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Analyzing efficiency
measurement and influencing
factors of China’s marine
green economy: Based on a
two-stage network DEA model

Wenjie Zou, Yuping Yang, Mengting Yang, Xiaoyan Zhang,
Shennan Lai and Huangxin Chen*

School of Economics, Fujian Normal University, Fuzhou, China
This research adopts a two-stage network DEA model to measure marine green

economy efficiency from 2006 to 2018 and employs the panel Tobit model to

analyze the influencing factors. The results indicate that total efficiency and

production efficiency of China’s marine green economy generally show a

fluctuating downward trend. Further investigation of influencing factors shows

that foreign direct investment and opening up have a significantly positive effect on

total efficiency of the marine green economy, while industrial development level

and marine economy development level have a negative effect on it. Additionally,

these variables have varying impacts on different stages of the marine green

economy. Our findings help identify the operational characteristics of the marine

green economy at different stages and can assist policymakers in optimizing the

development pattern of the marine economy.
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1 Introduction

The marine economy as a new economic form has gradually become a driving force for

the sustainable development of China’s economy since the start of the 21st century. In 2018 its

total marine output value was 8.34 trillion yuan, 1.8 times greater compared to 2008.

However, the extensive development pattern of the marine economy has also led to serious

ecological and environmental problems. Overexploitation of marine resources, increased

discharge of marine pollutants, and extensive damage to the marine environment continue to

emerge (Ren et al., 2018). According to the Bulletin on the State of China’s Marine Ecological

Environment, the average area percentage of the four inferior types of water quality in

China’s coastal waters from 2018 to 2021 is more than 9.5%. In 2021, among 44 bays with a

monitored area of over 100 square kilometers, 11 bays (25%) have inferior water quality.

Some studies have pointed out that about 10% of China’s bays are seriously polluted, more
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than 17% of shorelines suffer from erosion, and about 42% of the

coastal zones are overloaded with resource and environmental

carrying capacity (Yao et al., 2020). Compared to the 1950s, the

coastal wetland area in China has shrunken by over 60%, and the loss

rate is higher than the global average (Yao et al., 2020). It can be seen

that China’s marine environmental pollution is increasing, and the

construction of ecological civilization is facing great challenges.

Therefore, how to effectively coordinate the relationship between

marine economy development and environmental protection and to

promote this economy’s sustainable development have become major

practical issues that need to be solved.

The China government in recent years has attached great

importance to the sustainable development of the marine economy.

In 2016, the government issued the National Plan for Prosperity by

Science and Technology (2016-2020), which is committed to forming

a long-term mechanism for innovation-driven marine development.

Subsequently, the 13th Five-Year Plan for National Marine Economic

Development released in 2017 took green development and ecological

priority as important principles for marine economy development.

Since then, the report of the 19th National Congress of the

Communist Party of China stressed the importance of protecting

the marine ecological environment, indicating that the development

of marine resources and the protection of the marine environment are

equally important.

To improve the quality of marine economy development, China

has issued and implemented a series of policies and regulations.

Despite this, problems such as marine pollution and ecosystem

degradation are still relatively prominent, threatening the

sustainable development of the marine economy (Ye et al., 2021).

Moreover, with the proposal of the concept of green development, the

marine green economy has also become the focus of policy makers

and academia (Chen et al., 2020a; Chen et al., 2022a; Chen et al.,

2022b). The development of this conomy targets the organic

combination of economic development and environmental

protection and is committed to the maximum utilization of marine

resources under the premise of protecting the marine environment, so

as to achieve its sustainable development.

The efficiency of the marine green economy is an important

indicator to measure its sustainable development (Wei et al., 2021; Ye

et al., 2021). At present, scholars mainly have used stochastic frontier

method (SFA) and data envelopment analysis (DEA) to evaluate

marine green economy efficiency and technical efficiency (Wu, 2018;

Zheng et al., 2019; Wang et al., 2021a; Chen et al., 2020b; Chi et al.,

2022). By incorporating undesired output indicators such as marine

pollutants into the evaluation system, the overall efficiency of the

marine economy in the context of environmental constraints is

examined (Ding et al., 2020; Zhao et al., 2021).

Most existing studies, however, have regarded the development of

the marine green economy as an independent process and failed to

consider the stage characteristics of the operation of the marine green

economy, thus making it difficult for a comprehensive estimation of

the marine green economy efficiency (Ding et al., 2018). In the

development process of the marine economy, there is a sequence of

pollutant generation and treatment, and the marine pollution

treatment stage must occur after the production process. Therefore,

it is necessary to conduct in-depth discussions on the different stages

of marine green economy development. Based on the two-stage
Frontiers in Marine Science 02
network DEA model, this study evaluates the marine green

economy efficiency of 11 coastal provinces and cities in China from

2006 to 2018 and further examines the efficiency changes and

influencing factors in different stages.

The rest of the paper runs as follows. Sn2 ectio presents the

literature review. Sn3 ectio describes the research model, variable

measurement, and data. Sn4 ectio reports and explores the research

results. Sn5 ectio summarizes the empirical results and puts

forward suggestions.
2 Literature review

The strategic position of the ocean in the world has become

increasingly prominent in recent years and has helped to gradually

enrich research on the marine economy. By combing the relevant

literature, we find that existing research on the marine green economy

mainly focuses on efficiency evaluation and analysis of the

influencing factors.

