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State-of-the-art of data
analyses in environmental
DNA approaches towards
its applicability to sustainable
fisheries management

Natalia Petit-Marty*, Laura Casas* and Fran Saborido-Rey*

Department of Fisheries Ecology, Institute of Marine Research-Spanish National Research Council
(IIM-CSIC), Vigo, Spain
An increasing number of studies using marine environmental DNA (eDNA)

approaches are showing its potential application in marine fisheries

management by helping and simplifying some of the labor-intensive traditional

surveys required to assess exploited populations and ecosystem status. eDNA

approaches (i.e. metabarcoding and targeted) can support to ecosystem-based

fisheries management by providing information on species composition;

surveillance of invasive, rare and/or endangered species; and providing

estimates of species abundance. Due to these potential uses in fisheries and

conservation sciences, the number of studies applying eDNA approaches in

marine habitats has expanded in the very last few years. However, a lack of

consistency across studies when applying pipelines for data analyses, makes

results difficult to compare among them. Such lack of consistency is partially

caused by poor knowledge in the management of raw sequences data, and

analytical methods allowing comparative results. Hence, we review here the

essential steps of eDNA data processing and analyses to get sound, reproducible,

and comparable results, providing a set of bioinformatics tools useful for each step.

Altogether this review presents the state of the art of eDNA data analyses towards a

comprehensive application in fisheries management promoting sustainability.

KEYWORDS

eDNA, bioinformatic pipeline, qPCR, dPCR, marine ecosystems, metabarcoding,
vulnerable marine ecosystems
1 Introduction

Management of marine fisheries requires a large amount of data collection. Such data

include monitoring of fish stock abundance, biomass, and several life history parameters.

Fisheries-independent research surveys based on capture or visual census of the fish species

of interest provide a significant proportion of the data to assess commercial fish stocks.

These surveys are complemented by studies determining maturity, fecundity, age and sex
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structure of the stocks. Moreover, fisheries-dependent data are also

collected to monitor in situ fisheries accordingly to the authority’s

regulation (Bradley et al., 2019; Urban et al., 2023). Altogether, these

methods give essential information to assess the status of fisheries

resources and to provide scientific advice on the best management

strategies to achieve a sustainable exploitation.

At present, the effects of climate change (Pinsky et al., 2020) and

the detected loss of marine biodiversity (Payne et al., 2016) impose

new levels of complexities in the assessments of the sustainability of

marine fisheries. Climate change is altering fish species distributions

and likely accelerating adaptation events, potentially impacting

species abundances and ecosystems structure (Perry et al., 2005;

Gallego et al., 2020; Pinsky et al., 2020; Palacios-Abrantes et al.,

2022). Moreover, the inception of ecosystem-based fisheries

management (EBFM, (Pikitch et al., 2004)), highlights as crucial

the evaluation of the effect of fishing operations on marine

ecosystems. EBFM should ensure long-term productive, healthy,

and resilient ecosystems. Thus, it is of maximum priority to

characterize and monitor the ecosystem status at places where

fishing operates, especially in ecosystems defined as vulnerable by

FAO (2009). Hence, data collection to ensure sustainable

management of fisheries is scaling up in complexity requiring

specialized training and high budgets.

As fisheries science is urgently needing to collect an increasing

amount of data to assess the long-term sustainability of fish

resources, environmental DNA approaches (eDNA, Taberlet

et al., 2012) have become a promising technology in simplifying

survey tasks. Hence, studies using eDNA to investigate marine

species richness, distribution, and abundance expanded in the very

last years (reviewed Gilbey et al., 2021; Jo et al., 2022; Miya, 2022;

Ramıŕez-Amaro et al., 2022; Rourke et al., 2022). eDNA refers to

DNA that can be extracted from environmental samples (such as

soil, water, or air), without first isolating any target organisms. It is

characterized by a complex mixture of genomic DNA from many

different organisms and by possible degradation (Taberlet et al.,

2012). Environmental DNA can be classified into two types,

organismal DNA, and extra-organismal DNA. The source of

organismal DNA is from whole individuals most probably alive at

the time of sampling, whereas extra-organismal DNA originates

from a variety of sources such as part of tissue replacement,

metabolic waste, gametes, etc. (Rodriguez-Ezpeleta et al., 2021).

Thus, eDNA samples are composed of a complex mixture of both

types of DNA (i.e., organismal and extra-organismal) from various

sources and in varying proportions (Taberlet et al., 2012). This

heterogeneity of eDNA samples provides for raw data to potentially

answer wide-rank of scientific questions, though it also brings

uncertainties at the time of interpreting and comparing results

across studies.

Coupled with sequencing and laboratory technologies, the

analysis of eDNA samples can be used to identify species and to

characterize species communities associated with the environment

from where the DNA was extracted. Basically, eDNA approaches

are based on the extraction, amplification, and quantification of the

DNA present in environmental samples. eDNA approaches can be

divided into two main groups: (1) eDNA metabarcoding or

community approach, and (2) species-specific or targeted
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approach (Seymour, 2019; Tsuji et al., 2019). Both strategies share

the key characteristic of non-invasive indirect sampling but differ in

their purpose, methodology, and interpretations. The current state

of the art of sequencing and quantification technologies makes both

eDNA approaches very powerful in helping sustainable marine

fisheries surveys and monitoring (Gilbey et al., 2021; Ramıŕez-

Amaro et al., 2022; Rourke et al., 2022). On the one hand, the

metabarcoding or community eDNA approach is intended to

characterize the species community living in a given environment

(Alberdi et al., 2017). Therefore, it can greatly facilitate

environmental monitoring surveys by providing data on species

assemblages and changes in ecosystems where fishing operates. On

the other hand, the targeted species-specific approach can inform

on population dynamics such as geographical displacements and

provide for quantitative estimates of abundance. In addition,

intermediate approaches between targeted and metabarcoding

eDNA approaches, are also being designed and implemented in

aquatic ecosystems (e.g. Wilcox et al., 2020). Nevertheless, there are

gaps in the knowledge of eDNA dynamics in the sea, which should

be accounted for in a comprehensive implementation of eDNA

approaches in fisheries data surveys.

Since the sea is a highly variable environment, and applications

of eDNA cover a wide spectrum of scientific questions (Barnes &

Turner, 2016), it is noted disparity among results of eDNA analyses.

Such incongruencies have raised concerns on the potential

applicability of eDNA surveys to help fisheries sustainable

management (Hansen et al., 2018; Ramıŕez-Amaro et al., 2022). It

has been highlighted that part of the disparate results found among

studies could be explained by the heterogeneity across pipelines and

bioinformatics tools used for data processing and analyses (Creedy

et al., 2022). eDNA data analyses entail the knowledge of the

analyzing algorithms and prior assumptions made by these. For

example, the choice of the algorithm to classify taxonomically the

composition of an environmental DNA sample, as well as the

completeness of the reference database used for it, can have a

significant impact on diversity estimates and should be made

according to the goals of the study (Mathon et al., 2021, Liu and

Zhang, 2021, Miya, 2022). Additionally, it is imperative to

understand what are the limitations of each particular eDNA

study with respect to the power of detection (Burian et al., 2021),

especially when reporting the presence/absence or abundance of

target species.

