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Introduction: Sugar kelp (Saccharina latissima) has a biphasic life cycle, allowing

selection on both thediploid sporophytes (SPs) and haploid gametophytes (GPs).

Methods: We trained a genomic selection (GS) model from farm-tested SP

phenotypic data and used a mixed-ploidy additive relationship matrix to predict

GP breeding values. Topranked GPs were used to make crosses for further farm

evaluation. The relationship matrix included 866 individuals: a) founder SPs

sampled from the wild; b) progeny GPs from founders; c) Farm-tested SPs

crossed from b); and d) progeny GPs from farm-tested SPs. The complete

pedigree-based relationship matrix was estimated for all individuals. A subset of

founder SPs (n = 58) and GPs (n = 276) were genotyped with Diversity Array

Technology and whole genome sequencing, respectively. We evaluated GS

prediction accuracy via cross validation for SPs tested on farm in 2019 and 2020

using a basic GBLUPmodel. We also estimated the general combining ability (GCA)

and specific combining ability (SCA) variances of parental GPs. A total of 11 yield-

related and morphology traits were evaluated.

Results: The cross validation accuracies for dry weight per meter (r ranged from

0.16 to 0.35) and wet weight per meter (r ranged 0.19 to 0.35) were comparable to

GS accuracy for yield traits in terrestrial crops. For morphology traits, cross

validation accuracy exceeded 0.18 in all scenarios except for blade thickness in

the second year. Accuracy in a third validation year (2021) was 0.31 for dry weight

per meter over a confirmation set of 87 individuals.

Discussion:Our findings indicate that progress can bemade in sugar kelp breeding

by using genomic selection.

KEYWORDS

sugar kelp (Saccharina latissima), genomic selection (GS), genotyping, phenotyping,
brown algae, biphasic cycle, breeding
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Introduction

Sugar kelp, Saccharina latissima, is a brown seaweed that is

economically and ecologically important in the eastern North

Pacific and the North Atlantic Oceans (Augyte et al., 2017; Kim

et al., 2017; Yarish et al., 2017; Kim et al., 2019; Mao et al., 2020;

Umanzor et al., 2021). There is clear genetic variation and population

structure found along the global distribution for sugar kelp (Guzinski

et al., 2016; Luttikhuizen et al., 2018; Guzinski et al., 2020). Sugar kelp

contains nutritional compounds, such as antioxidants, minerals, and

vitamins, and has been primarily grown for human consumption

(Sappati et al., 2019). The demand for other uses, such as animal feed,

cosmetics, alginates, fertilizers, and biofuels, is increasing rapidly

(Kirkholt et al., 2019; Rey et al., 2019; Vijn et al., 2020). As a future

potential feedstock for generating biofuels, sugar kelp has advantages

over land-based crops due to its high polysaccharide content and its

cultivation that requires no land, fresh water, or fertilizer (Kerrison

et al., 2015; Lüning and Mortensen, 2015; Marinho et al., 2015;

Duran-Frontera, 2017; Bruhn et al., 2019; Deng et al., 2020). Due to

the increasing demand for sugar kelp biomass globally, kelp farming

is emerging as a sustainable aquaculture activity both in the U.S. and

in Europe, providing new economic opportunities and revitalizing

waterfronts (Kim et al., 2015; Marinho et al., 2015; Augyte et al., 2017;

Yarish et al., 2017; Kim et al., 2019; Vincent et al., 2020; van den Burg

et al., 2021).

Sugar kelp, like other marine algae, has a biphasic life cycle

(Thornber, 2006). Adult sporophytes (SPs) produce sori that release

meiospores which develop into female or male haploid gametophytes

(GPs). Once GPs reach fertility, they mate to form the next generation

of diploid juvenile SPs that grow into mature SPs (Umanzor et al.,

2021; Huang et al., 2022). This life cycle allows for selection on both

GP and SP phases within one breeding cycle (Peteiro et al., 2016;

Huang et al., 2022). Genomic selection is a breeding tool using a set of

individuals, called the training population (TP), that has observed

phenotypic and genotypic data to build a prediction model. This

model can be used to predict the performance of a set of individuals

called the prediction population (PP) with little or no observed

phenotypic data (Meuwissen et al., 2001). The relatedness of

individuals in TP and PP can be calculated using a common set of

markers and/or pedigree information. As genotyping technologies

advance and their cost decreases, GS could more speedily and cost-

effectively improve the selection gain compared to conventional

phenotypic selection in breeding programs (Jannink et al., 2010).

However, this tool has not been evaluated in any kelp breeding

program to the best of our knowledge. The GS predictive approach

can be especially useful for assisting the selection of individuals that

are difficult or near impossible to phenotype, like the GP lifestage.

Here we report the first GS prediction study in Saccharina latissima,

for both kelp yield and morphological traits.

Genomic selection has been evaluated as a breeding tool for more

than a decade in different terrestrial crops, such as in maize, soybean,

wheat, rice, sorghum, and many others (Zhao et al., 2012; Jarquıń

et al., 2014; Rutkoski et al., 2015; Fernandes et al., 2018; Huang et al.,

2018; Huang et al., 2019). The accuracy of GS, defined as the

correlation of phenotypically estimated values and the genomic

estimated breeding values, determines the usefulness of GS in a
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program (Rabier et al., 2016). Several factors are known to affect GS

prediction accuracies, including the number of markers used (Zhong

et al., 2009; Asoro et al., 2011), the size of the TP (Asoro et al., 2011),

the relatedness of individuals between TP and PP (Clark et al., 2012;

Sallam et al., 2015), and the extent of linkage disequilibrium between

the markers and causal loci (Zhong et al., 2009; Brito et al., 2011).

Aside from those factors, different statistical models give different

prediction accuracies (Heslot et al., 2012).

We are interested in evaluating the accuracy of GS in sugar kelp,

and we considered several model options. A basic Genomic Best

Linear Unbiased Prediction (GBLUP) model often provides adequate

accuracies when compared to other models including Bayesian

approaches (Heslot et al., 2012; Sallam et al., 2015; Huang et al.,

2016). These models can be extended to account for genotype by

environment interaction (GxE) effects which affect selection accuracy

between environments for both GS and phenotypic selection

(Resende et al., 2011; Lado et al., 2016). Models incorporating

parental information with general combining ability (GCA) and

specific combining ability (SCA) effects account for non-additive

gene action and have been reported to be beneficial in millet

breeding programs (Jarquin et al., 2020).

Our objective was to evaluate the accuracy of GS in a sugar kelp

breeding program for both yield and morphological traits in the

context of kelp’s biphasic life cycle. To obtain these accuracies, we

modified standard genomic relationship matrices used in GBLUP

models to include both haploid and diploid individuals. Different GS

models were assessed, including the basic GBLUP model and a model

with GCA and SCA components. We evaluated accuracies within two

training years using cross validation and predicted a third validation

year’s data. The SPs evaluated in the third year were made from

crosses chosen based on haploid gametophyte breeding values.
Materials and methods

Population

The study population originated from founder SPs sampled from

the wild in 2018, where Mao et al. (2020) reported two subpopulations

between Gulf of Maine (GOM) and Southern New England (SNE)

regions. The complete population used for constructing the

relationship matrix comprised of 866 unique individuals, including

1) founders (n=104) and 2) GPs (n = 439) derived from founders.

Then 3) the GOM SPs (n = 245) derived from crossing GOM GPs

evaluated in the same “common garden” farm in year 2019 (Yr2019)

and year 2020 (Yr2020). Lastly, 4) the new generation of GPs derived

from the Yr2019 GOM farm-tested SPs (n = 78). In the farm, a total of

248 unique experimental plus reference check crosses were

phenotyped in GOM across Yr2019 and Yr2020, with 124 crosses

in Yr2019 and 129 in Yr2020, and five experimental crosses were in

common across two years. In order to emperically evaluate GS

accuracy, we also created a separate confirmation population in Fall

2020 by using farm-harvested GPs to produce SPs that were evaluated

on the same farm in Yr2021. This confirmation population produced

n = 87 plots with useful data. All downstream genomic selection

analyses involves only SPs and GPs sourced from the GOM location.
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DNA extraction and genotyping

The founder SPs samples were genotyped for single nucleotide

polymorphisms (SNPs) using the DArTSeq platform by Diversity

Array Technology LLC, as previously described by Mao et al. (2020).