First, most studies have focused on evaluating marine industry

efficiency from the perspective of input and output. At present, the

assessment of marine industry efficiency involves marine fishery and

marine transportation. On the one hand, from the perspective of

efficiency evaluation of marine fisheries, Jamnia et al. (2015) took 300

fishing boats in their study area as samples and analyzed the technical

efficiency offisheries in the Chabahar region of southern Iran by using

the stochastic production frontier method. Li et al. (2020) investigated

fishery production efficiency in China’s coastal areas based on the

DEA-Malmquist index, showing results that fishery output efficiency

has improved to a certain extent. Similarly, the Malmquist index

method has also been used to calculate the total factor productivity

and its decomposition index of marine fisheries (Song, 2020). In

addition, some scholars have applied more complex DEA models to

explore the efficiency of marine fisheries (Ton Nu Hai et al., 2018; Liu

et al., 2021a). For example, Ton Nu Hai et al. (2018) employed two-

stage bootstrap DEA to study the cost efficiency of marine cage lobster

farms in Vietnam and its influencing factors. There is also a large

amount of literature on marine port transportation efficiency. Bray

et al. (2015) constructed a DEA model based on the fuzzy theory to

evaluate the efficiency of international container ports and compared

the results with the traditional DEA model. Pham et al. (2020)

combined a two-stage uncertainty DEA and fuzzy C-means

clustering method to comprehensively measure the operational

efficiency of the world’s top 40 container ports for five consecutive

years. A large strand of studies has analyzed efficiency of the port

industry from an environmental perspective (Sun et al., 2017; Wang

et al., 2019; Chi et al., 2022). For example, Qi et al. (2020) used the

RAM-DEA model to assess the unified efficiency of a port from the

two aspects of operational performance and environmental balance

and combined the types of scale gains and scale losses to select the

direction suitable for a port’s sustainable development.

Second, research on marine green economy efficiency has

received extensive attention. As the extensive growth pattern of

the marine economy leads to the continuous deterioration of the

ecosystem, scholars have incorporated undesired outputs into the

measurement model to explore the development level of the marine

green economy under environmental constraints. Wu (2018) applied
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the methods of the stochastic frontier model, coefficient of variation,

Gini coefficient, and entropy to explore the spatiotemporal evolution

trend of green production efficiency of the marine economy in

China’s coastal areas. Ren et al. (2018) introduced undesirable

output into the evaluation system of total factor productivity and

utilized the global Malmquist-Luenberger index model to estimate

and decompose green efficiency of the marine economy. Ding et al.

(2020) considered the connection between economic production and

environmental treatment in the marine circular economy and

proposed a new cooperative game network DEA model for

evaluating marine environmental performance. Wei et al. (2021)

combined the super-efficiency slack-based measure model and the

global Malmquist index model to calculate the green total factor

productivity of the marine economy. Zhu et al. (2021) respectively

estimated the elasticity and efficiency of China’s marine economy

based on the core variable method and the slacks-based measure of

super-efficiency method. In addition, there are numerous studies

examining marine green economy efficiency from the perspective of

policy measures, including Maritime Silk Road and Belt and Road

Initiative (Zhao et al., 2021; Wang et al., 2021a).

Finally, scholars have also focused their research on the influencing

factors of marine green economy efficiency. The research content

mainly involves industrial structure, environmental regulation,

technological innovation, and foreign direct investment. Wu (2018)

pointed out that the level of marine economy development, marine

industrial structure, marine human capital, marine material capital,

opening up, and marine environmental governance all affect the green

total factor productivity of the marine economy in coastal areas. Sun

(2020) confirmed the positive effect of digital finance on marine

ecological efficiency. Wei et al. (2021) discussed the impact of the

evolution of marine industrial structure on the green total factor

productivity of the marine economy and found that the relationship

between the two exhibits an inverted U-shape trend of promotion first

and then inhibition. Ye et al. (2021) used the differential Gaussian

Mixture model to empirically test the impact of government preference

and environmental regulation on green development of the marine

economy and noted that both government environmental preference

and environmental regulation promote such green development, while

industrial preference has a negative effect on this green development. In

addition, some scholars have discussed the influencing factors of

marine green economy efficiency from the perspective of spatial

correlation. For example, Guo et al. (2022) constructed a spatial

Durbin model to investigate the influence mechanism of marine

economy efficiency from the aspects of economic development level,

openness, marine industrial structure, and marine R&D investment.

Based on the literature review, we find that the existing literature

provides a relatively in-depth analysis of the marine green economy and

offers many useful insights, but there are still some deficiencies in existing

studies. Most of them applied single-stage input-output indicators to

assess marine green economy efficiency and treated the development of

this type of economy as an independent operational process, while
Frontiers in Marine Science 03
ignoring the operational laws and differential characteristics within its

system. Moreover, the existing literature has failed to examine the

influencing factors of marine green economy efficiency at different

stages, thus not revealing the differential effects of external factors on

marine green economy development. Therefore, our study focuses on the

phased characteristics ofmarine green economy efficiency, which helps to

analyze the operation law of this type of economy and its mechanism of

action more comprehensively.

The main contributions of this study include the following. First,

we divide the operation process of the marine green economy into the

marine production stage and the pollution control stage and employ

the two-stage network DEA model to calculate the total efficiency,

production efficiency, and governance efficiency of this economy,

which is conducive to more comprehensively revealing its operation

in different stages. Second, this study explores the convergence

characteristics of marine green economy efficiency in China’s

coastal areas and investigates the regional gaps in total efficiency,

production efficiency, and governance efficiency of the marine green

economy, thereby providing useful supplements to the existing

literature. Finally, based on the efficiency measurement results, we

apply the Tobit model suitable for the data characteristics to examine

the influencing factors of marine green economy efficiency at different

stages. Our findings should assist policy makers in optimizing the

marine economy development pattern and building a high-quality

marine economy development system.
3 Methods

3.1 Two-stage network DEA model

Since the traditional DEA model fails to consider the internal

operation process of the system, the efficiency measurement may be

biased (Kao and Hwang, 2008; Wang et al., 2020a). The two-stage

network DEA model can analyze the specific structure within the system

and help obtain more abundant information (Kao and Hwang, 2008;

Kao, 2014). The two-stage network DEA model assumes that the whole

production system is composed of two sub-stages, and there is a certain

correlation between the two stages, that is - the input of the second stage

involves all or part of the output of the first stage.

Because the traditional two-stage network DEA model cannot

link the whole process with different stages, the measurement results

do not have integrity. Therefore, referring to the results of Kao and

Hwang (2008), we integrate the traditional two-stage DEA model and

then obtain a research model that more comprehensively measures

the efficiency value of different stages and the overall process.