Several software, pipelines, and scripts exist to manage and

analyze the thousands of millions of sequences obtained in a typical

eDNA study. User-friendly bioinformatics tools for the analysis of

eDNA allow for obtaining results without bioinformatics or

computational knowledge. Nevertheless, understanding of every

step of the analytical pipeline is relevant for the reliable and

efficient application of eDNA approaches. When correctly

applied, algorithms and models included within eDNA data

analysis pipelines allow infer and, many times solve common

errors related to eDNA approaches. Therefore, to know the state

of the art of data analysis for eDNA approaches is of great

importance before planning an eDNA study. Thus, the aim of

this review is to present and explain the main analytical approaches

used in eDNA studies towards to facilitate its application in helping
frontiersin.org
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fisheries’ sustainable management. This review expands and

complements the review made by Ramıŕez-Amaro et al. (2022)

included in this Research Topic Issue. Nevertheless, whereas

Ramıŕez-Amaro et al. (2022) center on sampling and laboratory

steps, here we focus on the next step: the analyses of the eDNA data.
2 eDNA Data analyses pipelines

Several tasks related to fisheries sustainable management can be

supported by eDNA approaches: (1) Surveillance of rare (i.e.

endangered) and invasive species, (2) Describing and monitoring

Vulnerable Marine Ecosystems, (3) Monitoring fish assemblages,

and (4) Quantifying biomass and/or abundance of target

economically important species. Case-study examples of the

applicability of both eDNA approaches to these four tasks are

presented in BOX 1. eDNA metabarcoding can be used to

describe species richness (e.g. in Leray and Knowlton, 2015;

McClenaghan et al., 2020; Boulanger et al., 2021; Liu and Zhang,

2021; Sato et al., 2021; Yu et al., 2021; Fonseca et al., 2022; Good

et al., 2022; Keck et al., 2022), surveillance of the presence/absence

of target species such as invasive, or endangered (e.g. in Jerde et al.,

2011; Boussarie et al., 2018; Holman et al., 2019; Bonfil et al., 2021;

Manfrin et al., 2022), and monitor changes in species composition

(e.g. in Stat et al., 2017; Jeunen et al., 2019; Gallego et al., 2020;

Afzali et al., 2021; Gold et al., 2021; Russo et al., 2021; Stoeckle et al.,

2021; Valdivia-Carrillo et al., 2021; West et al., 2021; Maiello et al.,

2022). eDNA targeted approach is better suited for quantification of

the abundance of target species (e.g. in Takahara et al., 2012;

Lacoursière-Roussel et al., 2016; Yamamoto et al., 2016; Knudsen

et al., 2019; Salter et al., 2019; Brys et al., 2021; Fukaya et al., 2021;

Shelton et al., 2022; Urban et al., 2023), and therefore it could be

applied in monitoring fish stocks and vulnerable species.

Data processing for eDNAmetabarcoding requires several steps

which include decision-making on the best algorithms to be used

accordingly to the previous knowledge of the species community

and the goal of the study, while for eDNA targeted approach it is

simplified. Available, open-access bioinformatics tools with

potential use for eDNA approaches in fisheries are listed in

Supplementary Table 1.
3 eDNA metabarcoding

Metabarcoding refers to the amplification and sequencing of a

DNA region, known as barcoding, simultaneously for a species

community or taxonomic group. Most of the widely used barcoding

regions belong to the mitochondrial genome. It is because

mitochondria are present in multiple copies within cells and

therefore are most likely to be amplified from environmental

samples which contain low DNA content by species. PCR products

are then sequenced by High Throughput Sequencing (HTS),

commonly in Illumina platforms, and the obtained sequences are

subsequently clustered by similarity, and then taxonomically classified.

The selection of the barcoding region to be obtained from an

eDNA sample depends on the goal of the study as well as on the
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group of species intended to be surveyed. Universal primers for

barcoding regions are designed to amplify taxonomically related

species. The taxonomical assignment is performed by sequence

identity searches against reference sequence databases. The quality

of the results of the metabarcoding approach depends on the correct

taxonomical assignments of the species present in an eDNA sample.

Therefore, the correct selection of the barcoding region to be used

and the completeness of the reference database are the keys, and

also the main limitations of the metabarcoding approach

(Miya, 2022).

Bioinformatics pipelines are the result of executing linked

instructions to process a large amount of sequence data (often

several hundred million reads) using scripts, software, and

databases. Computational requirements for an eDNA

metabarcoding data analysis will depend on the sampling

magnitude, number of replicates, and goals of the study, though

hundreds of gigabytes of data are expected from metabarcoding

sequencing. Data analyses are mostly performed on Unix platforms,

and in high-performance computing systems. However, pipelines

such as PEMA (Zafeiropoulos et al., 2020) can be installed from

regular computers to cloud or HPC environments. Processing times

of different pipelines have been compared in Mathon et al., 2021.

Requirements of any particular pipeline used in eDNA

metabarcoding can be found in the source webpage listed in

Supplementary Table 1.

Data analysis protocols should be adapted to the survey design

and the ecological question under study (Alberdi et al., 2017; Zinger

et al., 2019). However, independently of the particularities of each

study, the metabarcoding data analyses pipeline has a number of

common steps that are essential and summarized in Figure 1.

Because the first application of eDNA metabarcoding was for

the study of microorganisms, there are very well-established

packages for the study of microbial communities based on the

16S metabarcoding region, such as MOTHUR (Schloss et al., 2009),

Qiime2 (Bolyen et al., 2019), USEARCH (Edgar, 2010), and RDP

pipeline (Cole et al., 2014). However, the extended use of eDNA in

conservation and marine sciences has produced an increasing

number of additional bioinformatics tools as well as reference

databases for the analysis of eukaryote taxonomic groups.

Therefore, the list of tools provided in Supplementary Table 1

does not intend to conduct a systematic review of all existing

metabarcoding pipelines. Instead, we focus on those that have

been proven useful for the study of marine biodiversity and fish

communities, are open access, and are well-documented.

To date, for the study of fish communities, MitoFish,

MitoAnnotator, and MiFish pipelines constitute a key platform

(Sato et al., 2018), OBITools (Boyer et al., 2016) and ANACAPA

(Curd et al., 2019) pipelines have been tested offering reliable results

for fish communities, while mBrave (Ratnasingham, 2019) linked to

BOLD system platform (Ratnasingham and Hebert, 2007), and

Meta-Fish-Lib (Collins et al., 2021) are powerful tools to increase

the knowledge in fish biodiversity surveys. Most of the pipelines

presented in Supplementary Table 1 do not perform all steps needed

to perform a complete eDNA metabarcoding analysis. However,

most of them are modular allowing users to run different modules

separately and choose better options according to their case study.
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Independently of the analytical protocol, the steps described below

are essential in any eDNA metabarcoding analyses.
3.1 Pre-processing: filtering raw data

The first steps of the bioinformatic pathway to analyze

eDNA metabarcoding data are aimed to correct errors that can be

introduced during DNA amplification and sequencing. The

goal of pre-processing steps is to end up with a dataset

composed of high-quality sequences that can be clustered and

taxonomically assigned.
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3.1.1 Checking the raw data quality profiles
HTS technologies produce massive amounts of data requiring

multiple computationally intensive steps before performing an

appropriate taxonomic assignment analysis. Commonly, raw files

are generated in FASTQ format, a text file including the obtained

DNA sequences (i.e. reads) and quality values encoded as ASCII

characters associated with each base of the sequence. Commonly,

reads are of 100-150 nucleotide length, and these can be single-end

or paired-end depending on whether only one DNA strand or both

are sequenced, respectively. For paired-end sequencing, two files per

sample with the same number of reads are generated,

corresponding to the forward (R1) and reverse (R2) reads.
BOX 1 Case-study examples of four tasks required in sustainable management of marine fisheries