A subset of 4,906 markers was used after filtering out those with minor

allele frequency greater than 5% and fewer than 5% missing values

(Mao et al., 2020). A total of 58 genotyped founder SPs contributed to

downstream members of the population. Gametophyte DNA was

extracted using the Macherey-Nagel NucleoSpin Plant II Maxi Kit

(Macherey-Nagel, Düren, Germany) with a modified protocol. In brief,

24 mg (fresh weight) of gametophyte culture was transferred from

Erlenmeyer flasks into 1.5 mL centrifuge tubes. The tubes were

centrifuged at 21,000 rcf for 2 min using an Eppendorf centrifuge

5424. The supernatant was removed. The tubes containing the

gametophytic biomass were capped and submerged in liquid nitrogen

for 20 seconds. The frozen samples were then ground up manually for

30 seconds using a plastic pestle. Once samples were ground, an

extraction protocol was followed using CTAB extraction buffer with

repeated wash steps. The DNA was whole-genome sequenced at the

HudsonAlpha Institute. Kelp DNA was cleaned using a DNAeasy

PowerClean Pro Cleanup kit (Qiagen) and amplified Illumina

libraries were generated in 96 well format using an Illumina TruSeq

nano HT library kit using standard protocols. Sequencing was

performed on a Illumina NovaSeq 6000 instrument at 2x150 base

pair read length. Raw reads are available at the NCBI Short Read

Archive, Accession PRJNA869128. Sequence reads from 278 GPs (all

generated from 2018 founder SPs) were aligned to a reference genome

(A publication describing this genome is in preparation) using BWA (Li

and Durbin, 2010). The average read depth across GPs ranged from 4 to

37. Downstream sequence data formatting, SNP variant calling and

filtering were done using SAMtools (Li et al., 2009), Picard tools in java

(http://broadinstitute.github.io/picard/), BCFtools (Li, 2011) and

VCFtools (Danecek et al., 2011). A total of 909,747 bi-allelic SNP

markers with good quality were retained by removing markers with

more than 20%missing values and minor allele frequency less than 5%.

These markers were used to evaluate the population structure among

GPs via Principal Component Analysis (PCA).
Mixed-ploidy additive relationship matrix

We recorded the full pedigree connecting all individuals (n =

866), both SPs and GPs. Using this pedigree we calculated a coefficient

of coancestry matrix (CCM) across all individuals. This CCM tracks

haplotypes so that each SP is represented by two rows and two

columns in the matrix, and each GP is represented by one row and

one column. A simple tabular method is used (Emik and Terrill,

1949). All diagonal elements of the matrix are equal to 1, because each

haplotype has a probability of 1 of being indentical by descent (IBD)

with itself. For founder SPs all off-diagonal values are set to zero,

reflecting the assumption that founder SPs were non-inbred and

unrelated to each other. The two rows of a diploid SP, offspring of two

haploid GPs, are copies of these parental GP rows, because each GP

contributes its exact genome to the diploid SP genotype. The row of a

haploid GP, offspring of a diploid SP, is the mean of the two rows

representing its parent SP, because random Mendelian segregation
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suggests that each GP has a one-half probability of inheriting one or

the other of the SP haplotypes. In our case, these rules led to a CCM

that had 1215 rows and columns (2x104 founder SPs + 439 first

generation GPs + 2x245 first generation SPs + 78 second generation

GPs = 1215).

The rules for converting the CCM of identical by descent

probabilities into an additive relationship matrix are straightforward to

derive. Consider the additive effect of GP1, AGP1, carrying allele i, the

allele substitution effect of which is ai. Then, AGP1= ai . The additive

relationship between GP1 and GP2, which carries allele i′ is

cov AGP1,AGP2ð Þ = cov ai,ai0ð Þ = s2
a  �pIBD i,   i0

� �
where s 2

a   is the variance of allele substitution effects and pIBD

(i, i′) is the probability that alleles i and i’ are identical by descent, as

given by the CCM. Similarly, the additive relationship between GP1

and SP1, which carries alleles i′ and j′ is

cov AGP1,ASP1ð Þ = cov ai,ai0 + aj0
� �

= s2
a  � pIBD i,   i0

� �
+ pIBD i,   j0

� �� �
Finally, the additive relationship between two SPs is the sum of

the four pairwise IBD probabilities between their respective alleles.

Consequently, the CCM can be “condensed” into a mixed-ploidy

additive relationship matrix as follows. Relationships between pairs of

GPs are represented by single cells and are unchanged. Relationships

between a GP and an SP are represented by two cells which are

summed to obtain the single additive relationship between them.

Relationships between two SPs are represented by four cells which are

also summed to obtain the single additive relationship between them.

Note that in standard diploid quantitative genetics, the constant of

proportionality commonly used to relate the additive relationship

matrix to the additive covariance matrix among individuals is the

additive genetic variance, which is two times the variance of allele

substitution effects as defined above (s 2
a ). Given that we had both

haploid and diploid individuals, we found it easier to work with s 2
a as

the constant of proportionality. A consequence of this choice is that

the diploid narrow-sense heritability is calculated as 2s2
a

(2s2
a+s 2

e )
, where

s 2
e   is the error variance on farm-tested SPs.
Mixed-ploidy combined pedigree and
marker relationship matrix

For historical reasons, two marker systems were used: one on the

founder SPs (DArTSeq) and one on derived GPs (whole-genome

sequencing). Markers were imputed within the genotyped SP founders

and within the GP subset using the expectation-maximization (EM)

algorithm in the rrBLUP package in R (R Core Team, 2022). Marker-

based additive relationships between haploid GPs were calculated using

the same formula as the A.mat() function in the rrBLUP package (Eq. 15,

Endelman and Jannink, 2012) except that the marker dosage matrix has

dosages of 0 and 1 prior to centering, and the coefficient of 2 is removed

from the denominator. Marker-based additive relationships between

founder SPs were calculated using the A.mat() function of the rrBLUP

package (Endelman, 2011). For this matrix to be appropriately scaled

relative to the GP matrix, it was multiplied by 2 (equivalent to removing

the coefficient of 2 from the denominator of the GP matrix).
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Following these calculations, three matrices were available: 1) a

pedigree-based matrix including all individuals, 2) a marker-based

matrix for the founder SPs, and 3) a marker-based matrix for derived

GPs. These three relationship matrices were combined using the

CovCombR package (Akdemir et al., 2020), with marker-based

matrices weighted twice as heavily as the pedigree-based matrix.

The Wishart EM-algorithm was used to estimate the combined

relationship matrix from partial samples (Akdemir et al., 2020). We

denote this relationship matrix G below.
Phenotyping

The Yr2019 trial had an approximately 2-month shorter growing

season relative to the Yr2020 and Yr2021 trials. For Yr2019,

outplanting occurred Jan. 26th, 2019 and harvest May 28th, 2019

(Umanzor et al., 2021). For Yr2020 and Yr2021, outplanting occurred

respectively on Dec. 6th, 2019 and Dec. 9th 2020, and harvest on June

8th 2020 and June 7th 2021 (Li et al., 2022). We measured eleven

traits: Wet Weight per Meter (WWpM, kg), percent Dry Weight

(pDW, %), Dry Weight per Meter (DWpM, kg), Ash-Free Dry

Weight per Meter (AshFDWpM, kg), percent Ash content (Ash,

%), and Blade Density (BD, number of blades/m), Blade Length (BL,

cm), Blade maximum Width (BmWid, cm), Blade Thickness

(BTh, mm), Stipe Length (SL, cm), and Stipe Diameter (SDia, mm).