Suppose there are n decision-making units (DMUs) in the study,

where X represents the input of DMU, Y represents the output of

DMU, and Z represents the intermediate output of DMU, denoted by

Xj=(x1j, x2j,…, xmj)
T, Yj=(y1j, y2j,…, ysj)

T, and Zj=(z1j, z2j,…, zqj)
T,

respectively. Details are as follows:
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On this basis, formula (1) is converted into a linear equivalent

model as follows:
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s
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urYrk
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m

i=1
viXik = 1,

         o
s

r=1
urYrj −o
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i=1
viXij ≤ 0,  j = 1, 2,…, n

         o
s
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(2)

where v is the coefficient vector of the initial input X; u is the

coefficient vector of the final output Y; and w is the coefficient vector

of the intermediate output Z; ϵ is a small non-Archimedean number;

Ek = 1 means that DEA is valid; and Ek< 1 means that DEA is invalid.

At this time, Ek = E1
k � E2

k . However, Kao and Hwang (2008) believed

that the optimal solution of the DMU obtained by Equation (2) may

not be unique, which also makes the decomposition of the total

efficiency value not unique. Therefore, they proposed to find a set of

subsets that produce the maximum efficiency value and found the

total efficiency of the DMU according to Equation (2). The research

model is organized as follows.

         E1
k = max   o

q

p=1
wpZpk

s : t :      o
m

i=1
viXik = 1

        o
s

r=1
urYrk − Eko

m

i=1
viXik = 0

        o
s

r=1
urYrj −o

m

i=1
viXij ≤ 0,  j = 1, 2,…, n

        o
q

p=1
wpZpj −o

m

i=1
viXij ≤ 0,  j = 1, 2,…, n

        o
s

r=1
urYrj −o

q

p=1
wpZpj ≤ 0,  j = 1, 2,…, n

       ur ,  vi,  wp ≥ ϵ,  r = 1, 2,…, s;  i = 1, 2,…,m;  p = 1, 2,…, q

(3)

We can solve the efficiency value E1
k of the first stage through

Equation (3) and solve the efficiency value of the second stage

according to E2
k = Ek=E

1
k . Similarly, using the same method, we can
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obtain the efficiency value of the second stage and then solve the

efficiency value of the first stage.
3.2 Convergence model

Common convergence models present s convergence and b
convergence. In order to further investigate the evolution trend of

regional differences in China’s marine green economy efficiency, we

mainly test it from the two levels of s convergence and absolute

b convergence.

We interpret s convergence as the discrete degree of marine green

economy efficiency in different regions that shows a continuous

downward trend over time. Based on the research of Lin et al.

(2006), the present study adopts the standard deviation method to

analyze the s convergence of marine green economy efficiency. The

specific model is as follows:

st =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N − 1o
N

n=1
(yit − �yt)

2

s
(4)

where N represents the number of provinces; �yt represents the

mean value, that is - the mean value of marine green economy

efficiency; and st is the standard deviation. If the standard deviation

shows a downward trend over time, then there is s convergence in

marine green economy efficiency. Conversely, there is no

s convergence.

The proposition of b convergence stems from the idea of

economic convergence in the neoclassical economic theory and was

initially used to explore whether inter-regional economic growth

tends to be stable over time. We can divide b convergence into

absolute b convergence and conditional b convergence. Absolute b
convergence means that the growth rate of marine green economy

efficiency in all regions will eventually reach the same steady-state

level. Referring to the study of Miller and Upadhyay (2002), we use

the following model to calculate the absolute b convergence index.

ln (efficiencyi,t+T=efficiencyit)
T

= a + b ln (efficiencyit) + mi + ht + ϵit, (5)

where i represents each province; t represents the year; a is the

constant term; efficiency is the efficiency value of the marine green

economy; b is the estimated coefficient value; mi represents the

regional effect; ht represents the time effect; and ϵit represents the

stochastic error. If b< 0, then it indicates absolute b convergence, that

is - regions with low marine green economy efficiency have higher

growth rates and will eventually catch up with regions exhibiting high

marine green economy efficiency, and the gap between regions will

gradually narrow.
3.3 Tobit regression model

Marine green economy efficiency measured by the above research

methods ranges from 0 to 1. It can be seen that the measurement

results have the characteristics of being cut. If the OLS method is used
frontiersin.org
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for estimation, then a consistent estimator may not be obtained. In

contrast, the Tobit model is able to effectively handle data with such

characteristics (Chen, 2014). Therefore, this study constructs a panel

Tobit model to explore the influencing factors of marine green

economy efficiency. The specific model is set as follows:

efficiencyit =
efficiencyit ,  if  efficiencyit > 0 

0,   if  efficiencyit ≤ 0 

(
(6)

On this basis, the regression model is:

efficiencyit = l + wXit + rit, (7)

where l is the constant term; w is the estimated coefficient; Xit is

each influencing factor; and rit is the stochastic error.
4 Empirical Analysis

4.1 Variable selection and data source

4.1.1 Input-output indicators
Due to the multi-stage characteristics of marine economy

development, the research that regards such development as a

“black box” is flawed. Ding et al. (2018) analyzed the operation

process of the marine economy and pointed out that its development

includes the two stages of production and environmental governance.

At the stage of marine production, most scholars point out

that the input factors of the marine economy development system

mainly include capital, labor, energy, and land (Song et al., 2019; Xu

and Yan, 2022). Therefore, we draw on the study of Song et al.

(2019) to select initial input indicators from four aspects, labor,

capital, energy, and land, and measure them using the amount of

marine employment, marine economy capital stock, total energy

consumption of the marine economy, and the mariculture area,

respectively. Considering data availability, capital stock and total

energy consumption of the marine economy are revised by the ratio

of the gross marine product to the gross regional product.

In terms of intermediate output indicators, marine factor inputs

aim to improve the level of marine economy development (Ding et al.,

2015; Liu et al., 2021b). On the one hand, gross marine product, as an

aggregate indicator to measure the development status of a country’s

or region’s marine economy, often reflects the level of regional marine

economy development (Wang, 2021). Therefore, actual gross marine

product is selected to represent the desired intermediate output

indicator. On the other hand, in the context of considering

environmental factors, the output of the production stage also

involves undesired output indicators - namely, the generation of

marine environmental pollutants (Ding et al., 2015). Hu (2018) and

Wang (2021) pointed out that continuous exploitation of marine

resources, while improving regional marine economy benefits, also

brings about undesired outputs that affect the marine environment

such as wastewater and industrial solid waste. Therefore, based on the

content of their study, we select the amount of wastewater directly

discharged into the sea and the amount of solid waste produced by the

marine industry to measure the undesired intermediate output

indicators. Similarly, in the absence of direct indicators of marine
Frontiers in Marine Science 05
industrial solid waste production, we apply the above method to

adjust the amount of industrial solid waste production.