Task 1: Surveillance of rare species
Case-study: Environmental DNA illuminates the dark diversity of sharks.
Boussarie et al. (2018) used eDNAmetabarcoding to detect shark species that are no longer detected by traditional surveys in habitats where they formerly occurred in New
Caledonian. The authors performed eDNA sampling from a wide area encompassed by a gradient of human density. eDNA results were compared to visual censuses
performed over more than 20 years, and data recorded by baited video over two years. An elasmobranch-specific COI primer set was used for the amplification of eDNA
metabarcoding markers, and data analysis was performed with OBITools (Boyer et al., 2016), using a reference database with data retrieved from BOLD database (Hebert
& Ratnasingham, 2007) for Elasmobranchii species. The reference database was enriched with homologous sequences from other non-elasmobranch taxa retrieved from
the EMBL-EBI database by performing in silico PCR, to control for misidentification, given the short length of the amplified sequence (127bp). The Vegan R package
(Dixon, 2003) was used for rarefaction analyses, followed by model fitting using the nls function in the stats package Models were fitted for the three methods
independently (visual, video, and eDNA).
The results show that environmental DNA (eDNA) detected 44% more shark species than traditional underwater visual censuses and baited videos across the New
Caledonian archipelago (south-western Pacific). eDNA analysis revealed the presence of previously unobserved shark species in human-impacted areas. The authors found
that the main limitation of the method was the imperfect nature of currently available metabarcoding primers, which introduced a degree of uncertainty regarding the
identification of certain species.

Task 2: Describing and monitoring Vulnerable Marine Ecosystems
Case-study: Detection of community-wide impacts of bottom trawl fishing on deep-sea assemblages using environmental DNA metabarcoding.
Good et al., 2022 assessed the impact of deep-sea trawling on open slope regions and marine canyons of the Mediterranean Sea for benthic meiofaunal species communities
while assessing the power of eDNA metabarcoding in the detection of changes in species diversity richness and composition. The authors used different barcoding regions
COI and 18S for targeting broad eukaryote diversity. eDNA samples from sediments were collected from five stations characterized by different levels of trawling impact,
while meiofaunal samples were collected from two locations with different trawling activity. Data pre-processing and processing was performed using a combination of
scripts and pipelines covering all standard steps. The taxonomic assignation of the Amplicon Sequence Variants (ASVs) was performed using the whole nucleotide
database from NCBI, and the Vegan package (Dixon, 2003) was used to obtain rarefaction curves. Meiofaunal samples were classified by traditional methods.
The results indicated no effect of trawling on alpha diversity, but a significant effect on species composition by both methods (eDNA and meiofaunal surveys). Bryozoan
taxa were only present at untrawled sites, suggesting this taxon could be used as trawling bioindicator. The main limitation of the study stems from a lack of reference
databases. Therefore, the authors conclude that combining molecular and non-molecular methodologies remain the most holistic way to evaluate anthropogenic impacts,
such as trawling, on benthic communities.

Task 3: Monitoring fish assemblages
Case-study: Trawl and eDNA assessment of marine fish diversity, seasonality, and relative abundance in coastal New Jersey, USA
Patterns of diversity, seasonality, and abundance of marine fish species were analyzed by Stoeckle & collaborators (2021) by concurrently performing trawl survey and
eDNA sampling. The authors took advantage of a bottom trawl survey of marine fisheries and evaluated the performance of eDNA metabarcoding in the estimates of fish
richness, composition, seasonality, and relative abundance. eDNA metabarcoding sequencing was performed using the mitochondrial 12S gene for a total of 136 samples
replicated across seasons. Amplicon sequence variants (ASVs) were obtained using DADA2 (Callahan et al., 2016). Taxon assignments were based on 100% of sequence
similarity to a 12S reference sequence of a regional fish database.
Results found: (i) Agreement in seasonal abundance for 70 percent of the fish species. Inconsistent detection was due to rare taxa detected by one or another survey in
single eDNA samples or tows. (ii) increased sensitivity in species diversity index of seven orders of magnitude with respect to trawl survey. (iii) Concordance in species
composition between the two survey methods was about 75%, and close to 100% for abundant species. (iv) eDNA species reads (log-scaled) significantly correlated
(p<0.001) with species biomass, and more strongly with an allometric index calculated from biomass which depends on body size (R2 = 0.59, and 0.66, respectively). The
authors conclude that eDNA approaches have potential to improve the management of fisheries and MPAs.

Task 4: Quantifying biomass and/or abundance of target economically important species
Case-study: Using eDNA to estimate biomass of bycatch in pelagic fisheries
Collecting fisheries-dependent bycatch data is particularly challenging in large industrial fisheries. Urban et al. (2023) used eDNA sampling and qPCR to determine the
biomass of Atlantic mackerel (Scomber scombrus) bycatch in herring (Clupea harengus) catch. Recording catch composition is required twice by the fisheries authority; at
first, onboard the ship and then after landing in the factory. The water of holdings tanks of fisheries vessels is unchanged from when the fishing operation ends until the
catch is landed at a factory, providing an excellent source of eDNA from catch composition. Species-specific assays targeting both, herring and mackerel mitochondrial
cytochrome b sequences were used for DNA quantification. eDNA-to-biomass models were established with experimental data (shedding and decay experiments) and
then used to predict the biomass of mackerel in the catch.
The results indicated that fractions and/or weights of mackerel estimated with eDNA analyses were comparable to routinely used visual-based estimation metrics. The
variation in biomass of bycatch mackerel estimated from eDNA samples was lower than that found among the two visual assessments (i.e. onboard the ship, and at the
factory), and it is within the 10% variation allowed by regulatory authorities. The authors concluded that the eDNA-based approach is more precise and consistent in
estimating catch fractions than the currently used methods.
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The reads-associated quality values are produced using the light

intensity signal of each base call during the sequencing process.

These quality scores are then translated into a Phred score using a

modified version of the Phred algorithm (Ewing et al., 1998). Phred

scores, are defined as the probability of error when calling a

nucleotide base (A, C, T, or G) during the sequencing process,

and are used for the control of the quality of the eDNA sequences.

The quality of the reads can be obtained by using freely available

software packages, such as FASTQC (Andrews, 2014) or FASTP

(Chen et al., 2018). Both tools perform a primary check of the

quality of all raw reads in a dataset through evaluation of different

parameters such as the number of sequences, sequence length, GC

content, presence of adaptors, ambiguous bases, overrepresented k-

mers, and duplicated reads content. Visualizing and checking the

quality scores from raw data is essential to set appropriate cut-off

levels during further pre-processing steps and is fundamental for

optimal downstream analysis.
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3.1.2 Filtering by sequence quality
Typically, an average quality score (Q) of a read below 20 is

considered low, and these sequences should be eliminated from the

analysis. Moreover, sequencing accuracy decays with the sequence

length and, accordingly, the 3’ end of reads usually presents lower

quality scores. Hence, it is recommended to trim the end of the

forward and reverse reads based on their phred score to remove low-

quality positions (typically Q20). This trimming can be performed by

several programs, such as the trimmer tool of FASTQX-toolkit

(https://hannonlab.cshl.edu/fastx_toolkit/), FastQC (Andrews,

2014), FastP (Chen et al., 2018), or Trimmomatic (Bolger et al., 2014).