Percent dry weight at the plot level was derived from subsample

measurements. Detailed experimental design and trait measurements

were reported in Umanzor et al. (2021) and Li et al. (2022). Briefly, an

augmented block design was used where farmed lines with sequential

plots were laid out in parallel, and plots were grouped in blocks across

lines. Different GPs were used as reference check SPs on the farm in

Year2019 and Year2020 due to limitations in obtaining sufficient

biomass of the same GPs for making reference checks in the second

year. Due to differential survival of the SPs, we observed heterogeneity

of rope coverage within plots. To minimize the impact of this

heterogeneity, we removed data from plots where< 10% of the plot

rope was covered by the SP. All phenotypic data were natural log

transformed to normalize the data and stabilize error variances for

all analyses.
Heritability estimation and same trait
genetic correlation between years

The relationship matrix G was used to estimate the additive

genetic variance. Similar to Atanda et al. (Atanda et al., 2021), we fit a

univariate heterogeneous variance model using the ASReml-R

package to fit genotype within environment (environment being

year in our case) effects (Butler et al., 2018), with an unstructured

variance-covariance matrix, G0, across two years. The diagonal

elements of G0 are the additive genetic variance s 2
gk   within the kth

year, and off diagonal elements are the genetic covariance between

years:

G0 =
s2
g1 sg12

sg21 s 2
g2

" #
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The analysis was done for each trait. For simplicity in

constructing the design matrix, the line, block and year effects were

treated as fixed, whereas genotypes were treated as random. The

formula was:

y   =   1nm + X1b1 + X2b2 + X3b3 + X4b4 + Z1u1 + ϵ (1)

where y is the vector of phenotypes with length n, and n is the

total number of observations across two years; 1n is the vector of 1s

and m is the overall mean; b1 is the fixed effects of experimental versus

check crosses; b2 is the fixed effects the two years, b3 is the fixed effects

of growth lines nested within year, b4 is the fixed effects of blocks

nested within year, and X1 to X4 are the incidence matrices for fixed

effects. Vector u1 is the random effects of genotype within year, and Z1
is the incidence matrix for u1 ; finally ϵ is the error term. The random

effect is distributed as u1 ~ N[0, (G0⊗G)], where ⊗ is the Kronecker

product, and G0 and G are as described above.

The error was distributed as ϵ ~ N(0, R):

R =
s 2
e1In1 0

0 s 2
e2In2

" #

where s 2
e1and s 2

e2   are within-year error variances and In1 and In2
are identity matrices of the size of the number of observations within

years. The narrow sense heritability was estimated within the kth year

as:

h2 =
  2s 2

gk

2s2
gk + s 2

ek

(2)

The output frommodel (1) were GBLUPs estimated for each year.

These GBLUPs are breeding values (BVs). We also obtained

combined BVs across years by averaging the Yr2019 and Yr2020

GBLUPs. The genetic correlation for the same trait across Yr2019 and

Yr2020 was computed using the variance-covariance components

estimated from this model (Table 1). The correlation coefficients

among BVs for all traits using BLUPs averaged across years were

calculated. A histogram of the combined BVs for SP plots from

Yr2019 and Yr2020 was plotted (Supp. Figure 1).
Genetic correlation between dry weight per
meter and morphology traits

The genetic correlation among traits was estimated within each

year due to the large GxE for most traits. We used a multivariate

model in the ASReml-R package (Butler et al., 2018). Due to model

convergence issues, traits were analyzed in pairs and only for dry

weight per meter and five individual morphological traits. An

unstructured variance-covariance matrix across all traits was

assumed in this model (Jia and Jannink, 2012; Fernandes et al., 2018):

Yi   =  m + gi + li + bi + ri + ei (3)

Where Yi is the vector of phenotypic observations for the ith

genotype: Yi = [Yi1 Yi2… Yip ] , and p is the p
th trait, m = [m1 m2… mp ],

where is mp is the mean for the pth trait, and li , bi and ri are the line,

block and year effects for the ith individual, respectively. The gi and ei
terms are the genetic effects and residual effects for the ith individual,
frontiersin.org
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with gi = [gi1 gi2 … gip ] and ei= [ei1 ei2 … eip ]. Across all individuals,

the vectorized genetic effects were distributed as g ~ Nnp(0,G0⊗G),
where G0 is the among-trait genetic variance-covariance matrix and

G is the additive relationship matrix. Similarly, e ~ Nnp(0,R0⊗I),
where R0 is the among-trait residual variance-covariance matrix and I

is an identity matrix showing our assumption that residuals are

uncorrelated across plots (Fernandes et al., 2018).
Genomic prediction between diploid and
haploid life stages

We obtained breeding values for all 866 SPs from Yr2019 and

Yr2020, as well as the breeding values of their parental GPs, from the

GBLUP model. This model takes into consideration the relatedness of

individuals and hence GS predictive ability is higher for individuals

that are more closely related to each other than if they are from

separate populations (Windhausen et al., 2012). We only included

phenotypic data from GOM to build GS models and did not use those

from SNE for our GS analyses. Haploid GPs were selected to make

crosses to create the confirmation population of diploid SPs grown in

Yr2021. These GPs were used for crossing based on their available

biomass (which determines the number of crosses to which they can

contribute) and the following crossing design criteria: first, the GPs

were ranked based on their dry weight per meter GEBVs. Parental

GPs’ were then selected if their BVs were top ranked (n = 42), bottom

ranked (n = 3), and randomly ranked (n = 25). In addition, we

included GPs whose parental SPs were sampled from otherwise

unrepresented locations (n = 5). Finally, we generated crosses that

were repeats from the previous year (n = 12).

The GEBVs of Yr2021 diploid SPs were obtained as the sum of

GEBVs from their parental female and male GPs, as estimated from

equation (1), and their phenotypic observations were estimated using

the Best Linear Unbiased Estimator (BLUEs), as explained below.

We assessed GS prediction accuracies as the correlation between BVs

and BLUEs for all Yr2021 SPs (Table 3), for SPs within the category of

parental GPs being top ranked, for SPs in the randomly selected category,

and for SPs that were repeats from previous year (Supplemental Table 1).
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For the 12 common SPs between Yr2020 and Yr2021, we also estimated

the phenotypic correlations between their within-year BLUEs. The

analysis was done for each trait and prediction accuracy for all

available traits that were recorded, even though selection of the Yr2021

population was only based on dry weight per meter.
Within-year cross validation genomic
prediction accuracy

For modeling simplicity, GS model prediction accuracy

comparisons were done with a two-step approach using the Yr2019

and Yr2020 data. The experimental block and line effects were

statistically controlled for within each year to obtain BLUEs of SPs

in ASReml-R. These BLUEs were then used as the response values to

evaluate prediction accuracy under four different GS models using the

BGLR package in R. The BLUEs were first estimated using the

following model:

Yijlb   =   m + Gi + Cj + Ll + Bb + eijlb (4)

where Yijlb is the ijlb
th observation, m is the overall mean, Gi is the i

th

genotype,Cj is the j
th check group that distinguishes between experimental

andcheckcrosses, Ll is the l
th line, andBb is theb

thblock, and eijlbis the error

associated with the ijlbth observation. The BLUEs for Yr2021 were

estimated using the same model, but without a group effect Cj because

none of the reference check plots generated high quality data.

Four GS models were run with a 10-fold cross validation scheme

within each year. Each randomization scheme was repeated 20 times.

The four models were:
A) General combining ability (GCA) and
specific combining ability (SCA) using
combined pedigree and marker
relationship matrix

The mixed-ploidy combined pedigree and marker relationship

matrix was used. General combining ability (GCA) and specific
TABLE 1 Heritability across two years and genetic correlation between years for ten different traits.