In the stage of environmental governance, as the level of marine

pollution increases, the government will inevitably invest in the

management of marine environmental pollution. Ding et al. (2017)

noted during marine economy development that the China

government attaches importance to the marine environmental

pollution problem and is continuously increasing investment in

marine environmental governance. Therefore, this study regards the

amount of wastewater directly discharged into the sea and the amount

of marine industrial solid waste in the previous stage as the input

indicators of this stage. Drawing on the study of Ding (2017), we

select total investment in marine industrial pollution treatment as the

additional input of the second stage.

With regard to the final output indicators, the purpose of

environmental pollution treatment is to reduce marine pollutants

such as wastewater and industrial solid waste and improve the quality

of marine environment. Considering the unique characteristics of the

marine economy, offshore water quality and the amount of marine

industrial solid waste utilization in coastal areas are important

indicators to reflect the effectiveness of environmental treatment.

Therefore, we choose the proportion of excellent water quality in

offshore waters and the comprehensive utilization of marine

industrial solid waste as the final output indicators. Table 1 lists the

specific input-output indicators involved in marine green

economy efficiency.

4.1.2 Influencing factors
Existing studies have pointed out that the marine green economy,

as an environmentally dependent regional economy, not only has

locational advantages of the marine economy, but also is influenced

by many factors such as the coastal areas’ economy (Ding et al., 2018).

Combined with the related literature, we examine the factors

influencing marine green economy efficincy from the level of

marine technology, the state of the marine economy, and the

development of coastal areas, respectively.

From the perspective of marine technology, scientific and

technological progress and innovation are powerful driving forces

for marine economy development. Technological innovation is

conducive to reducing the production cost of enterprises, enhancing

the competitiveness of the marine industry, and promoting the

upgrading of marine industrial structure (Wang et al., 2021b; Yang

and Wen, 2021; Liu et al., 2022; Zhang et al., 2022; Zou et al., 2022).

Many studies have confirmed a close relationship between marine

technological innovation and the level of marine green economy

development (Wang et al., 2020b; Liu et al., 2021b), meaning that

marine technological innovation needs to be factored into regression

models. We measure marine technology innovation (innovation)

using the number of scientific and technological projects of marine

scientific research institutions in each region.

From the perspective of marine economy status, some scholars

argue that regions with higher levels of marine economy development

can provide substantial financial and infrastructural support for the

development of marine industries, which in turn improve the

efficiency of marine resource utilization (Ji and Wang, 2018; Chen,

2022c; Wang et al., 2023). However, some scholars also stated that a
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higher level of marine economy development can bring about a

significant increase in resource consumption and pollutant

emissions, which may seriously destroy the balance of marine

resources and ecological environment and is not conducive to the

improvement of marine green economy efficiency (Shi et al., 2022;

Zhao et al., 2022a; Zhao et al., 2022b; Nogué-Algueró, 2020; Peng

et al., 2020; Wang, 2021). It can be seen that the level of marine

economy development is an important factor affecting the efficiency

of marine green development and must be added to the model. We

use the ratio of the gross marine product of each region to the gross

regional product to assess the level of marine economy

development (egop).

From the perspective of coastal areas’ development, it has been

well documented that foreign direct investment (FDI), the level of

terrestrial industry, and opening up play important roles in marine

total factor productivity (Zheng et al., 2022; Wang et al., 2021a; Zhao

et al., 2021). In recent years, the impact of FDI on the green economy

has shown a more complex manifestation (Qiu et al., 2021; Gao et al.,

2022). The view of existing studies can be summarized in that FDI

may improve marine green economy efficiency through technology

spillover effects or may have negative effects on the marine

environment through pollution transfer (Zheng et al., 2022). It can

be seen that it is important to focus on the role of FDI on marine

green economy efficiency. We use the proportion of actually utilized

foreign direct investment in regional GDP to characterize foreign

direct investment (fdi).

Industry is an important source of environmental pollution in

coastal areas, and most pollution sources of nearshore water quality

come from industrial pollution discharges in coastal inland areas

(Ding et al., 2018). Therefore, we include the development level of

terrestrial industry (industry) in our analytical model and measure it

using the proportion of the actual industrial added value to the

region’s actual GDP. In addition, opening up is a key factor

affecting the allocation of marine resources and the level of marine

industry development (Ji and Wang, 2018; Lu et al., 2019). With the

deepening of China’s opening up to the outside world, international

cooperation in the field of the marine economy is becoming more
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frequent, which will undoubtedly have a certain degree of effect on

marine green economy development. In this study we use the

proportion of total imports and exports to GDP to assess opening

up (open).

4.1.3 Data sources
Considering data availability, this study selects panel data of 11

coastal areas in China from 2006 to 2018. The data of each index come

from China Statistics Yearbook, China Marine Economic Statistics

Yearbook, China Offshore Water Environmental Quality Bulletin,

China Ecological Environment Bulletin, China Environmental

Statistics Yearbook, China Energy Statistics Yearbook, China Urban

Statistics Yearbook, and statistical yearbooks of each province. Table 2

presents the descriptive statistics of the regression variables involved in

this paper.
4.2 Change trend of marine green economy
efficiency in coastal areas of China

4.2.1 Measurement results of marine green
economy efficiency

Based on the above research methods, we obtain marine green

economy efficiency of different stages in China’s coastal regions from

2006 to 2018. In order to compare marine green economy efficiency in

different regions, we calculate the mean value of marine green

economy efficiency in coastal regions of China. The results appear

in Table 3. In terms of total efficiency, Liaoning’s marine green

economy level is the lowest, with an average efficiency value of less

than 0.6. This is because most of Liaoning’s marine economy

development relies on traditional marine industries, and emerging

marine industries account for a relatively small share, which limits the

ability of high-quality development of the marine economy (Du et al.,

2020; Liu and Xie, 2021). Moreover, Liaoning is a heavy industrial

base in China, and most raw materials are for high energy-consuming

and high-polluting products, resulting in a large discharge of

industrial pollutants. Most industrial pollutants in coastal areas are
TABLE 1 Input-output indicators of marine green economy efficiency.