3.1.3 Merging paired-end reads
This step should be performed if paired-end sequencing was

obtained. Forward and reverse data files need to be combined into a

single file to generate a complete amplicon sequence. Crucial

parameters to perform merging of forward and reverse reads are
FIGURE 1

Flowchart describing the key bioinformatics steps required to analyze eDNA metabarcoding data. Steps are split in three parts: Pre-processing:
filtering and correction raw data. Processing: clustering and taxonomic assignments; and Post-processing: statistical analysis and biodiversity index.
OTUs, Organizational Taxonomic Units; ASVs, Amplicon Sequence Variants.
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the choice of the algorithm, the presence of gaps in the alignment,

or the minimum overlapping length (Taberlet et al., 2018).

Algorithms for merging paired-end reads are implemented in

different software packages, such as PEAR (Zhang et al., 2014),

PANDAseq (Masella et al., 2012), FLASH (Magoč & Salzberg,

2011), or the illuminapairedend algorithm in OBITools (Boyer

et al., 2016).

3.1.4 Trimming PCR primers and
filtering by length

It is mandatory to remove the primers used in the eDNA

metabarcoding experiment from every read. Primer sequences are

usually removed using two approaches: (i) by allowing zero or a small

number of mismatches between the sequence of the primers and the

raw reads, with software packages such as Cutadapt (Martin, 2011) or

(ii) by trimming the length of forward and reverse primers from the 5’

-end and 3’ -end of the sequences, respectively, using Trimmomatic

(Bolger et al., 2014). Moreover, in most eDNA metabarcoding

studies, only sequences within the expected length range of the

amplified genomic region used are kept to reduce error rates in the

dataset (Deiner et al., 2017). This can be done by setting a minimum

and/or maximum length command with Cutadapt (Martin, 2011).
3.1.5 Removing chimeric sequences
Chimeric sequences are PCR artifacts made up of two or more

sequences that have been erroneously combined during the extension

step of the PCR amplification. The removal of chimeras has been

identified as an essential quality control step to increase the diversity

estimation accuracy (Alberdi et al., 2017; Deiner et al., 2017). Strategies

for chimera detection are based on the comparison of all the sequences

present in the dataset between themselves, in order to detect if any of

them is derived from the 5’ -end of one parent sequence and the 3’ -end

of another. Detection and removal of chimeras are implemented in

several pipelines such as DADA2 (Callahan et al., 2016) andVSEARCH

(Rognes et al., 2016), MIFISH (Sato et al., 2018), and BARQUE

(Mathon et al., 2021). However, parameters used in the removal of

chimeras during the bioinformatic pipeline could sometimes eliminate

species that are actually present in the sample, so it is advisable to

compare the results obtained with and without chimera removal.
3.1.6 Demultiplexing
Before pooling together eDNA samples for sequencing, a

unique sequence named barcode is ligated to the genetic material

of each individual sample. Then, the barcode information is used to

allocate the sequence to their corresponding sample in a process

known as demultiplexing. Different tools have been developed to

this end as SABRE (https://github.com/najoshi/sabre), or

FLEXBAR (Dodt et al., 2012), and it is also implemented in

OBITools (ngsfilter, Boyer et al., 2016), eDNAFlow (Mousavi-

Derazmahalleh et al., 2021), and SLIM (Dufresne et al., 2019).
3.1.7 Dereplication
Given that sequences obtained from eDNA samples contain

different representations of species and/or individuals within the
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same species, it is needed to collapse strictly identical sequencing

reads into unique sequences. This process is known as

dereplication. It can be carried out in OBITools (Boyer et al.,

2016) using the obiuniq command, or in VSEARCH (Rognes

et al., 2016) using the –derep_fulllength or –derep_prefix scripts,

and also in DADA2 (Callahan et al., 2016) and SWARM (Mahé

et al., 2015). The abundance of identical sequences in each sample is

tracked in the output file, information that is subsequently used to

generate a count table after the clustering analyses.
3.2 Processing data: taxonomic assignment

The taxonomic assignment is key in the eDNA metabarcoding

approach, and it is split into two steps: clustering and searching

taxonomic identity in the reference databases.

3.2.1 Clustering
Clustering of the sequences by similarity is performed in order

to split intra- from inter-specific genetic variability (Alberdi et al.,

2017). However, a lack of knowledge on the expected spectrum of

DNA sequence variation among and within species makes the

selection of the clustering algorithm a critical step to get

confident results. Different algorithms to perform the clustering

have been proposed and evaluated, and the selection should be

based on the study goals and the existing knowledge of the

environment being analyzed (Xiong and Zhan, 2018).

Sequence clustering can be reference-based or de novo.

Reference-based clustering is straightforward always that the

reference database is complete enough, and the barcoding

sequence has enough power to differentiate species. Clustering de

novo entails grouping all sequences among themselves into clusters

and assigning taxonomically the representative sequences.

The clustering algorithms most frequently used are based on

generating clusters of sequences, named molecular Operational

Taxonomic Units (OTUs). OTUs group sequences differing by

less than a previously defined threshold, commonly set among 3

to 5% of sequence variation. Nevertheless, the imposed threshold of

sequence similarity used is frequently arbitrary if the variability in

DNA sequences of the target species community is unknown. Thus,

it could produce misidentification of species if the threshold is set

high or a lack of detection if it is too low. Therefore, other clustering

methods have been developed without the need for a threshold of

sequence similarity such as the Bayesian clustering algorithm of

CROP (Hao et al., 2011) or the iterative growth process used in

SWARM (Mahé et al., 2015b). These alternatives to OTUs, use

Amplicon Sequence Variants (ASVs, Eren et al., 2013), also known

as Exact Sequence Variants (ESVs), or zero-radius OTUs (ZOTUs).

Different from OTUs, ASVs are constructed by a de novo

process grouping the sequences contained in the dataset by

minimizing the number of differing nucleotides, frequently to one

single difference. Therefore, all biological variation is captured in

ASVs and results can be compared between different studies. ASVs

algorithms are implemented in several software and pipelines such

as DADA2 (Callahan et al., 2016), SLIM (Dufresne et al., 2019),
frontiersin.org

https://github.com/najoshi/sabre
https://doi.org/10.3389/fmars.2023.1061530
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Petit-Marty et al. 10.3389/fmars.2023.1061530
ANACAPA toolkit (Curd et al., 2019), eDNAFlow (Mousavi-

Derazmahalleh et al., 2021), and PEMA (Zafeiropoulos et al., 2020).

An overview of the open-access bioinformatics tools

implementing the four most common clustering algorithms:

VSEARCH (Rognes et al., 2016), SWARM (Mahé et al., 2015),

CROP (Hao et al., 2011) and DADA2 (Callahan et al., 2016) are

presented in Table 1. Moreover, LULU (Frøslev et al., 2017), is an

algorithm specially designed for removing erroneous OTUs

improving the accuracy of species diversity statistics estimates

based on similarity thresholds.