Plot level Traits Morphology Traits

WWpM
† pDW DWpM Ash AshFDWpM BDns BLen BMax BThk SLen SDia

Heritability
Yr2019§

0.50
( ± 0.12)

0.06
( ±
0.12)

0.43
( ± 0.12)

–
0.08

( ± 0.33)
0.26 ( ±
0.15)

0.22 ( ±
0.04)

0.41 ( ±
0.04)

0.39 ( ±
0.05)

0.49 ( ±
0.05)

0.38 ( ±
0.05)

Heritability
Yr2020

0.38
( ± 0.16)

0.07
( ±
0.16)

0.34
( ± 0.16)

0.18
( ±
0.17)

0.39
( ± 0.16)

0.22 ( ±
0.18)

0.57 ( ±
0.04)

0.51 ( ±
0.04)

0.69 ( ±
0.04)

0.86 ( ±
0.02)

0.82 ( ±
0.02)

Genetic
Correlation

0.83
( ± 0.45)

-0.15
( ±
2.6)

0.89
( ± 0.51)

–
-0.16

( ± 1.69)
-0.84 ( ±
0.92)

0.67 ( ±
0.19)

0.83 ( ±
0.12)

0.58 ( ±
0.21)

0.55 ( ±
0.17)

0.73 ( ±
0.13)
fro
† Trait abbreviations: WWpM: Wet Weight per Meter; pDW: percent Dry Weight; DWpM: Dry Weight per Meter; Ash: Ash content; AshFDWpM: Ash-Free Dry Weight per Meter; BDns: Blade
Density per plot; BLen: Blade length; BMax: Blade maximum Width; BThk: Blade Thickness; SLen: Stipe Length; SDia: Stipe Diameter. All traits data were log transformed to normalize and stabilize
error. Ash data in Yr2019 had too few data points to get an estimate.
§ The genetic correlation given is of the same trait between the two years.
Values in parenthesis are approximate standard errors for variance components obtained in ASReml-R.
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combining ability (SCA) components for the GP parents were

included in the model with a formula adapted from Jarquin et al.

(Jarquin et al., 2020):

yi   =  m + gP1i + gP2i + gP1i�P2i + ei (5)

where yi is the BLUE of the ith individual, gP1i and gP2i are the

genetic effects of parent GP1 and parent GP2. And gP1i×P2i is the

interaction effect of two parents, ei is the residual effect. The GCA and

SCA account for the genetic main effects and the interaction effects,

respectively, where the SCA variance-covariance matrix is the cell-

wise product of the elements in variance-covariance matrix from

parent 1 and from parent 2 (Jarquin et al., 2020).

For the purpose of estimating variance components and their 95%

credible intervals (CIs), model (5) was also analyzed without cross

validation (all data were used to predict BVs of all individuals).

Variance components estimated were for female parent GCA

(GCA_FG), male parent GCA (GCA_MG), SCA and error (varE).

This model was run within each year and each running process was

repeated 20 times. The lower- and upper- bound values of the 95% CI

were averaged across the 20 replicates (Table 2).
B) GCA+SCA model using only pedigree
based relationship matrix

The same GCA +SCA model as formula (5) was used, except that

the additive relationship matrix was estimated based only on

pedigree. The GS 10-fold cross validation accuracies were obtained

as in A.
C) Genomic Best Linear Unbiased Predictor
(GBLUP) model using combined pedigree
and markers relationship matrix

A basic GBLUP mixed model was used:

y   =  Xb + Zu + ϵ (6)

where X and Z is the design matrix for fixed effects b and for

random effects u, respectively. ϵ is the error and u ~ N(0,Gs 2
u ), and G

is the relationship matrix using combined pedigree and markers
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relationship matrix as estimated above. The 10-fold cross validation

scheme being used was the same as the other models.
D) GBLUP model using only pedigree based
relationship matrix

The same model as in formula (6) was used except that the G

matrix was replaced by a relationship matrix estimated using pedigree

information only.
Results

Population structure of GPs

Two clear subpopulations were revealed by PCA, separating GPs

from GOM and SNE locations (Figure 1A) consistent with previous

analyses of the founder SPs subpopulation structure (Mao et al.,

2020). The remaining results and discussion pertain only to the

GOM populations.
Heritability and genetic correlation
between years

Trait heritabilities using two years’ data with the heterogeneous

error model ranged from 0.06 to 0.86 (Table 1). Among six plot level

(yield-related) traits, the highest heritability was for wet weight per

meter in (0.50 in Yr2019), and lowest was for percent dry weight (0.06

in Yr2019). Among five morphology traits within each year, the

highest heritability was for stipe length (0.86 in Yr2020), and the

lowest was for blade length (0.22 in Yr2019, Table 1). All morphology

traits had higher heritability in Yr2020 compared to Yr2019. In

Yr2020, the heritabilities for morphology traits, measured at the

individual blade level, were higher than plot-level yield-related traits

(Table 1). The genetic correlation for all traits between the two years

ranged from negative (ash related traits, percent dry weight and blade

density) to strongly positive, with the highest being dry weight per

meter (0.89 ± 0.51, Table 1). The heritability of ash free dry weight per

meter was low one year (0.08, Yr2019), but higher the next year (0.39,

Yr2020) while the between-year genetic correlation was nominally
TABLE 2 Genetic correlation among traits using a multi-trait model in ASReml-R.

Yr2019
Yr2020 DWpM† BLen BMax BThk SLen SDia

DWpM – 0.45 -0.40 0.73 0.53 0.34

BLen 0.88 – 0.02 0.90 0.08 0.11

BMax 0.15 -0.39 – -0.90 0.05 0.49

BThk 0.82 0.69 0.23 – 0.22 0.10

SLen 0.77 0.64 0.68 0.58 – 0.84

SDia 0.78 0.65 0.77 0.69 0.95 –
frontie
†For trait abbreviations refer to Table 1.
Analysis was done within years. The genetic correlation values for Yr2019 are in the upper diagonal and for Yr2020 are in the lower diagonal.
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negative (-0.16 ± 1.7). The standard errors associated with between-

year genetic correlation estimates were large, especially for traits with

negative correlations, including percent dry weight (-0.15 ± 2.6) and

blade density (-0.84 ± 0.92). None of the genetic correlations with

nominally negative values were significantly different from zero. Lack

of genotype by environment interaction results in a genetic

correlation of 1 (Cooper and DeLacy, 1994). Even though the

genetic correlations with negative nominal estimates were not

significantly different from zero, they indicated large genotype by

year interactions hence raising the possibility of more general

genotype by environment interactions.

In the multivariate analysis to estimate genetic correlations

between traits, we only included the results between dry weight per

meter and the morphological traits due to model convergence

problems. Given the genotype by environment interaction effects,

the genetic correlation analysis was done within years. Dry weight per

meter had higher genetic correlation with morphological traits in

Yr2020 than in Yr2019. It was not genetically correlated with blade

maximum width in either year (r = –0.40 in Yr2019 and r = 0.15 in

Yr2020, Table 2). For individually measured morphological traits,

blade length and blade thickness were strongly correlated in both

years (r = 0.90 in Yr2019 and r = 0.69 in Yr2020, Table 2). Stipe length

and stipe diameter had the highest consistent correlations in both
Frontiers in Marine Science 07
years (r = 0.84 in Yr2019 and r = 0.95 in Yr2020, Table 2). Among-

trait correlations of breeding values (BVs) averaged across two years

showed that dry weight per meter was moderately correlated with

most morphology traits (r = 0.47 for blade thickness to r = 0.58 for

blade length), though it was uncorrelated with blade maximum width

(r = –0.11, Figure 2). The correlation of blade density BV was

relatively strongly correlated with wet and dry weight per meter

(r = 0.55 and r = 0.54, respectively, Figure 2).
Within-year cross validation genomic
prediction accuracies

Genomic prediction accuracy with the GCA+SCA model using

both pedigree and markers for all traits via 10-fold cross validation

ranged from negative for percent dry weight, blade thickness to 0.48

for stipe length and stipe diameter (Table 3). For yield traits, the

maximum prediction accuracy was for both wet weight and dry

weight per meter (0.32 to 0.35, Table 3). Averaged across traits,

prediction accuracy within Yr2020 was slightly lower numerically

than within Yr2019 (Table 3). This lower accuracy also occurred

across morphological traits despite their higher heritability in Yr2020

than Yr2019.
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(A) Principal Component Analysis (PCA) for 276 GPs using 909,749 SNPs. Red symbols: Gulf of Maine (GOM), black symbols: Southern New England (SNE).
(B) PCA for GPs within the GOM region. These gametophytes came from parents collected from the following locations: CB, Casco Bay farm (n= 28); CC, Cape
Cod canal (n= 23); Check, gametophytes came from GOM checks crosses (n= 4); JS, Fort Stark (n= 22); LD, Lubec Dock (n= 27); LL, Lubec Light (n= 5);
NC, New Castle (n= 19); NL, Nubble Light (n= 28); OD, Outer Dock (n= 11); OI, Orr’s Island (n= 32); and SF, Sullivan Falls (n= 14).
TABLE 3 Genomic prediction accuracy from 10-fold cross validation within each year. Each analysis was run with 20 replicates.