Category Specific indicator

Marine production stage Initial input Number of sea-related employees

Marine economy capital stock

Total energy consumption of marine economy

Mariculture area

Intermediate output Actual gross marine product

Amount of wastewater directly discharged into the sea

Amount of marine industrial solid waste

Environmental governance stage Intermediate input Amount of wastewater directly discharged into the sea

Amount of marine industrial solid waste

Total investment in marine industrial pollution control

Final output Proportion of Class I and Class II offshore water quality

Comprehensive utilization of marine industrial solid waste
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directly discharged into the adjacent sea area, which makes the

deterioration of Liaoning’s marine environment increasingly

prominent and reduces marine green economy efficiency. We

further analyze the efficiency of different stages and find that the

low level of governance is the main reason to explain the low total

efficiency of marine green economy in Liaoning.

Although the marine economy output values of Fujian, Zhejiang

and Guangdong rank at the front in China, their marine green

economy efficiency values are not high. The reason may be that, on

the one hand, these regions overly pursue the rapid transformation of

the marine economy, which makes the regional marine industry

layout unreasonable (Du et al., 2020). Moreover, the higher level of

marine economy development in these regions will also attract a large

influx of foreign capital and labor, whereas some of the low levels of

foreign capital inflow and industrial transfer will also reduce the

marine green production efficiency (Zhao et al., 2018; Ding et al.,

2018). On the other hand, rapid development of the marine economy

is also accompanied by a large consumption of resources and energy,

which may inhibit improvement of marine green economy efficiency.

Moreover, a higher level of marine economy implies rapid

development of the port economy, and the process of cargo

transportation is bound to produce a large amount of pollutants,
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which pose a threat to marine ecology environment. By further

analyzing the efficiency of different stages, we find that the lower

total efficiency of the marine green economy in Fujian mainly stems

from the lack of marine governance capacity, while those for Zhejiang

and Guangdong are mainly caused by low production efficiency.

Tianjin, Shanghai, Jiangsu, and Hebei rank high in terms of

marine green economy efficiency, which is due to their better

geographical location and higher level of economic development.

Among them, Shanghai and Tianjin have a strong economic

foundation and superior geographical location and have invested

heavily in marine education and marine science and technology with

high utilization rates. Coupled with the rapid development of marine

emerging industries, marine green economy development in

Shanghai and Tianjin has achieved remarkable results.

The phenomenon of high efficiency of the marine green economy

in Hebei is different from the results of some studies. This may be due

to the fact that Hebei is close to Beijing and Tianjin, and so it is

susceptible to the spillover effects of advanced regional technologies.

The Beijing-Tianjin-Hebei Integration policy has greatly contributed

to the improvement of the level of marine technological progress

in Hebei (Wang et al., 2020c). Most scholars have shown that

Hebei’s marine technology efficiency is high (Kang et al., 2020;
TABLE 3 Mean values of marine green economy efficiency at different stages in each province.

Province Total efficiency Production efficiency Governance efficiency

Tianjin 1.0000 1.0000 1.0000

Hebei 1.0000 1.0000 1.0000

Liaoning 0.5530 0.8335 0.3562

Shanghai 0.9986 1.0000 0.9972

Jiangsu 0.9822 0.9661 1.0000

Zhejiang 0.7947 0.6921 0.9174

Fujian 0.7522 0.8216 0.6971

Shandong 0.8166 0.7123 0.9394

Guangdong 0.7975 0.7758 0.8269

Guangxi 0.9527 0.9102 1.0000

Hainan 0.9665 0.9367 1.0000

Mean 0.8740 0.8771 0.8849
TABLE 2 Descriptive statistics of the regression variables.

Variable Obs Mean Std. Dev. Min Max

efficiency 143 0.8740 0.1525 0.4769 1.0000

efficiency1 143 0.8771 0.1514 0.5640 1.0000

efficiency2 143 0.8849 0.2038 0.2187 1.0000

innovation 143 805.77 834.08 10.00 4889.00

fdi 143 0.0325 0.0208 0.0016 0.0819

egop 143 0.1800 0.0883 0.0524 0.3772

industry 143 0.3998 0.0910 0.1967 0.5262

open 143 0.5328 0.3961 0.0967 1.7215
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Ning et al., 2020; Wang et al., 2020d). Moreover, according to the

China Offshore Water Environment Quality Bulletin, the percentage

of excellent water quality in Hebei’s offshore waters exceeded 75%

from 2006 to 2018, and the percentage of excellent water quality

reached 100% in 2018. It can be seen that the water quality situation of

Hebei’s near-shore sea is relatively good and stable, which is one of

the reasons to explain the high efficiency of its marine green economy.

The relatively high efficiency of the marine green economy in

Hainan and Guangxi is mainly a result of the high efficiency of

environmental governance. The industrial scale of the land area of

Hainan and Guangxi is small as is industrial pollution emission,

making indicators of the marine ecology environment at the

forefront of the country. Among them, Hainan has abundant marine

resources, and the marine tertiary industry accounts for a high

proportion, which in turn effectively promotes improvement of

marine production efficiency (Wang et al., 2021c). In recent years,

Guangxi has also been actively promoting the level of marine industry

structure, carrying out a blue bay improvement action (Ding et al.,

2015), which can be taken as a reason to explain the high efficiency of

marine governance in Guangxi. In addition, coastal tourism is the

advantageous industry of Hainan and Guangxi, which determines their

emphasis on environmental governance and environmental protection.