3.2.2 Taxonomic assignment
Several DNA regions are used as targets for HTS taxonomic

identification using the eDNA metabarcoding approach in

eukaryotes. Among the most widely used DNA regions are the

ribosomal RNA genes (rRNA 12S/18S/28S), the internal transcribed

spacer (ITS), and the Cytochrome oxidase subunit I (COI)

mitochondrial gene. However, the use of one or another depends

on the species groups under study, and the power of each one

should be assessed when planning the study. Different studies

recommend the use of more than one DNA region to increase the

power of species detection (Kumar et al., 2022).

The taxonomic identification of OTUs/ASVs is one of the

crucial steps in the pipeline and can be accomplished using

different approaches: (i) the similarity-based method performs an
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alignment against all sequences of the reference database to assign

taxonomy to a query sequence, and it is performed by BLAST

(Altschul et al., 1990) or BOLD (for COI sequences, (Ratnasingham

& Hebert, 2007)) algorithms; (ii) the phylogeny-based approach,

implemented in pipelines such as SAP (Munch et al., 2008), pplacer

(Matsen et al., 2010), or EPA-ng (Barbera et al., 2019), estimates the

similarity between the query sequence and the reference sequences

by analyzing the position of the query sequence in the phylogenetic

tree generated for the reference database; and (iii) the composition-

based method scores query sequences against the reference database

and assigns the taxonomy based on the pattern of scores obtained,

and it is implemented by the script ecotag in OBITools (Boyer

et al., 2016)

As the goal of eDNA metabarcoding studies is to characterize

the community of species living in a given environment, the quality

and completeness of the reference databases used for taxonomic

assignment is one of the crucial points to avoid false negative results

(Miya, 2022). The best option is to build an ad hoc database

containing the sequences of species inhabiting the area under

study (e.g. in Boulanger et al., 2021; Gold et al., 2021), which

requires an extra survey effort in marine environments where

species composition is not fully characterized, or unknown. It is

the most important for the description and surveillance of Marine

Vulnerable Ecosystems, including invertebrate species which are

poorly characterized molecularly (Miya, 2022).
TABLE 1 Most common algorithms used for the clustering step in metabarcoding eDNA analyses.

Software/
Algorithm

Summary Task performed Reference

VSEARCH VSEARCH is an open source tool for processing nucleotide
sequence data. It performs global alignments between the query
sequences and the potential target reference sequences. To identify
similar sequences it uses a fast heuristic algorithm based on words
shared by the query and target sequences.

• Clustering
• Chimera detection
• Dereplication
• Sorting
• Subsampling
• FASTQ file processing (i.e. merging
paired-ends reads)

Rognes et al. (2016) PeerJ 4 : e2584.

SWARM SWARM is a single-linkage clustering method, it uses an iterative
growth process and the sequence abundance values to delineate
clusters. SWARM uses a local clustering threshold for alignments,
instead of a global one such as the one used in Vsearch.

• Clustering
• Dereplication
• Outputs OTU representatives in
fasta format

Mahé et al. (2015). PeerJ 3: e1420.

CROP CROP (Clustering 16S rRNA for OTU Prediction) is an
unsupervised Bayesian clustering method. It finds clusters without
setting a hard cut-off threshold as required by hierarchical
clustering methods. It uses a Gaussian mixture model to describe
the data replacing the mean value of a Gaussian distribution by a
‘center’ sequence to characterize a specific cluster. Although
originally designed for its use in 16S microorganism metabarcoding,
it has been used with other markers and eukaryotes species.

• Clustering Hao et al. (2011) Bioinformatics
27.5: 611-618.

DADA2 DADA (Divisive Amplicon Denoising Algorithm) is a model-based
approach for correcting amplicon errors without constructing
OTUs. DADA2 is reference free and applicable to any genetic locus.
The core denoising algorithm is built on a model of the errors in
Illumina-sequenced amplicon reads. A Poisson model for the
number of repeated observations of a sequence parameterized by
the error rate is then used to calculate the p-value of the null
hypothesis that the number of amplicons reads of a sequence is
consistent with the error model. These p-values are used as the
division criteria for an iterative partitioning algorithm, which
continues dividing sequencing reads until all partitions are
consistent with being produced from their central sequence.

• Clustering
• Filtering
• Dereplication
• Chimera identification
• Merging of paired-end reads

Callahan et al. (2016). Nature
methods, 13(7), 581-583.
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For eDNA metabarcoding of fish species assemblages, reference

databases are mostly complete if not at species levels, at least in high

taxonomic categories such as genera or family. Moreover, for

commercially important fish species monitored in fisheries

management programs, biological material to build up sequences

databases is available from research surveys, port landings, and

markets. Thus, for fish species valued in markets, reference

databases’ incompleteness is not a limiting issue.

Universal primers for barcoding teleost fish are already available

(Ivanova et al., 2007; Sato et al., 2018), as well as several databases

specifically dedicated to teleosts, such as MitoFish (Sato et al., 2018)

and Phylofish (Pasquier et al., 2016). To date, for fish species the two

more frequently used barcoding regions are 12S and COI. Nowadays,

it is possible to retrieve barcoding reference sequences of 25,924 fish

species (i.e. 24,724 teleost and 1,200 Elasmobranchii) from BOLD

systems (Ratnasingham and Hebert, 2007) and 8,523 from MIFISH

database (Miya, 2022). Thus, using the COI mitochondrial gene

potentially allows for the detection of approximately 70% out of the

nearly 34,000 described fish species, though the length of the obtained

COI sequences should be extended to avoidmisidentifications (Collins

et al., 2021). However, rRNA-related barcoding regions are preferred

when different groups of species are intended to be surveyed from the

eDNA sample (Miya, 2022), as these have the potential to differentiate

wider taxonomic groups using the more common short reads

metabarcoding sequencing. Additionally, bioinformatic tools for

building up custom reference databases are available, allowing

mining and retrieving barcoding sequences of species of interest

from big sequences reference databases. The ANACAPA toolkit’s

(Curd et al., 2019) first module, CRUX, construct custom reference

databases for user-defined primers by querying public databases such

as NCBI’s nucleotide database (Benson et al., 2013), and Meta-Fish-

Lib (Collins et al., 2021) is a pipeline designed to retrieve

mitochondrial DNA sequence data for a given list of fish species.
3.3 Post-processing and diversity statistics

Refining the distribution of sequences in the final count table is

imperative to reduce the impact of false positives in further analyses.

False positives are mainly due to external contamination, occurred

in the laboratory, or internal contamination in the sequencing

process (Taberlet et al., 2018).

External contaminations can be detected through the incorporation

of controls during the processing of samples, such as negative DNA

extractions (i.e. DNA extraction from storage/extraction buffers used in

the field) or negative PCR controls. Internal contaminations are mainly

due to the miss-assignment of indices during library preparation,

sequencing, and/or demultiplexing steps, that causes the allocation of

a low percentage of sequences of a sample to other samples.

Additionally, due to miscalled bases during sequencing, OTUs/ASVs

with a small number of sequences appear randomly spread through the

count table. Therefore, error-correction in the count table (singletons

and rare OTUs/ASVs) prior to starting biological interpretation is

recommended in eDNA metabarcoding experiments. A summary of

all potential source of errors in an eDNA processing workflow, as well as

potential solutions to avoid these can be found in Zinger et al., 2019.
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Different bioinformatics tools can also be used to minimize and

correct false positive errors in eDNA metabarcoding analyses.