Model TP† PP WWpM§ pDW DWpM Ash AshFDWpM BDns BLen BMax BThk SLen SDia

GCA+SCA
(Pedigree & Markers)

Yr2019 Yr2019 0.35 -0.01 0.35 0.28 0.20 0.24 0.38 0.48 0.29 0.48 0.35

Yr2020 Yr2020 0.34 0.02 0.32 0.08 0.31 0.12 0.32 0.31 -0.19 0.38 0.47

GCA+SCA (Pedigree
only)

Yr2019 Yr2019 0.31 -0.06 0.32 0.23 0.13 0.24 0.31 0.45 0.23 0.43 0.28

Yr2020 Yr2020 0.28 0.00 0.25 0.06 0.25 0.10 0.23 0.30 -0.18 0.33 0.44

GBLUP (Pedigree &
Markers)

Yr2019 Yr2019 0.34 -0.02 0.33 0.23 0.12 0.17 0.42 0.55 0.20 0.50 0.36

Yr2020 Yr2020 0.22 0.04 0.22 0.04 0.26 0.09 0.33 0.28 -0.23 0.30 0.34

GBLUP (Pedigree only)
Yr2019 Yr2019 0.32 -0.04 0.33 0.15 0.02 0.19 0.32 0.51 0.18 0.44 0.29

Yr2020 Yr2020 0.19 0.04 0.16 0.00 0.20 0.10 0.26 0.26 -0.18 0.25 0.30
frontie
†TP: Training Population; PP: Prediction Population.
§ For trait abbreviations refer to Table 1.
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The GS cross validation accuracies from the GCA+SCAmodel using

both pedigree and markers across all traits in two years was slightly

higher (r = 0.27, averaged first two rows in Table 3) than that from the

model of GCA+SCA with pedigree only (r = 0.22) and the base GBLUP

model with pedigree and markers (r = 0.23) or GBLUP model with

pedigree only (r = 0.20). While these differences were not significant for

any single trait comparison, there was only one case (blade thickness in
Frontiers in Marine Science 08
Yr2020) when prediction accuracy was higher without than with marker

information (Table 3). The trend for GS within-year prediction accuracy

was similar to that for heritability values across traits in that

morphological traits tended to have higher GS prediction accuracy

(and higher heritability) than yield-related traits (Tables 1, 3).

We compared the variance within each year due to female parents

(GCA_FG) with those due to male parents (GCA_MG) using the
TABLE 4 The 95% credible interval of posterior distribution for variance components estimates: Variance due to GCA components from Female GPs
(GCA_FG) and from Male GPs (GCA_MG), SCA component, and Error Variance (varE) based on the Variance component estimates.

Yr2019 Yr2020

GCA_FG GCA_MG SCA varE GCA_FG GCA_MG SCA varE

WWP† 0.01 to 0.08 0.01 to 0.06 0.02 to 0.11 0.05 to 0.15 0.05 to 0.32 0.03 to 0.14 0.05 to 0.31 0.14 to 0.44

pDW 0.00 to 0.01 0.00 to 0.01 0.01 to 0.03 0.01 to 0.04 0.00 to 0.02 0.00 to 0.02 0.01 to 0.04 0.03 to 0.07

DWpM 0.00 to 0.003 0.00 to 0.03 0.00 to 0.05 0.00 to 0.01 0.01 to 0.04 0.00 to 0.02 0.01 to 0.05 0.02 to 0.07

Ash 0.00 to 0.005 0.00 to 0.02 0.00 to 0.01 0.00 to 0.01 0.00 to 0.01 0.00 to 0.04 0.00 to 0.01 0.00 to 0.01

AshFDWpM 0.00 to 0.003 0.00 to 0.00 0.00 to 0.03 0.00 to 0.002 0.00 to 0.02 0.00 to 0.01 0.00 to 0.02 0.01 to 0.03

BDns 0.04 to 0.36 0.03 to 0.15 0.07 to 0.45 0.22 to 0.66 0.03 to 0.21 0.03 to 0.20 0.06 to 0.38 0.17 to 0.53

BLen 0.01 to 0.04 0.01 to 0.07 0.01 to 0.08 0.04 to 0.11 0.02 to 0.11 0.01 to 0.07 0.02 to 0.13 0.07 to 0.20

BMax 0.01 to 0.06 0.01 to 0.05 0.01 to 0.05 0.02 to 0.07 0.01 to 0.04 0.01 to 0.07 0.01 to 0.06 0.03 to 0.10

BThk 0.00 to 0.002 0.00 to 0.03 0.00 to 0.01 0.00 to 0.01 0.00 to 0.04 0.00 to 0.04 0.00 to 0.01 0.00 to 0.01

SLen 0.02 to 0.10 0.01 to 0.09 0.02 to 0.13 0.06 to 0.17 0.06 to 0.34 0.03 to 0.13 0.05 to 0.27 0.12 to 0.38

SDia 0.00 to 0.02 0.00 to 0.01 0.00 to 0.03 0.01 to 0.03 0.02 to 0.08* 0.01 to 0.03 0.01 to 0.06 0.02 to 0.07
fro
† For trait abbreviations refer to Table 1.
* Bolded: For over 97.5% of posterior samples GCA_FG > GCA_MG.
Model used within year BLUEs as input and the marker and pedigree based combined relationship matrix in BGLR.
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

AshOnly

AshFDwPM

BDns

DWpM

PDW

WWP

BLen

BMax

BThk

SDia

SLen

 0.03

 0.22

 0.22

0.32

 0.16

 0.16

0.36

 0.14

 0.00

 0.08

0.03

 0.67

 0.17

 0.66

 0.56

 0.08

 0.36

 0.52

 0.56

 0.54

0.30

 0.55

 0.09

0.27

 0.21

 0.12

 0.19

0.10

 0.96

 0.58

0.11

 0.47

 0.50

 0.53

0.20

0.12

 0.37

0.08

 0.12

 0.08

 0.59

0.09

 0.50

 0.52

 0.56

 0.16

 0.58

 0.41

 0.33

 0.06

 0.49

 0.29

 0.48

 0.36  0.88

FIGURE 2

Correlation plot of SP breeding values estimated using both Yr2019 and Yr2020 data with the heterogeneous error variance GBLUP model. The
combined BVs are the mean of estimates for Yr2019 and Yr2020.
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MCMC-derived samples from the posterior distributions of these

parameters. Across all yield-related and morphology traits, GCA_FG

was greater than GCA_MG in 15 out of 22 trait-year combinations

(Table 4). However, GCA_FG was significantly greater than

GCA_MG only for stipe diameter in Yr2020, as determined by the

fact that GCA_FG was greater than GCA_MG in over 97.5% of

posterior samples (Table 4). Variance component results also explain

the relative superiority of the GCA+SCA model over the base GBLUP

model: in 17 out of 22 trait-year combinations the SCA variance

component was greater than the average of the female and male GCA

variance components (Table 4).
Genomic prediction in both diploids
and haploids

Due to the large genotype by environmental interactions and the

differences in error variance observed between Yr2019 and Yr2020,

we verified the ability of phenotypes from these years to predict

performance in Yr2021. Our main interest was the BV for dry weight

per meter (DWpM) trait for which we selected GPs to make crosses.