To sum up, the provinces that rank high in overall efficiency of the

marine green economy are more efficient at different stages, implying

that the marine production process is as important as the governance

process. The common feature of these provinces is that they are not

only committed to improving the efficiency of marine production

process, but they also pay attention to the management of marine

pollutants. On the one hand, these provinces combine their

development advantages to continuously optimize the marine

industry structure. Among them, Tianjin, Shanghai, Jiangsu, and

Hebei have a high level of marine technology and are committed to

actively developing new marine industries. Hainan and Guangxi

vigorously promote the development of marine tertiary industries

mainly in coastal tourism. On the other hand, these provinces may

pay more attention to marine environmental protection and continue

to step up efforts to regulate offshore waters. This has led to efficient

management of marine pollutants, thus promoting marine green

economy efficiency.

4.2.2 Trends in the evolution of marine green
economy efficiency

In order to analyze marine green economy efficiency in different

periods, we plot the changing trend of this efficiency in different stages

from 2006 to 2018. The results appear in Figure 1. The figure

illustrates that total efficiency and production efficiency of the

marine green economy have a fluctuating downward trend in

general. The total efficiency of China’s marine green economy

decreased from 0.9249 in 2006 to 0.8763 in 2018, which indicates

that the level of its marine green development still has much room for

improvement. Among them, the change trends of total efficiency and

production efficiency are roughly the same, but differ from that of

governance efficiency. Specifically, production efficiency showed a

relatively large decline in 2008, which is mainly due to the impact of

the global financial crisis in 2008. The import and export trade in

China’s coastal areas and investment in the marine industry decreased

significantly, and the production process of the marine economy was
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restricted, which in turn hindered improvement of marine green

production capacity. However, governance efficiency did not show a

downward trend in 2008, and only began to decline in 2009. This is

because there is a lag effect in pollution governance efficiency, and

pollution governance behavior and effect are generally based on

previous policy measures. Moreover, the impact of a financial crisis

first acts directly on the marine production process, making the

marine economy output drop significantly. On this basis, it may lead

to a reduction of pollution control investment, which in turn affects

marine environmental governance efficiency.

In 2012, marine governance efficiency changed from a downward

trend to an upward trend. This may be due to the introduction of the

12th Five-Year Plan, making local governments pay more attention to

marine economy development and comprehensive marine

management, increasing the protection and restoration of marine

ecosystems, and ultimately improving the efficiency of marine

environmental governance. Subsequently, during 2013-2015, marine

production efficiency declined, largely due to frequent marine

disasters, especially the severe marine disaster in 2013. Its

subsequent effects caused huge losses to China’s marine green

economy. Since 2016, the marine production efficiency has been

rising, because 2016 is the first year of the 13th Five-Year plan. The

China government attaches great importance to the marine economy

and has formulated a series of measures to accelerate the development

of both marine science and technology and the marine industry. For

example, the National Science and Technology Plan for Marine

Development (2016-2020) was introduced in 2016, which is

conducive to the formation of a long-term mechanism for

innovation-driven development to improve marine green

economy efficiency.
4.3 Convergence analysis of marine green
economy efficiency

Figure 2 portrays the s convergence results of marine green

economy efficiency at different stages. From the overall stage, the s
coefficient of China’s marine green economy efficiency shows a

fluctuating trend. It shows a gradual increasing trend during 2008-

2011 and 2013-2016, indicating that there is no s convergence in

marine green economy efficiency at this stage, that is - regional
FIGURE 1

Trends of marine green economy efficiency in different stages from
2006 to 2018.
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differences in marine green economy efficiency keep expanding. In

other time periods, s coefficients show a decreasing trend, indicating

that marine green economy efficiency has s convergence

characteristics, that is - regional differences of marine green

economy efficiency are gradually narrowing. From the perspective

of the production stage, the s coefficient of China’s marine

production efficiency shows a process of rising first and then

falling. The rising stage mainly occurred in 2006-2014, and the s
coefficient increased by 0.1671 in 2014 compared with 2006. This is

an increase of about 7 times, indicating dispersion characteristics of

marine production efficiency, that is - regional differences in

production efficiency are expanding. The downward trend of the s
coefficient from 2014 to 2018 is obvious. Compared with 2014, the

coefficient value in 2018 decreased by 0.0328 or 17.17%, which means

that marine production efficiency tended to converge in 2014-2018.

The s coefficients of ocean governance efficiency show an increasing

trend during 2009-2011 and 2013-2015, which suggests no s
convergence characteristic of governance efficiency, that is - the

regional disparity of marine governance efficiency increases. Other

than that, the s coefficients of other time periods show a decreasing

trend, which implies s convergence in governance efficiency, that is -

the regional disparity in governance efficiency is significantly reduced.

Table 4 reports the results of absolute b convergence for the marine

green economy efficiency at different stages. In terms of total efficiency,

the estimation results of both fixed-effect and random-effect models

indicate that the absolute b convergence coefficient is negative, and
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both pass the significance level test. The results mean absolute b
convergence in the total efficiency of the marine green economy, and

changes in marine green economy efficiency in each coastal region

converge to the same steady-state level over time. In other words,

provinces with low levels of marine green economy have faster growth

rates compared to those with high levels, and the regional gap will

gradually narrow. The estimated coefficients of absolute b convergence

for both marine production efficiency and governance efficiency are

significantly negative at least at the 10% statistical level, which indicates

that both efficiencies have absolute b convergence characteristics, and

that regional disparity will keep narrowing and eventually reach the

steady-state level. The results also reflect the catch-up effect of the

lagging regions to the advanced regions, that is - provinces and cities

with low levels of marine green production and governance have a high

convergence rate.
4.4 Analysis of the influencing factors of
marine green economy efficiency

Based on the above analysis, this study uses the Tobit model to

conduct regression tests on the influencing factors of marine green

economy efficiency. The Tobit model with fixed effects cannot find

sufficient statistics of individual heterogeneity for conditional

maximum likelihood estimation, and the estimates obtained are

inconsistent if dummy variables of panel units are added directly to

the mixed Tobit regression (Chen, 2014). We find that the LR test

results strongly reject the original hypothesis by using the panel Tobit

model of random effects, which shows that there an individual effect

and a random effects panel Tobit model should be used for regression

analysis. The estimation results are in Tables 5 and 6.