DADA2 (Callahan et al., 2016) generates a parametric error

model that is trained on each sequencing run and then applies

that model to correct and collapse the sequence into ASVs. Deblur

(Supplementary Table 1), computes error profiles to obtain putative

error-free sequences from Illumina MiSeq and HiSeq. LULU

(Frøslev et al, 2017) collapses erroneous OTUs/ASVs into

their parents to remove them from the dataset. Finally, the R

package microDecon (McKnight et al., 2019), uses the

proportions of contaminant OTUs/ASVs in negative blank

samples to identify and remove erroneous sequences from the

eDNA metabarcoding datasets.

3.3.1 Alpha diversity patterns
Alpha-diversity analyses use the number of OTUs/ASVs

sequences assigned to a taxonomic level at each sampling

location. Different approaches are followed to accommodate

differences in sampling effort and diversity coverages (McKnight

et al., 2019). Rarefaction curves are used to check whether the

sequencing depth obtained is sufficient to retrieve most of the

species diversity present in the environmental samples.

Rarefaction curves can be obtained by using the Vegan R package

(Dixon, 2003). Alpha diversity indexes are frequently integrated

within avai lable eDNA metabarcoding pipel ines (see

Supplementary Table 1) or can be performed separately using

TTT (Macher et al., 2021) or Vegan R package (Dixon, 2003).

3.3.2 Beta diversity patterns
Beta diversity can be defined as the variability in species

composition among sampling units for a given area. Thus, it is

different from alpha diversity as two groups can have identical

species richness indexes, but different species compositions. Similar

to alpha-diversity, beta-diversity analyses are frequently included in

pipelines (See Supplementary Table 1) or can be obtained by using

TTT (Macher et al., 2021) or Vegan R package (Dixon, 2003).
3.4 Quantitative monitoring of biodiversity

The quantification of the abundance of the detected species in an

eDNA sample adds very valuable information to eDNA

metabarcoding analyses. The quantitative relationship between

species abundance and the amount of DNA present in the

environment has been explored in seawater samples. It has been

shown a significant positive correlation between trawl catches or

visual census and estimated eDNA abundances (e.g. in Thomsen

et al., 2016; Doi et al., 2017; Tillotson et al., 2018, Levi et al., 2019,

Fukaya et al., 2021, Afzali et al., 2021; Russo et al., 2021; Sato et al.,

2021; Stoeckle et al., 2021; Maiello et al., 2022). Nonetheless, many

studies also report high uncertainty in these estimations, mainly due

to the lack of knowledge on the dynamics of eDNA in marine

environments (i.e. process-based models see point 3. e.g. Lacoursière-

Roussel et al., 2016, Sepúlveda et al., 2021; Nakagawa et al., 2022), and

the poor knowledge on the probability of detection in eDNA

metabarcoding approaches (i.e. occupancy and process models, see
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point 3, e.g. Doi et al., 2019; Fukaya et al., 2021). A modelling

framework for eDNA metabarcoding data, allowing for all key

sources of variation, error and noise in the data-generating process,

has been proposed by Diana et al. (2022). Inference is performed

using MCMC and can be used to estimate within-species biomass

changes across sites and to link those changes to environmental

covariates, while accounting for between-species and between-sites

correlation. The modelling framework is available across the

eDNAPLUS R script (Supplementary Table 1). However, currently,

there is a consensus indicating that quantitative measures of species

abundance are better achieved by using the targeted eDNA approach.
4 Targeted eDNA

The second category of eDNA approaches involves species-

specific techniques that use assays tailored to target DNA fragments

of particular species in an environmental sample. When designed

stringently and after thorough validation, these are highly reliable

and often effectively linked to the biomass and abundance of the

target organism (e.g. in Takahara et al., 2012; Doi et al., 2015;

Lacoursière-Roussel et al., 2016; Yamamoto et al., 2016; Capo et al.,

2019; Knudsen et al., 2019; Salter et al., 2019; LeBlanc et al., 2020;

Brys et al., 2021; Fukaya et al., 2021; Shelton et al., 2022; Kasmi et al.,

2023; Urban et al., 2023). Nowadays, the main technique used in

species-specific detection of environmental samples is real-time
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quantitative PCR (qPCR). However, other PCR relate-techniques

such as digital PCR can also be used. The workflow of data analyses

for the targeted eDNA approach is presented in Figure 2.
4.1 Real-time quantitative PCR

Real-time quantitative PCR or qPCR is a technique capable of

detecting and quantifying tiny amounts of DNA present in a sample

by contrasting the data obtained to a standard curve. Different from

the original PCR method, qPCR measures DNA amplification by

fluorescence signals as the reaction progresses in real-time. The

quantification of the target DNA of a qPCR experiment is

performed by measuring the emission of a fluorescent reporter dye

that binds to the DNA in each amplification cycle. Thus, the initial

amounts of DNA templates in a sample can be quantified by

comparing the number of amplification cycles required to reach a

particular threshold offluorescence signal. Hence, the number of PCR

cycles will be negatively related to the starting concentration of the

target DNA (Kubista et al., 2006). Therefore, the most significant

parameter derived from a qPCR experiment is the quantification cycle

(Cq), which can be defined as a PCR cycle at which the accumulating

PCR products’ fluorescence reaches a pre-established threshold.

A standard curve is obtained by plotting Cq values versus DNA

concentration for different dilutions of a target DNA sample of

known concentration. The standard curves are used to calibrate the
FIGURE 2

Flowchart describing the key bioinformatics steps required to get successful results quantifying eDNA from marine samples. qPCR: real-time
quantitative PCR, dPCR: digital PCR. Quantification of eDNA samples by qPCR needs a standard calibration curve, whereas digital PCR directly
counts eDNA target molecules splitting the PCR reaction in tiny volumes. Cq: quantification cycle, a PCR cycle at which the accumulating PCR
products’ fluorescence reaches a pre-established threshold. Efficiency, which measures the overall performance of the qPCR. A standard curve is
obtained by plotting Cq values versus DNA concentration for different dilutions of a target DNA sample of known concentration. LOD, Limit of
Detection. LOQ, Limit of Quantification.
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qPCR and interpolate the data from the target samples with

unknown concentrations collected in the environment.

The rate at which new amplicons are generated is the qPCR

Efficiency, which measures the overall performance of the qPCR.

An efficiency of 100% means that target DNA molecules double at

each cycle. Typical efficiencies range from 90 to 110%. Efficiency

values below or above the aforementioned range mean that the

chosen qPCR conditions are not optimal (e.g. inefficient primer

design, presence of PCR inhibitors, excessive amounts of starting

DNA, or incorrect annealing temperature). Efficiency is calculated

from the standard curve as E= 10-1/slope – 1.