GS prediction accuracy for Yr2021 SPs was defined as the correlation

coefficient between trait BLUEs observed in 2021 and their predicted

BVs, which were calculated as the sum of their parental FG and MG

BVs. For the DWpM trait, GS accuracy for the 87 crosses in Yr2021

was r = 0.30 (using Yr2019 BVs) and r = 0.31 (using Yr2020 or

combined BVs, Table 5). Over all other traits, GS accuracy ranged

from negative (ash related traits, percent dry weight and blade
Frontiers in Marine Science 09
density) to 0.80 (stipe length with Yr2019 GEBVs, Table 5). When

heritability was high for a trait within a year, the prediction accuracy

using that year’s data to predict Yr2021 also tended to be high

(Tables 1, 5). Breeding values for founder SPs, GPs generated from

founders, and SP progenies from those GPs all centered on zero

(Figure 3). In contrast, GPs generated from SPs that were evaluated

and selected on farms and SP progenies from those selected GPs

deviated markedly from zero (Figure 3).
Discussion

Population structure of GPs

Consistent with previous genetic analysis of the GOM founder

SP populations (Mao et al., 2020), strong subpopulation structure

was observed within the GPs from GOM region (Figure 1B) based

on 909,749 SNP markers. A small but significant differentiation

was observed between sampled locations by (Breton et al., 2017) for

sugar kelp in Eastern Maine based on 12 microsatellite markers.

Our SNP marker set analysis is an most up-to-date descriptor of

GOM subpopulations.
Heritability, genetic correlation, and
environmental variation

At this early stage in the development of technologies to breed,

farm and phenotype diverse SP genotypes of sugar kelp, the

heritabilities of yield-related traits are moderate to low (Table 1).

The differences we observed in estimated heritability for the yield-

related traits between years (Table 1) was likely due to changes in

environmental conditions from one year to the next. The Yr2019 trial

was planted later and harvested earlier than the Yr2020 trial, reducing

total growth potential. Possibly as a result of these differing

conditions, we found a negative genetic correlation between the two

years for percent dry weight, ash related traits, and blade density,

revealing high GxE and large year-to-year effects for these traits.

Differences between years can also result from differences in nutrient

availability which, in many nearshore sites, depends on runoff caused

by rainfall events that vary annually (Grebe et al., 2021).

Phenotyping sugar kelp traits is challenging (Umanzor et al.,

2021). Due to phenotyping limitations and labor constraints (all

measurements were made on hundreds of crosses within 48 hours

of harvest), we relied on subsampled data for blade density and

percent dry weight to approximate whole plot traits. In theory each

plot consists of uni-clonal individuals such that subsamples should be

uniform. Yet, due to environmental and possible blade density effects,

we observed non-uniform growth across the plot. Lack of uniformity

among subsamples contributed to the error variance. To minimize the

impact of this heterogeneity, we filtered data based on a visual score of

plot uniformity (see Methods). We modified the measurement of dry

weight related traits from Yr2019 to Yr2020. In Yr2019, percent dry

weight was measured by a single value per plot where subsamples

were combined and weighed together. In Yr2020, we measured the

percent dry weight for the 10 largest blades out of the subsamples

separately. Both approaches yielded low estimated heritability. This
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Box plots of estimated breeding values of DWpM (Dry Weight per Meter,
log transformed) for 517 GPs and 436 SPs. The SPs included these
subcategories: Founder SPs without progeny (these SPs were collected
from the wild but did not produce GP progeny, denoted FndSP–),
Founder SPs with progeny (FndSP+), SP19_Fnd (SPs tested on farm in
Yr2019 generated using GPs from Founders), SP20_Fnd (SPs tested in
Yr2020), SP21_Fnd (SPs tested in Yr2021), and SP21_Frm (SPs tested in
Yr2021, generated using GPs collected from SPs tested on farm in
Yr2019). The GPs included GPs collected from Founders (GP_Fnd) and
GPs collected from SPs tested on farm in Yr2019 (GP_Frm).
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low heritability is in contrast to land crops where percent dry weight

generally has high heritability (e.g., Rabbi et al., 2020) for root dry

weight in cassava), though comparisons to traits in other

domesticated species are perhaps unwarranted given the divergence,

approximately 1,600 million years ago, of kelps from other eukaryotes

(Hedges et al., 2004).

Because of the longer growing season in 2020 compared to 2019,

dry weight per meter collected in 2020 were markedly higher than

those in 2019. However, because connectivity between years came

primarily from evaluating related SPs rather than from repeating

evaluation of the same SPs across years, the genetic effects could also

be partially confounded by year effects in the model.

Morphology traits were directly measured at the individual blade

level, and we randomly measured 15 blades/plot in Yr2019. We modified

the sampling procedure in Yr2020 by measuring only the longest ten

blades from 3 subsamples within each plot. This modification ensured

individual samples were more uniform within the same plot in Yr2020,

likely reducing the error variance and leading to higher heritabilities for

morphology traits in Yr2020 (Table 1). Blade length heritability more

than doubled in the second year, and all other morphology traits also had

increased heritability in Yr2020. In general, when traits had high

heritability in both years, the genetic correlation values between years

were also reasonable.

Multi-trait genetic correlation results among dry weight per meter

and morphology traits indicated that genes underlying some of the

morphology traits could play a role in contributing to kelp yield.

Indeed, (Zhang et al., 2015) reported that QTLs clustered on the same

chomosome region for morphological traits (frond length, width and

thickness) as well as for yield related traits (raw weight) in a F2

mapping population created from a Saccharina longissima and

Saccharina japonica parental combination. However, no genetic

correlation among these traits was estimated (Zhang et al., 2015).

The improved phenotyping protocol in Yr2020 could have

contributed to a higher genetic correlation than those in Yr2019.

Interestingly, stipe length and diameter were strongly correlated with

each other in both years, indicating that they were controlled by the

same group of genes across different environments (Egan et al., 1990).

Correlations from estimated BVs combined across two years on

all plots revealed that dry weight per meter was correlated to other

weight related traits except for percent dry weight (Figure 2). If a plot

generates larger wet weight, it will also have a larger dry weight per

meter and ash free dry weight per meter values (Figure 2). There was a

clear correlation between plot level weights and blade density (r of

0.54 and 0.55 with dry and wet weight per meter, respectively,

Figure 2). High blade density comes from the ability of the juvenile

SP to attach to seed-string in the nursery, survive, and subsequently
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attach its holdfast to the farm grow-rope. This trait was not under

selection in the wild, so it is not surprising that variation for this trait

exists (Paaby and Rockman, 2014). Thus, blade density appears to be

an important domestication trait.

The BVs of dry weight per meter were correlated to morphology

traits, except blade maximum width (Figure 2). A similar pattern of

positive genetic correlation was also observed in the multivariate

analysis (Table 2). Previous studies reported that the multivariate

model is favored as it allows borrowing information between traits

and individuals across environments (Atanda et al., 2021). The

multivariate genetic correlation results indicate that our selection

for dry weight per meter could lead to morphologically longer and

thicker blades, longer and larger stipes. The fact that wider blades

were not particularly favored indicates that “skinny” individuals

(designated Saccharina angustissima), originating from Casco Bay

may have good adaptation to farms (Augyte et al., 2018). Indeed, (Li

et al., 2022) showed that SPs with skinny kelp ancestry out-yielded

SPs that had no skinny kelp ancestry. In our experiment, among the

42 Yr2021 top ranked SPs, 14 of them (33%) had a skinny kelp

derived GP as a parent or grandparent. For comparison, of the 493

cross attempts made for Yr2019 and Yr2020 combined, 123 (25%)

had a skinny kelp derived GP as a parent. A chi-square test showed

these proportions were not significantly different.
Genomic prediction within years via
cross validation

In previous studies, the GBLUP GS model produced similar

accuracies across various traits compared to other GS models such

as Bayesian approaches (Heslot et al., 2012; Sallam et al., 2015).