4.4.1 Total efficiency
Table 5 reports the regression results of the influencing factors of

marine green economy efficiency. As seen from the table, the

coefficient of marine technology innovation on marine green

economy efficiency is positive, but the result is not significant. This

is consistent with the findings of Guo et al. (2022). This may be due to

the fact that China’s marine technology innovation is still in the

exploration stage, and the number of marine scientific research

institutions is small, resulting in insufficient technological R&D

capacity. Moreover, the transformation rate of China’s marine
FIGURE 2

Trends of s convergence coefficients of marine green economy
efficiency at different stages.
TABLE 4 Absolute b convergence results of marine green economy efficiency at different stages.

Variable Total efficiency Production efficiency Governance efficiency

FE RE FE RE FE RE

a -0.0759***
(-5.41)

-0.0273**
(-2.19)

-0.0288
(-1.59)

-0.0246*
(-1.67)

-0.1695***
(-6.65)

-0.0350
(-1.55)

b -0.6211***
(-5.21)

-0.1020*
(-1.89)

-0.4079***
(-4.13)

-0.1068*
(-1.95)

-0.8487***
(-29.71)

-0.1311**
(-2.58)

Time effect Yes Yes Yes Yes Yes Yes

Individual effect Yes Yes Yes Yes Yes Yes

R2 0.4113 0.2376 0.3513 0.2719 0.5063 0.2467
fr
***, **, and * indicate that the variables are significant at 1%, 5%, and 10% levels, respectively. The values in parentheses are t-statistics.
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scientific research results is not high, and many marine patents are

difficult to be put into practical application. Thus, the positive impact

of technological innovation on marine green economy efficiency fails

to be highlighted. China still needs to further strengthen R&D in

marine technology and continuously improve its marine green

innovation capability, which is a key factor to support sustainable

development of the marine economy (Wei et al., 2021).

The regression coefficient of foreign direct investment (FDI) is

significantly positive at the 5% statistical level, indicating that FDI

improves the efficiency of regional marine green development. The

reason for this is that, on the one hand, the inflow of foreign

investment accompanied by the transfer of advanced technology

can improve the production process of enterprises, which in turn

continuously optimize the marine ecological environment in coastal

areas (Zhao et al., 2018; Zheng et al., 2022). In particular, the

introduction of FDI related to marine industries brings advanced

marine technology and marine management concepts to coastal areas

and helps improve the degree of development and utilization of

marine resources. On the other hand, foreign capital inflow

provides conditions for the development of emerging marine

industries in coastal areas, transforming the industrial structure to

be more rationalized and high-end (Zheng et al., 2022). The

transformation and upgrading of marine industrial structure help

reduce resource consumption and marine environmental pollution

and promote continuous improvement of marine green development

efficiency (Ye et al., 2021; Wei et al., 2021).

The regression coefficient of the level of marine economy

development is significantly negative at the 1% statistical level. This
Frontiers in Marine Science 10
result differs from the general findings, which is probably due to the

fact that the port economy is an important component of the marine

economy, and the process of marine cargo transportation inevitably

generates a large amount of pollutants that pose a threat to the marine

ecological environment (Ding et al., 2018; Nogué-Algueró, 2020). In

addition, even with the rapid development of China’s marine tertiary

industry in recent years, the output value of the secondary industry,

mainly marine equipment manufacturing and sea salt chemical

industry, still accounts for a large proportion. This brings about a

significant increase in resource consumption and pollutant emissions,

and the balance between marine resources and ecological

environment has been seriously damaged, thus inhibiting the

improvement of marine green economy efficiency (Wang, 2021).

The regression coefficient of terrestrial industrial development level

is significantly negative at the 10% statistical level, which means that

growth of the terrestrial industrial scale reduces marine green

economy efficiency, because coastal industrial pollution is the major

source of marine environmental pollution (Naser, 2013; Anbuselvan

and Sridharan, 2018). Industrial production in coastal areas produces

a large amount of industrial wastewater and solid waste, and the vast

majority of these pollutants are discharged into the ocean (Sheppard

et al., 2010; Fu andWang, 2011), which seriously impact water quality

of the near coast and harm the development of the marine green

economy (Ding et al., 2018).

The regression coefficient of opening up is significantly positive at

the 1% statistical level, indicating that improvement of external openness

helps promote marine green economy development. The possible

explanations for this result are as follows. First, since the east coast is
TABLE 5 Tobit regression results of marine green economy efficiency.

Variable Total efficiency

Coefficient Standard error z p>|z|

lninnovation 0.0045 0.0165 0.27 0.784

lnfdi 0.0385** 0.0184 2.09 0.036

lnegop -0.2004*** 0.0546 -3.67 0.000

lnindustry -0.2579* 0.1469 -1.76 0.079

lnopen 0.0950*** 0.0331 2.87 0.004

Cons -0.5695*** .01989 -2.86 0.004
frontie
***, **, and * indicate the variables are significant at the 1%, 5%, and 10% levels, respectively.
TABLE 6 Tobit regression results of marine green economy efficiency at different stages.

Variable
Production efficiency Governance efficiency

Coefficient Standard error z p>|z| Coefficient Standard error z p>|z|

lninnovation -0.0327 0.0205 -1.59 0.111 0.0519** 0.0263 1.97 0.049

lnfdi 0.0488* 0.0258 1.89 0.058 0.0525* 0.0280 1.87 0.061

lnegop -0.2252*** 0.0611 -3.69 0.000 -0.1092 0.0877 -1.24 0.213

lnindustry -0.3940*** 0.1446 -2.72 0.006 -0.0341 0.2215 -0.15 0.878

lnopen 0.1682*** 0.0415 4.06 0.000 0.0001 0.0520 0.00 0.998

Cons -0.4138 0.2550 0.105 0.105 -0.5172* 0.3136 -1.65 0.099
***, **, and * indicate the variables are significant at the 1%, 5%, and 10% levels, respectively.
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the pioneer area of China’s opening up, regional governments have

promulgated a series of policies and measures to encourage economic

development, pushing a large amount of capital and labor at home and

abroad to gather in the marine industry, thus effectively enhancing

marine economy development (Zhao et al., 2016). Second, as the marine

economy is export-oriented, further expansion of opening up is also

conducive to the rapid development of marine tourism in coastal areas,

which is an important measure to achieve marine economy growth (Bob

et al., 2018; Rogerson and Rogerson, 2019). Moreover, the development

of the marine tertiary industry, mainly tourism and other service

industries, helps promote the upgrading of marine industries and

improvement of the marine green development efficiency.
4.4.2 Production efficiency
Table 6 reports the regression results of marine green economy

efficiency at different stages. In the production stage the regression

coefficients of FDI and opening up are significantly positive, the

coefficients of marine economy development level and terrestrial

industrial development level are significantly negative, while the

coefficient of marine technological innovation is not significant.