In order to get comparative results among qPCR studies it is

necessary to report the relevant experimental conditions. Bustin

et al. (2009) provide guidelines for the Minimum Information for

the publication of Quantitative Real-Time PCR experiments

(MIQE). Moreover, for eDNA quantitative results it is advised to

report the assay Limit of Detection (LOD) and the assay Limit of

Quantification (LOQ). LOD and LOQ are defined as the lowest

standard concentration of template DNA that produced at least

95% positive replicates, and the lowest standard concentration that

could be quantified with a CV value below 35%; respectively

(Klymus et al. (2020); see Section 4.4 for more details).
4.2 Absolute quantification of target eDNA

The first step to getting absolute quantification is the generation

of a standard curve for each run of qPCR. The standard curve is

obtained using a DNA sample with a known concentration from the

target species to be analysed (e.g DNA extracted from a small piece of

tissue). These standard DNA samples are serially diluted to generate a

minimum of five samples with decreasing DNA concentrations, and

then added in triplicate to the qPCR assay and amplified jointly with

the eDNA samples of unknown concentration (Yamamoto et al.,

2016; Itakura et al., 2019). Usually, thermal cyclers can hold a plate

containing up to 96 samples in a single run. Therefore, if more plates

are needed for a given study, a unique standard curve should be

generated for each run and also for each target species. Once the Cq

values for the standard curve are obtained, these are plotted against

the logarithm of the starting concentrations, which produce a linear

relationship with a negative slope. With this standard curve, Cq data

for the unknown eDNA samples are interpolated to obtain eDNA

concentration of the target species. Most real-time thermal cyclers

include proprietary software that performs these types of analyses

automatically. Additionally, there is a wide range of software for the

different raw data analyses that have been exhaustively reviewed by

Pabinger et al., 2014.
4.3 Digital PCR techniques

Similar to qPCR, digital PCR (dPCR) allows for the

quantification of minimal amounts of DNA, but it does not require

a standard curve for quantification. Thus, quantification is possible

even when a standard sample is not available. Moreover, eliminating

calibration curves also eliminates a potential source of errors.
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In a dPCR, the reaction mixture is split into a large number of

separate tiny volumes, such that there is one or no target molecule

present in any individual reaction. Currently, available commercial

systems can generate up to ten thousand (Bio-Rad, Life Technologies),

nearly fifty thousand (Standard BioTools), and ten million (RainDance)

partitions per experiment (Pabinger et al., 2014). Therefore, each

reaction becomes binary (i.e. presence/absence) and these discrete

signals are counted. Obtaining target eDNA concentration values

from a dPCR experiment is made directly by the software

implemented in the machine. The data that this system generates is

gathered from a binary signal that, after applying a Poisson correction to

consider partitions with more than one molecule, can be used to directly

count the number of targets eDNA molecules in the original sample.

Comparisons between qPCR and dPCR methods has shown the

later to be more tolerant to PCR inhibition. Therefore, the obtained

concentration estimates are less biased and, consequently, the

correlation between eDNA concentration versus abundance or

biomass should be stronger. There are few studies relying

exclusively on dPCR for the estimation of target species abundance

or biomass, likely as the technology is still expensive for its wide use

(e.g. in Marx, 2014; Doi et al., 2015; Capo et al., 2019; Brys et al., 2021;

Manfrin et al., 2022).
4.4 Getting standard measures for
comparative studies: LOD and LOQ

eDNA samples contain low concentrations of target DNA, thus,

the ability of an assay to detect and quantify these low concentrations of

DNAs is of the most importance. Klymus et al. (2020) presented a

simple method based on discrete thresholds for determining the LOD

and LOQ for an eDNAqPCR assay. LOD determines howmany copies

of target DNA can be detected with 95% of confidence in a qPCR

reaction. Thus, LOD describes the ability of an assay to detect target

DNA, which is key in monitoring rare species based on detection/

nondetection. While LOQ determines which is the minimum number

of target DNA copies quantifiable in a qPCR reaction with defined

precision, which is of the maximum importance when the goal of a

study is quantifying biomass or abundance. LOD and LOQ can also be

obtained by a curve-fitting modelling method, which is recommended

to avoid rigorous testing of a large number of different DNA

concentrations. Multiple models can be evaluated to select the best

for each assessed dataset. LOD and LOQ can be estimated using the R

script qPCR LOD CALC (Merkes et al., 2019, Supplementary Table 1)
4.5 Correlating eDNA concentration with
abundance or biomass

Different studies focused on correlating abundances or biomass

with eDNA concentration use diverse statistical methods for their

analysis. Most studies find that the residual errors do not follow a

normal distribution and need, therefore, to be first log-transformed in

order to improve the homogeneity of the variance (Thomsen et al.,

2016; Knudsen et al., 2019; Murakami et al., 2019). The statistical

model used greatly depends on the experimental design and the data
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obtained. For studies dealing with just two variables (abundance or

biomass and eDNA concentration), the statistical method of choice is

either type II linear regression (Takahara et al., 2012; Doi et al., 2015;

Knudsen et al., 2019) or type I regression (Yamamoto et al., 2016).

Studies also considering the different variables that may be having an

influence on eDNA concentration (such as temperature or salinity) use

linear mixed-effects models (Itakura et al., 2019) or generalized linear

models (Thomsen et al., 2016; Tillotson et al., 2018; Knudsen et al.,

2019). However, Kasmi et al. (2023) found differences in the

relationship between eDNA copies and biomass depending on the

statistical methods, getting better results when using Gaussian Process

Regression (GPR), neural network and non-linear regression model,

than with simple regression models.

High correspondence between abundance or biomass estimated

from traditional and eDNA methods have been found (eg. Shelton

et al., 2022; Kasmi et al., 2023; Urban et al., 2023). However, natural

environmental conditions (e.g. Lacoursière-Roussel et al., 2016) and

species-specific characteristics such as eDNA shed and decay (Urban

et al., 2023), are source of uncertainty and need to be considered in

results interpretation. Nevertheless, occupancy and process-based

modelling can help to better interpret eDNA quantification results

obtained from natural environments (See Section 5).
5 Results interpretation: occupancy
and process-based models

When assessments of species distribution are carried out, it is

imperative to understand what are the limitations of the survey

methods used. Similarly to all survey methods, detection (or lack of

detection) of species by eDNA sampling is not free of errors (see Burian

et al., 2021 for a review of potential sources of error of eDNA-based

methods). A particular species might not be detected even if it is

present in the environment (i.e. false negative), or it can be erroneously

detected even when absent (i.e. false positive). Therefore, it is most

important to understand the level of error that the particular eDNA

survey presents, to make sound and consistent interpretations.

As commented in section 3.3.3 several bioinformatics tools help

to filter out false positive errors in eDNA metabarcoding studies.

However, it is important to consider the rate of false negative results

too, especially when the goal of the study is to monitor a group of

target species (i.e. by metabarcoding) or single target species. False

negative detection can be produced because enzymatic inhibition,

or eDNA for a species was not collected within the sample, or it is in

such a low concentration that became undetectable or because of

the sensitivity of PCR (Ficetola et al., 2015). To avoid missing

detection of taxa that are actually present (false negatives), multiple

extractions and amplifications of the same samples are often

performed (Ficetola et al., 2015; McClenaghan et al., 2020).

Moreover, increasing sequencing depth can also improve the rates

of detection (McClenaghan et al., 2020; Fukaya et al., 2021).

Currently, it is becoming common and advisable to interpret

surveys based on eDNA within an occupancy modelling framework.

Occupancy modelling allows estimating the probability of detection

of a given species in a given environment (Griffin et al., 2020).

Occupancy modelling can be applied to eDNA metabarcoding
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(i.e. Doi et al., 2019; McClenaghan et al., 2020, Valdivia-Carrillo

et al., 2021), and in targeted eDNA approach (Dorazio and

Erickson, 2018, Fukaya et al., 2021; Buxton et al., 2022).