Similarly, we did not observe significant differences between the

model prediction accuracy of GBLUP (whether using pedigree

alone, or using pedigree plus marker information) and GCA+SCA

(whether using pedigree alone or using pedigree and marker

information together). Nevertheless, for both GBLUP and GCA

+SCA, addition of marker data improved prediction accuracy over

pedigree information alone (Table 4). To our knowledge, we are the

first to use the algorithm implemented in the CovCombR package

(Akdemir et al., 2020) for an actual selection experiment. This

approach allows the combination of data from different genotyping

platforms without cross-platform imputation, therefore potentially

simplifying the process. Our successful use of the method provides it

with some validation.

While the prediction accuracy for GCA+SCA with pedigree and

marker information was not significantly different from the other
TABLE 5 Genomic prediction accuracy using heterogeneous error variance model, the same model as used in Table 1.

Model GPs BVs predicted
from WWpM† pDW DWpM Ash AshF

DWpM BDns BLen BMax BThk SLen SDia

GBLUP (Pedigree &
Markers)

Yr2019 0.29 0.10 0.30 – -0.10 -0.21 0.26 0.34 0.17 0.52 0.38

Yr2020 0.30 0.02 0.31 0.04 0.19 0.22 0.29 0.36 0.11 0.44 0.30

Yr2019+Yr2020 0.30 0.08 0.31 – 0.19 -0.04 0.29 0.35 0.14 0.49 0.33
frontie
† For trait abbreviations refer to Table 1. For Ash, the within Yr2019 training sample size was small (n=45) and results were not included.
The training set was Yr2019 and Yr2020 SP data, and BVs for haploid GPs were predicted. For the Yr2019+Yr2020 combination set, the BVs for haploid GPs were the mean of their BVs estimated
from Yr2019 and Yr2020. The prediction set derived from Yr2021 SPs.
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three models, it was numerically superior. There are two biological

reasons why this model might be superior. First, we show suggestive

evidence that the female contribution to trait expression is moderately

more important than the male contribution. Prior studies have lacked

sufficient numbers of crosses to assess this issue (Umanzor et al.,

2021). Relevant mechanisms could be genomic imprinting (Reik and

Walter, 2001; Yang et al., 2021) or simply the fact that the female GP

plays a more important role in controlling kelp holdfast and stipe

traits and, thus, attachment to the seed string and rope substrates

(Garbary and South, 2013). Using the GCA+SCA with pedigree and

marker model, we could distinguish between GCA variation

contributed from the female versus male side. Across 22

comparisons (11 traits in each of two years, Table 4) the female

contribution was significantly greater than the male contribution in

only one case (Stipe Diameter in Yr2020, Table 4). However, the

female contribution was numerically superior to the male

contribution in 15 out of 22 cases when they were different

(Table 4). A two-sided binomial test has a probability of 0.06 of

that many cases occurring, though we note that the assumption of

independence of the 22 cases is probably violated. While the GCA

+SCAmodel allows the importance of parental contributions to differ,

the standard GBLUP model forces them to be equal. Second, we also

show evidence that the specific combining ability between the

parental genomes is often important (Table 4): in 17 out of 22

cases, the SCA variance was greater than the mean of the two GCA

variances. Again, given the lack of independence of these cases, we do

not have a statistical test to conclusively show that SCA is greater than

the GCAs, but this result does suggest it is biologically important. The

SCA is caused by non-additive modes of gene action that the GBLUP

model does not capture (Lynch andWalsh, 1998), therefore providing

another mechanism making the GCA+SCA model superior to the

GBLUP model.

GS accuracy estimates from cross validation are usually higher

than estimates from independent datasets (Crossa et al., 2010; Michel

et al., 2016; Huang et al., 2018). The GS accuracies for yield traits in

previous studies varied from essentially zero to 0.75 (Zhao et al., 2012;

Dawson et al., 2013; Fernandes et al., 2018; Stewart-Brown et al.,

2019). The yield-related prediction accuracies via cross validation (r

ranged from close to zero for ash free dry weight in the absence of

marker data to 0.35 for wet weight with marker data, Table 3) fell

within the range of those in previous studies in terrestrial crops (Zhao

et al., 2012; Dawson et al., 2013; Michel et al., 2016; Stewart-Brown

et al., 2019). We confirmed that GS prediction accuracy was related to

trait heritability (Dawson et al., 2013; Lenz et al., 2020): in general,

traits with high heritability gave good prediction accuracy, with an

unexplained exception for blade thickness in Yr2020.
Genomic prediction between diploids
and haploids

One of the biggest merits of applying genomic selection is that it

can shorten the time per breeding cycle by directly predicting the

breeding values of non-phenotyped individuals. In the case of sugar

kelp breeding, the breeding germplasm is maintained in the form of

GPs in culture. Because SP yield and composition traits cannot be

obtained from GPs directly, genomic prediction is the only option for
Frontiers in Marine Science 11
direct selection on those traits. The historical SP data from Yr2019

and Yr2020 was used to predict BVs of GPs, which were then used as

parents for next generation SPs in Yr2021. The GS accuracy (r ~ 0.30)

for dry weight per meter on the confirmation population was similar

to the reports in other studies for grain yield (Zhao et al., 2012;

Stewart-Brown et al., 2019). This reasonable prediction accuracy

validated our method for calculating the pedigree-based mixed-

ploidy relationship matrix and integrating it with marker-based

genomic relationship matrices at the different ploidy levels.

Simulations have shown that selection during both GP and SP

phases of the kelp life cycle will generate the greatest breeding gain

per unit time (Huang et al., 2022). This empirical research is the first

to report that genomic prediction of haploid breeding values works.

The use of GS in biphasic organisms, such as sugar kelp, can help

breeders achieve higher efficiency in genetic gain.

The Yr2021 season was more similar to Yr2020 than Yr 2019 in

terms of the overall length of the growing season and growth

performance of the kelp plots. We were therefore somewhat surprised

that Yr2019 and Yr2020 training data gave equal prediction accuracy of

the Yr2021 validation data (Table 5). We show that, as for land crops (de

Leon et al., 2016), genotype by year interaction is an important source of

phenotypic variation (Table 1). Large GxE effects require a larger number

of environments with repeated plots in order to properly evaluate

genotype performance. Previous studies have confirmed that when

more information is shared between environments or when sets of

genotypes are observed across environments, the prediction accuracy

can be increased (Jarquıń et al., 2014; Lado et al., 2016; Jarquin et al.,

2020). Future kelp breeding efforts need to take this source of variation

into account.
Breeding value changes over generations of
breeding cycles

Our empirical evaluations show some success in genomic

selection: GPs derived from SPs that were evaluated on farm in

Yr2019 (GP_Frm, Figure 3) were superior to GPs derived from

founders (GP_Fnd, Figure 3) and, in turn, SPs derived from those

GPs (SP21_Frm) were superior to SPs derived from founder GPs

(SP19_Fnd, SP20_Fnd, and SP21_Fnd, Figure 3). We note that the

superiority of farm-derived GPs occurred despite minimal selection

pressure on the SP parents of those GPs (Supp. Figure 1).

Improvements in our experimental procedures meant that we

collected twice as many SPs that had successful spore release in

Yr2020 (Supp. Figure 1, green dashed lines) than in Yr2019 (red

dashed lines). This improvement was mainly due to the fact that more

plots in Yr2020 than Yr2019 were mature (longer growing season)

and hence more plots produced sorus tissue. The Yr2020 plots also

had a larger proportion of SPs that were top ranked compared to

Yr2019 (Supp. Figure 1). Greater success in releasing and isolating

numerous individual spores from select harvested mature SPs (or

artificially inducing maturity) will lead to higher selection intensity in

both the SP and GP phases (Huang et al., 2022). The response of GPs

despite low selection pressure (number of mature and good

performing individuals to propogate the next generation) in Yr2019

(Figure 3) suggests that, in addition to artificial selection, some

amount of natural selection is also taking place within our breeding
frontiersin.org

https://doi.org/10.3389/fmars.2023.1040979
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Huang et al. 10.3389/fmars.2023.1040979
program as we prompt kelp that are naturally adapted to attaching to

rock substrates to being adapted to the seed string and rope

substrates. Continued selection in this way may lead to appreciably

“domesticated” kelp in the sense that our germplasm may be better

adapted to the off-shore farm environment than to the natural rocky

nearshore habitat.
Future research areas

The use of a pedigree and marker estimated relationship matrix

between lab-grown GP cultures and the field-grown SPs enabled us to

predict breeding values of the GPs and to select the top ranking ones

to make new crosses. Our results indicate that progress can be made

in sugar kelp breeding by genomic selection, especially for dry weight

per meter. To the best of our knowledge, our study is the first to

evaluate the use of GS in kelp breeding, including a mixed-ploidy

relationship matrix and the integration of separate genomic

relationship matrices at the two ploidy levels. Our findings are

applicable for other bi- and tri phasic algae such as Gracilaria spp.