This suggests that the improvement of FDI and opening up has a

positive effect on marine production efficiency, while marine

economy development and terrestrial industrial development

inhibit the improvement of marine production efficiency. The

results are consistent with the estimation of total efficiency.
4.4.3 Governance efficiency
In the governance stage the regression results of governance

efficiency differ significantly from total efficiency and production

efficiency. Among them, the regression coefficient of marine

technological innovation is significantly positive at the 5% statistical

level, implying that marine technological innovation effectively

promotes the improvement of marine governance efficiency.

Although marine technological innovation has failed to improve

marine production stage efficiency, it has an important role in the

governance of marine pollutants (Mintenig et al., 2017; Alpizar et al.,

2020). This may be due to the fact that China’s currrent marine

technology innovation is more biased towards the application of

environmental management technologies. Compared with the

application of technology of reducing pollution in the production

process, the application of the technology of direct treatment of

pollutant emissions produces a faster and more obvious effect.

Moreover, in recent years the China government has attached great

importance to marine ecological issues that has led to certain

breakthroughs in technological research focusing on water quality

improvement and marine function enhancement.

The regression coefficient of FDI is significantly positive at the

10% statistical level, indicating that an increase of it has a positive

contribution to pollution control efficiency. The reason is that the

inflow of high-quality FDI brings advanced marine management

concepts and pollution management standards and enhances

marine governance technology through technology spillover effects

(Zheng et al., 2022). Moreover, the introduction of FDI is bound

to enhance regional economic development and increase funds

for marine environment management and technology R&D in
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coastal areas, which can continuously improve marine pollution

management efficiency (Zhao et al., 2018). In addition, to attract

more FDI in the marine industry, local governments may strengthen

the efforts of marine pollution management to provide a high-quality

marine development environment for foreign-capitalized industries.

The level of marine economy development fails to pass the significance

test. One possible explanation is that although the rapid development of

the marine economy promotes the increase of marine governance funds,

the environmental problems brought about by the process of such

development cannot be ignored and also makes the pollution

governance effect not obvious. The impacts of industrial development

level and opening up on governance efficiency are also not significant. This

is due to the fact that the impacts of an increase of industrial development

level and opening up onmarine economy development reflect more in the

production stage and little in the governance stage.
5 Conclusions and
policy recommendations

Based on panel data of 11 coastal provinces and cities in China

from 2006 to 2018, we use a two-stage network DEA model to measure

marine green economy efficiency. On this basis, the panel Tobit model

allows us to examine the influencing factors of such efficiency.

The conclusions of this paper can be summarized as follows. First,

there are great differences in total efficiency, production efficiency and

governance efficiency of the marine green economy in different

provinces and cities, and total efficiency and production efficiency

of the marine green economy generally show a fluctuating downward

trend. Second, the s coefficient of marine production efficiency has a

rising trend in general, that is - marine production efficiency has the

characteristics of s convergence, while total efficiency and governance

efficiency do not have s convergence. There is also an absolute b
convergence phenomenon in total efficiency, production efficiency,

and governance efficiency. Third, from the perspective of the overall

stage and production stage, FDI and opening up are conducive to

promoting total efficiency and production efficiency, while

improvement of the marine economy development level and

terrestrial industry development level reduces total efficiency and

production efficiency. Moreover, the effect of marine technological

innovation on total efficiency and production efficiency is not

significant. From the perspective of the governance stage, marine

technological innovation and FDI have a significantly positive role in

promoting environmental governance efficiency.

According to the above conclusions, we put forward the following

policy recommendations.

First, the government should accurately identify the gap between

regional production efficiency and governance efficiency and take

measures according to local conditions to promote high-quality

development of the marine economy. For example, Liaoning should

reduce industries with high pollution and energy consumption, lower

the discharge of marine pollutants, and adopt strict marine supervision

measures. At the same time, it can increase investment inmarine pollution

control and improve marine environmental governance efficiency. Some

areas with high gross marine product should constantly optimize the

marine industry layout, promote the transformation and upgrading of the
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marine economy in a rational and orderly manner, and avoid neglecting

the protection of the ecological environment due to excessive pursuit of

marine economy growth.

Second, the local government needs to further raise investment in

marine science and technology research and development to improve

the ability of marine technology innovation. The government should

vigorously support marine frontier technology research, especially

technology research and development in the process of marine

production. At the same time, more funds are encouraged to stay

in areas such as marine green technology and clean technology.

Third, it is necessary to optimize the structure of land and sea

industries. All regions should vigorously develop the marine tertiary

industry and marine emerging industries to reduce pollutant emissions

and excessive consumption of marine resources. At the same time,

industrial pollution discharge standards for land areas should be

formulated to help authorities strictly supervise and control the

discharge of industrial pollutants from land areas into the sea. In

addition, the central government should implement a target

responsibility system for energy conservation and emission reduction,

increase the proportion of marine ecological environment in the

assessment of local governments, and promote local governments to

continuously improve laws and regulations, so as to provide impetus

for marine green economy development.

Fourth, local governments should further introduce high-quality

marine foreign investment and expand the degree of opening up. Local

governments should continue to relax the restrictions on foreign

investment access, expand the opening of marine industries with

high technology and added value, actively guide foreign investment

to marine emerging industries, and promote the rapid development of

the marine green economy. At the same time, tax incentives and

financial subsidies are also important ways to introduce high-level

marine foreign-invested industries, which can help promote the

transformation and upgrading of the marine industrial structure.
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