Appropriate data for fitting an Occupancy Site model consist of a

series of samples obtained from S sampling sites, with K replicate

samples obtained per site (Dorazio and Erickson, 2018). Models

have been developed allowing for multiscale occupancy models to

be applied accounting for both positive and negative errors at the

field and laboratory stages (Griffin et al., 2020). Occupancy models

successfully estimated true prevalence, detection probability, and

false-positive rates, and their performance increased with the

number of replicates (Ficetola et al., 2015). Thus, the occupancy

modelling framework can be also applied to study the optimal

conditions for sampling and laboratory stages (Doi et al., 2019).

Modelling is frequently performed by Bayesian inference, and

modeled parameters can include environmental and experimental

covariates (Guillera-Arroita et al., 2017; McClenaghan et al., 2020;

Burian et al., 2021; Buxton et al., 2022).

Other origins of uncertainty in the results of surveys of eDNA,

especially for quantitative results, come from the dynamics of

concentrations of eDNA at the sampling places (Burian et al.,

2021). The amount of DNA shed into the environment by a

particular species can be different from another, the biomass of

an adult fish can be the same as hundred juvenile individuals of the

same species; while environmental characteristics can make DNA

rapidly degraded or transported by oceanic currents (Hansen et al.,

2018). Process-based models are based on a mechanistic

understanding of the dynamics of eDNA concentrations in the

environment and can help in accounting for these sources of false

positive and false negative results (Burian et al., 2021). eDNA

studies have been favourably augmented in precision when

accounting for eDNA transport shed and decay (e.g. Collins et al.,

2021, Murakami et al., 2019; Kirtane et al., 2021; Urban et al., 2023).

The experimental output, informs on the expected rates of detection

or lack of it in the eDNA survey and can be integrated as prior

information within the occupancy modelling framework.

Occupancy modelling can be performed using the eDNA SHINY

APP (Diana et al., 2021), or the R script EDNAOCCUPANCY

(Dorazio and Erickson, 2018).

6 Ten good practices in eDNA
metabarcoding and targeted dPCR/
qPCR data analyses
I. Make good planning of sampling (i.e. number of sites,

replicates by sites, PCR replicates, amplicon sequencing

depth), and use simulations to infer the probability of

detection and number of replications.

II. Compile all the information available on the species

or ecosystems to be surveyed, combining eDNA

with traditional survey methodologies to get more

confident results.

III. Follow strictly the pre-processing steps of eDNA

metabarcoding data analyses pipelines.
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IV. Assess the completeness of reference databases and

choose the adequate clustering and taxonomic

assignment algorithms accordingly to available data,

and to the goal of the study.

V. Perform post-processing filtering of OTUS/ASVs to

eliminate most of the possible sources of false positives

produced in the laboratory.

VI. Estimate LOD and LOQ when performing qPCR assays,

reporting these for comparative results among studies.

VII. Assess the probability of detection of the species of

interest at both field and laboratory stages.

VIII. Research the eDNA dynamics (i.e. shed, decay, and

transport) regarding your target species/ecosystem.

IX. Do not make conclusions about species absence without

performing points V for the targeted eDNA approach,

and VI and VII for both eDNA methods.

X. Conclusions on true species detection should be made

only when using a robust protocol (e.g. including an

appropriate number of positive replicates).
7 Final considerations

As sequencing and quantitative technologies grow, the

applications of eDNA approaches also do. To date, automatic

sequencing robots are already available to process eDNA in situ

within aquatic environments (Sepulveda et al., 2020), and long-read

sequencing of eDNA enhances taxonomic assignments opening also

the possibility to estimate population genetics parameters at the

same time (Sigsgaard et al., 2020; Tsuji et al., 2020). Bioinformatics

tools to analyze the different data from eDNA sampling are growing

along with the sequencing technologies, and are not a limiting issue

in the application of eDNA approaches. The increasing number of

eDNA studies published in the very last few years reflects both the

simplicity of the method to potentially answer different scientific

questions, and the need to simplify costly surveys traditionally used

in ecological sciences. However, this diversity of studies with

different analytical approaches makes it difficult to navigate the

bibliography for a systematic implementation of eDNA approaches

in the sustainable management of fisheries. Here, we show the state

of the art of data analyses with the available bioinformatics tools

proven to be useful for avoiding common mistakes in processing,

analyzing, and interpreting results based on eDNA samples.

Across different studies referenced here, it seems clear that both

eDNA approaches (metabarcoding and targeted) suffer uncertainty

regarding detection probabilities. This uncertainty can be at least

partially improved by: (i) designing eDNA sampling with enough

numbers of sample replications, and sampling sites, and covering

seasonal variance; (ii) getting PCR and amplicon sequencing

replications, (iii) getting enough amplicon coverage, and (iv) by

using occupancy and process-based modelling. This is particularly

important in the application of eDNA approaches to surveillance of

rare species (e.g. endangered), which are prone to suffer from

uncertainties for the low probability of detection (Ficetola et al.,

2015, but see Boussarie et al., 2018 in BOX 1-TASK 1).
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Major complexities are found in the application of eDNA

approaches to surveillance of Marine Vulnerable Ecosystems, as

many of them are poorly described, and therefore, reference

databases are incomplete (e.g. Good et al., 2022, see BOX 1-TASK

2). In this regard, complementing and comparing eDNA sampling

with traditional surveys such as visual census and video recording is

necessary (e.g. Boussarie et al., 2018; Good et al., 2022).

Nevertheless, the molecular characterization of the relevant

invertebrate species of Vulnerable Ecosystems will be necessary

for reference databases to be complete before monitoring can be

systematically implemented. On this point, the use of different

primer sets and different genomics regions gives more complete

results (Good et al., 2022; Kumar et al., 2022). However, the use of

eDNA approaches are giving promising results when monitoring

Marine Protected Areas (MPA) (eg. Gold et al., 2021). Ecosystems

within MPA are generally well described making the

implementation of eDNA approaches augmented by prior

knowledge. Similarly, barcoding regions have been obtained for

thousands of fish species, and especially for economically important

ones making that monitoring of fish communities does not present

obvious methodological or analytical difficulties. Thus, the research

on the limitations of the eDNA approaches for the study of target

fish species (i.e. commercial) and fish communities are less

challenging to be accomplished (Keck et al., 2022). Reference

databases enriched with sequences of fish species locally known

increase the likelihood of detection (e.g. Stoeckle et al., 2021, see

BOX 1- TASK 3) and it is advisable when monitoring fish

communities.Moreover, uncertainties about detection probabilities

are decreased when DNA studies are performed in fisheries-related

conditions (e.g. Russo et al., 2021; Stoeckle et al., 2021; Maiello et al.,

2022; Kasmi et al., 2023, and Urban et al., 2023 presented in BOX 1-

TASK 4).

In summary, eDNA approaches are showing realistic results

for tasks related to fish abundance quantification and

monitoring. Nonetheless, its use in ecosystem-based fisheries

management could be delayed until reference databases of

vulnerable marine ecosystems are completed. Several studies

referenced here have demonstrated the feasibility of applying

eDNA approaches to support tasks related to sustainable

fisheries management. Given the urgent need of promoting

sustainability in fisheries management, the extensive amount of

data collection required for this, and the rapid scientific advances

improving eDNA data analysis, it is likely that eDNA approaches

can be incorporated within fisheries-related tasks in the

nearby future.
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