01mmol/m3), 39% (-0.12mmol/

m3) and 48% (-0.03mmol/m3) compared to the historical period,

respectively (Supplementary Figure 2). External sources of nutrients

in the YECS region include river discharge, mainly from the Yangtze

river, atmospheric deposition, northward current from the Taiwan

Strait, and the Kuroshio Current (Chung et al., 2001; Kim et al., 2011;

Cloern et al., 2014; Zhang et al., 2019). We first evaluated riverine

water inputs from the Chinese mainland, including the Yangtze river,

and atmospheric deposition, but found no distinct differences

between the positive and negative groups (Supplementary Figure 1).

Chen and Wang (1999) and Zhang et al. (2007) suggested that

the current from the Taiwan Strait has lower nutrient content than

the Kuroshio Current. In particular, the Kuroshio subsurface

waters are rich in DIP compared to the YECS shelf water and,

thus, play an important role in supplying nutrients to the YECS

(Chen, 1996; Zhang et al., 2019). Zhang et al. (2007) also showed

that Kuroshio Current subsurface water is important for the supply

of nutrients to the YECS region throughout both the summer

and winter.

In general, the Yellow Sea Warm Current (YSWC) flows

northward from the southwest of Jeju Island around the center of

YS (122°E-125°E) to the northern part of the Yellow Sea and the

Bohai Sea region. Chinese coastal current and West Korean coastal

current flow southward on both sides (Ichikawa and Beardsley, 2002;

Xu et al., 2009). The Kuroshio Current subsurface water intrudes into

the YECS region as a pathway through the YSWC flows (Liu et al.,

2021). In order to examine nutrient supply by oceanic currents, we

calculated changes in vertically averaged (up to 100 m) ocean currents
Frontiers in Marine Science 05
using 11 ESMs except for CanESM5 and GFDL-ESM4 which is not

available for DIP data and ocean current data respectively. As shown

by the ensemble mean of surface meridional ocean currents in

Figure 3A, the positive group simulates strengthening the YSWC

flowing northward [Left Panel]. In the case of the negative group,

weakening ocean currents are simulated in the YECS region, and the

Chinese coastal current and West Korean coastal current flowing

southward in the surface layer is also weakened [Middle Panel]. These

contrasting features result in clear differences between the two groups

[Right Panel]. In other words, the positive group simulates stronger

cyclonic circulation in the YECS region while the negative group

simulates weaker circulation under warm climates. Furthermore, in

order to identify the impact of Kuroshio Current subsurface water

intrusion on the amount of P in the YECS region, we calculated PO4

transport and compared it between the two groups. The amount of

PO4 transport was calculated by multiplying the DIP concentration

and ocean current velocity, which was vertically integrated up to

100 m as follows:

PO4  Transport =  
Z 100m

10m
DIP~u   dz

Figure 3B shows the ensemble mean of the vertically integrated

meridional PO4 transport. In the case of the positive group, intensive

northward transport occurs along the pathway of the intrusion of the

Kuroshio subsurface waters occurs, and it reaches up to the Bohai Sea

region. It seems that PO4 transported due to the intrusion of the

Kuroshio subsurface water spreads to the mouth of the Yangtze River

Estuary and the Bohai Sea due to strengthened cyclonic oceanic

circulation in the YECS region. This positive PO4 transport may affect

primary production in areas where SCHL changes positively [Left

Panel]. In the case of the negative group, PO4 transport due to the

intrusion of Kuroshio subsurface water decreases, resulting in a

decrease in primary production throughout the YECS region

[Middle Panel]. Differences between the positive and negative

groups clearly show distinct PO4 transport pathways into the YECS

region [Right Panel].
B

A

FIGURE 3

(A) Shading indicates the ensemble mean of the surface (upper 30 m depth mean) meridional ocean current velocity difference between historical and
future climate periods for the positive group and negative group (excluding GFDL-ESM4) and the difference between the two groups. Vectors show
future changes in surface zonal and meridional ocean current velocities in the YECS region. (B) Ensemble mean of differences in the vertically integrated
(upper 100 m depth) meridional PO4 transport (shading) between historical and future climate periods for the positive group [Left Panel] and negative
group [Middle Panel] (excluding GFDL-ESM4) and the difference between the two groups [Right Panel]. Vectors indicate vertically integrated zonal and
meridional PO4 transport.
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To further elucidate the impact of Kuroshio subsurface waters

intrusions on SCHL concentrations in the YECS region, we evaluated

the inter-model relationship between future changes in PO4 transport

by the intrusion of Kuroshio subsurface water and surface layer DIP

concentrations. We calculated the correlation coefficients, finding

that PO4 transport is positively correlated with surface DIP

concentration (r = 0.67); this relationship is significant at the 95%

confidence level (Figure 4A). These results suggest that diversity in

future changes of DIP concentration is significantly associated with

PO4 transport through Kuroshio subsurface water.

Furthermore, PO4 transport is shown to have a strong positive

correlation with SCHL concentrations in the YECS region (r = 0.83);

this relationship is significant at the 99% confidence level (Figure 4B).

This strong positive correlation between PO4 transport and SCHL

concentration in the YECS region indicates that a slight change in

DIP concentration in the YECS region with strong P limitation can

have a significant impact on primary productivity. This suggests that

PO4 transported by the intrusion of the Kuroshio subsurface waters

influences DIP concentrations in the YECS region and affects the

corresponding SCHL concentrations.

To estimate quantitatively how much the PO4 transport changes

contribute to the SCHL changes, we used a simple regression method.