(Gupta et al., 2011) and Asparagopsis spp. (Roque et al., 2021).

Researchers could first train a GS model using individuals with

known phenotypic data and genotypic data. Then use the model to

predict breeding values for the individuals at a life stage that is hard to

be phenotyped. These predicted individuals have to be genotyped and

ideally should be related to individuals in the training model. This

allows selection on the phase that was not possible previously without

the GS tool. Our results specifically show that wet weight and dry

weight per meter can be effectively selected via GS. However,

continued efforts in improving nursery/planting and phenotyping

methods, as well as increasing the number of plots to be evaluated on

farms will be critical for us to continuously improve prediction

accuracy. The GS model should also be updated and retrained as

we move forward using data from related individuals. The low across-

year genetic correlations we observed were concerning (Table 1).

These findings need to be backed up with further experimentations,

including the addition of common individuals across environments.

Finally, our results with the GCA+SCA model suggest that it may be

superior to the standard GBLUP model for kelp genomic predictions,

but validation of that hypothesis will require more experimental data.
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Crossa, J., Campos, G. D. L., Pérez, P., Gianola, D., Burgueño, J., Araus, J. L., et al.
(2010). Prediction of genetic values of quantitative traits in plant breeding using pedigree
and molecular markers. Genetics 186, 713–724. doi: 10.1534/genetics.110.118521

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., et al.
(2011). The variant call format and VCFtools. Bioinformatics 27, 2156–2158. doi: 10.1093/
bioinformatics/btr330

Dawson, J. C., Endelman, J. B., Heslot, N., Crossa, J., Poland, J., Dreisigacker, S., et al.
(2013). The use of unbalanced historical data for genomic selection in an international
wheat breeding program. Field Crops Res. 154, 12–22. doi: 10.1016/j.fcr.2013.07.020

de Leon, N., Jannink, J.-L., Edwards, J. W., and Kaeppler, S. M. (2016). Introduction to
a special issue on genotype by environment interaction. Crop Sci. 56, 2081–2089. doi:
10.2135/cropsci2016.07.0002in

Deng, C., Lin, R., Kang, X., Wu, B., O’Shea, R., and Murphy, J. D. (2020). Improving
gaseous biofuel yield from seaweed through a cascading circular bioenergy system
integrating anaerobic digestion and pyrolysis. Renewable Sustain. Energy Rev. 128,
109895. doi: 10.1016/j.rser.2020.109895

Duran-Frontera, E. (2017)Development of a process approach for retaining seaweed
sugar kelp (Saccharina latissima) nutrients. Available at: https://digitalcommons.library.
umaine.edu/honors/297/ (Accessed Jan-03, 2022).

Egan, B., Garcia-Ezquivel, Z., Brinkhuis, B. H., and Yarish, C. (1990). “Genetics of
morphology and growth in laminaria from the north Atlantic ocean — implications for
biogeography,” in Evolutionary biogeography of the marine algae of the north Atlantic
(Springer-Verlag, Berlin, Germany:Springer Berlin Heidelberg), 147–171.

Emik, L. O., and Terrill, C. E. (1949). Systematic procedures for calculating inbreeding
coefficients. J. Hered. 40, 51–55. doi: 10.1093/oxfordjournals.jhered.a105986

Endelman, J. B. (2011). Ridge regression and other kernels for genomic selection with
r package rrBLUP. Plant Genome J. 4, 250–250. doi: 10.3835/plantgenome2011.08.0024

Endelman, J. B., and Jannink, J.-L. (2012). Shrinkage estimation of the realized
relationship matrix. G3: Genes|Genomes|Genetics 2, 1405–1413. doi: 10.1534/
g3.112.004259

Fernandes, S. B., Dias, K. O. G., Ferreira, D. F., and Brown, P. J. (2018). Efficiency of
multi-trait, indirect, and trait-assisted genomic selection for improvement of biomass
sorghum. Theor. Appl. Genet. 131, 747–755. doi: 10.1007/s00122-017-3033-y

Garbary, D. J., and South, G. R. (2013). Evolutionary biogeography of the marine algae
of the north atlantic. Berlin, Germany. Springer-Verlag 429.

Grebe, G. S., Byron, C. J., Brady, D. C., Geisser, A. H., and Brennan, K. D. (2021). The
nitrogen bioextraction potential of nearshore saccharina latissima cultivation and harvest
in the Western gulf of Maine. J. Appl. Phycol. 33, 1741–1757. doi: 10.1007/s10811-021-
02367-6

Gupta, V., Baghel, R. S., Kumar, M., Kumari, P., Mantri, V. A., Reddy, C. R. K., et al.
(2011). Growth and agarose characteristics of isomorphic gametophyte (male and female)
and sporophyte of gracilaria dura and their marker assisted selection. Aquaculture 318,
389–396. doi: 10.1016/j.aquaculture.2011.06.009

Guzinski, J., Mauger, S., Cock, J. M., and Valero, M. (2016). Characterization of newly
developed expressed sequence tag-derived microsatellite markers revealed low genetic
diversity within and low connectivity between European saccharina latissima populations.
J. Appl. Phycol. 28, 3057–3070. doi: 10.1007/s10811-016-0806-7

Guzinski, J., Ruggeri, P., Ballenghien, M., Mauger, S., Jacquemin, B., Jollivet, C., et al.
(2020). Seascape genomics of the sugar kelp saccharina latissima along the north Eastern
Atlantic latitudinal gradient. Genes 11, 1503. doi: 10.3390/genes11121503

Hedges, S. B., Blair, J. E., Venturi, M. L., and Shoe, J. L. (2004). A molecular timescale of
eukaryote evolution and the rise of complex multicellular life. BMC Evol. Biol. 4, 2.
doi: 10.1186/1471-2148-4-2
Frontiers in Marine Science 13
Heslot, N., Yang, H.-P., Sorrells, M. E., and Jannink, J.-L. (2012). Genomic selection in
plant breeding: A comparison of models. Crop Sci. 52, 146–160. doi: 10.2135/
cropsci2011.06.0297

Huang, M., Balimponya, E. G., Mgonja, E. M., and McHale, L. K. (2019). Use of
genomic selection in breeding rice (Oryza sativa l.) for resistance to rice blast
(Magnaporthe oryzae). Mol. Breed. 39, 114. doi: 10.1007/s11032-019-1023-2

Huang, M., Cabrera, A., Hoffstetter, A., Griffey, C., Van Sanford, D., Costa, J., et al.
(2016). Genomic selection for wheat traits and trait stability. Theor. Appl. Genet. 129,
1697–1710. doi: 10.1007/s00122-016-2733-z

Huang, M., Robbins, K. R., Li, Y., Umanzor, S., Marty-Rivera, M., Bailey, D., et al.
(2022). Simulation of sugar kelp (Saccharina latissima) breeding guided by practices to
accelerate genetic gains. G3 12 (3), jkac003. doi: 10.1093/g3journal/jkac003

Huang, M., Ward, B., Griffey, C., and Van Sanford, D. (2018). The accuracy of genomic
prediction between environments and populations for soft wheat traits. Crop Sci. 58 (6),
2274. doi: 10.2135/cropsci2017.10.0638

Jannink, J.-L., Lorenz, A. J., and Iwata, H. (2010). Genomic selection in plant breeding:
from theory to practice. Brief. Funct. Genomics 9, 166–177. doi: 10.1093/bfgp/elq001
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