We calculated a linear regression coefficient of the SCHL with respect

to the PO4 transport from the total period data (1850-2100), which

represents the sensitivity of the SCHL to the PO4 transport. Using the

regression coefficient, we can roughly estimate the contribution of the
Frontiers in Marine Science 06
PO4 transport changes from each model as follows:

Contribution   of   PO4   transport   change =  a  �  DPO4   transport

Figure 4C shows the contribution of future changes in PO4

transport to SCHL changes. Though the CESM2 model shows a

larger error range, all models in the positive group show a

positive contribution to the SCHL change, and all models in

the negative group have a significant negative contribution of the

PO4 transport change. It is also striking that the magnitude of the

contribution of PO4 transport is comparable to that of the total

SCHL changes shown in Figure 1B except for the CESM2 model.

These results strongly support that the model diversity in

the future phytoplankton changes over the YECS region is

closely related to the diversity in the PO4 transport in the

CMIP6 models.
4 Conclusion

In this study, we examined the impact of Kuroshio Current

intrusions on future changes of phytoplankton in the YECS region

under global warming. We identified future changes in SCHL in the

YECS region using CMIP6 ESMs, which showed large inter-model

diversity. In order to determine which factors induce inter-model

diversity, we separated the models into positive and negative groups
B

C

A

FIGURE 4

(A) Correlation coefficient of 11 CMIP6 models for the surface DIP concentration and meridional PO4 transport index of the YECS region. (B) Same as
Figure 4A, showing the correlation between 11 CMIP6 models in terms of SCHL concentration and meridional PO4 transport index for the YECS region.
Black dots and crosses represent the MMM of 11 models and spread (±1std). (C) Contribution of PO4 transport change to SCHL of 11 CMIP6 models.
Black bar indicates the MMM of 11 models and crosses represent significance at the 95% confidence level. The order of the graph is aligned the same as
that of the future change of the SCHL concentration. * mark indicates that the correlation coefficient is significant at the 95% confidence level. ** mark
indicates that the correlation coefficient is significant at the 99% confidence level.
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to simulate increasing and decreasing SCHL, respectively. In

accordance with the environmental characteristics of the YECS

region, in which strong P limitation has been identified, future

changes in SCHL and DIP concentrations in the YECS region are

found to be closely related.

In addition, for the positive group, cyclonic oceanic circulation in

the YECS region was considered likely to strengthen in the future.

Conversely, the negative group simulated a distinctive weakening of

the cyclonic oceanic circulation. We showed that the PO4 transport

differs significantly between these two groups. Therefore, enhanced

PO4 transport leads to increased DIP concentrations in the YECS

region, with significant inter-model correlation coefficients (r = 0.67,

p< 0.05) between meridional PO4 transport and surface DIP

concentrations. Moreover, the significant correlation coefficient (r =

0.83, p< 0.01) between meridional PO4 transport and SCHL strongly

supports that increased P due to the intrusion of P-rich Kuroshio

subsurface water into the YECS region induces an increase in

SCHL concentrations.

In order to project future changes in biogeochemical processes

over the YECS region, our study suggests that it is critical to

understand how the Kuroshio Current intrusion will change under

greenhouse warming and determine which factors control the

Kuroshio Current. Despite many studies, the cause of the Kuroshio

Current intrusion into the YECS region remains unclear (Yang et al.,

2018; Yang et al., 2020). We found that the positive and negative

groups defined herein show distinct changes in their pattern of wind

stress curl over the East China Sea region (not shown), which may be

important factors in the Kuroshio Current intrusion. This process

should be investigated further.

Under global warming, ocean stratification has been enhanced and

will continue over the global ocean (Li et al., 2020; Noh et al., 2022) due to

the stronger surface warming. Several previous studies using ESMs such

as CMIP5 and CMIP6 also pointed out that the enhanced stratification

will decrease the nutrient supplies into the eutrophic layer from the deep

ocean by suppressing vertical mixing, which may exacerbate surface

nutrient limitation (Bopp et al., 2013; Fu et al., 2016; Kwiatkowski et al.,

2020). Nevertheless, we showed that the phytoplankton blooming is

highly controlled by horizontal nutrient transport. In particular, the

positive group models of the present study show the increasing trend of

the chlorophyll-a and nutrients over the YECS under the strong

greenhouse forcing, while they also show a negative trend in the other

East Asian Marginal Seas as shown in Figure 2. This unique feature is

related to the topographical features of the YECS region. In the YECS

region, the mean depth of the entire water column is quite shallow

(<100m), and the climatological Mixed Layer Depth (MLD) is shallow

compared to other oceans. Therefore, shoaling mixed layer is quite

limited compared to the other ocean. Figure 5 shows future changes in

the mixed layer and its changes. In the warm climate, the mixed layer

over the global ocean becomes considerably shallower. In addition, the

East Sea of the Korean Peninsula (35.5°N–44.5°N, 130°E–140°E) also

shows consistently shallower mixed layer in the warm climate. Therefore,

the future chlorophyll-a and nutrient changes in the YECS region can be

more affected by other processes such as horizontal nutrient transport,

rather than vertical stratification.

In addition, the present study has several limitations. First, the

CMIP6 ESMs used in this study have low spatial resolution with

coarse representations of continental shelves and slopes; therefore,
Frontiers in Marine Science 07
local patterns, such as regional ocean currents, cannot be resolved

accurately. Second, the CMIP6 ESMs do not simulate the riverine

supply of nutrients prognostically, entailing a large uncertainty

regarding future changes in riverine nutrient inputs. Third, the

model representations of marine biogeochemical processes might be

too simple to capture realistic nutrient cycles, surface production, and

water column and benthic processes in continental shelf regions

(Martiny et al., 2019). Fourth, we used only 13 ESMS to examine

future changes and their diversity, such that each positive and

negative group has three and four ESMs, respectively. This small

sample may lead to model-dependent results, which prevent us from

drawing unambiguous conclusions. These limitations should be

considered when interpreting our results and further study is

needed to improve these limitations.
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