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Advancements in chemical, medical, cosmetic, and plastic producing industries

have improved agricultural yields, health and human life in general. As a negative

consequence, a plethora of chemicals are intentionally and unintentionally

released to terrestrial and aquatic environments with sometimes devastating

effects for entire ecosystems. One mitigation strategy to counteract this

pollution is bioremediation. Bioremediation is an umbrella term for biologically

mediated processes during which an undesired compound is transformed,

degraded, sequestered and/or entirely removed from the ecosystem. Organisms

across all domains of life may mediate bioremediation; yet, fungi are particularly

promising candidates. They possess metabolic capabilities to break down complex

molecules which make fungi the ultimate degraders of recalcitrant organic matter

in nature. Bioremediation by fungi, also termed mycoremediation, has been more

frequently investigated in terrestrial than aquatic ecosystems, although fungi also

thrive in lacustrine and marine environments. Here, we focus on mycoremediation

of emerging pollutants in aquatic environments. In this context, we draw parallels

between terrestrial and aquatic fungal taxa, and their role in mycoremediation. We

discuss the ability of fungi to break-down (i) pesticides, (ii) pharmaceuticals and

personal care products, (iii) plastics, both conventional types and (iv) bioplastics,

and fungal role, (v) mitigation of heavy metal pollution. Furthermore, we (vi) discuss

possible mycoremediation strategies in applied settings and highlight novel

enzyme based mycoremediation strategies.
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1 Introduction

Emerging pollutants stem from large-scale manufacturing, use and application of

pesticides, pharmaceuticals and personal care products (PPCPs), plastic polymers, and

heavy metals. These compounds are designed to satisfy the ever-growing need for a better

life, health and ways to ensure food and material supply for a growing human population.

However, their production and application are often accompanied by substantial waste

generation. This is not paralleled by mitigation strategies. Through transport in groundwater,
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rivers, air and ocean circulation, these often recalcitrant products/

compounds have reached and contaminated virtually all ecosystems

on Earth (Lebreton et al., 2017; Pujari and Kapoor, 2021; Roy et al.,

2022). For example, organic pesticides have been detected in deep sea

sediments of the Pacific Ocean (Ge et al., 2021). Pharmaceuticals and

personal care products are frequently detected in waste water

treatment systems (Lishman et al., 2006; Oulton et al., 2010) as well

as in marine ecosystems (Bayen et al., 2016; Ojemaye and Petrik,

2022). Microplastics have been found in remote places such as the sea

ice of Antarctica (Kelly et al., 2020) and the deepest parts of the

marine realm, the Mariana Trench (Peng et al., 2020) and

nanoplastics are seemingly widespread, too (Ter Halle et al., 2017;

Materić et al., 2022).

In nature, these emerging pollutants cause adverse effects, ranging

from impacts on the organism to the ecosystem level. Well-known

examples include bioaccumulation of methylmercury in shellfish,

causing poisoning in humans upon consumption (Sunderland,

2007), ingestion and entanglement of marine organisms in plastic

litter (Gregory, 2009; Kurtela and Antolović, 2019), increase of

antimicrobial resistance genes due to excess use of antibiotics and

their inadequate disposal (Allen et al., 2010) and, finally, adverse

ecological consequences due to the large scale use of the pesticide

dichlorodiphenyltrichloroethane (DDT) before its ban in many

countries (Mansouri et al., 2017). In order to mitigate the

increasing amounts and effects of these contaminants, biological

processes can be utilized to break down, transform and remove

hazardous pollutants from the environment - these processes have

been coined ‘bioremediation’. A bioremediation strategy was firstly

applied by George M. Robinson in the 1960s by using microbes to

mitigate the effects of oil spills. Bioremediation mostly relies on plants

(phytoremediation) or microorganisms (microremediation) to

degrade pollutants. Prominent examples for bioremediation in

aquatic environments are the use of microalgae that accumulate

heavy metals (Aksu, 1998; Zhang et al., 2019; Leong and Chang,

2020) or pharmaceuticals (Silva et al., 2019; Chandel et al., 2022).

Microbial bioremediation efforts benefit from the large natural

diversity of microorganisms featuring a broad spectrum of

pathways to metabolise or co-metabolise a wide range of

compounds. Furthermore, the adaptation of microorganisms to

novel compounds is comparably high: the typically short generation

time of microbes is accompanied by high rates of evolutionary

adaptation. Microbes may even utilize otherwise hazardous

compounds for energy gain or as cellular building blocks.

Furthermore, with the aid of genetic manipulation, microbial

metabolisms can be “improved” or “designed” to target specific

pollutants. With the aid of synthetic biology tools, microbial

communities can even be assembled to target specific pollution

scenarios (Jaiswal et al., 2019; Borchert et al., 2021; Xiang et al.,

2021). Bioremediation strategies are either in-situ, i.e., pollution is

treated at the location where it occurs or ex-situ, where the polluted

matrix is removed and treatment is carried out elsewhere. Most

common examples of microbial bioremediation are cleaning up

industrial spills, such as oil spills (Biswas et al., 2022). For oil spills,

both bioaugmentation (i.e., the application of microbes to the

pollution site) and biostimulation (i.e., stimulation of the natural

microbial community to perform faster and more efficiently) are used

(Sharma et al., 2020). Further examples include treatment of
Frontiers in Marine Science 02
wastewater effluents in wastewater treatment plants; e.g., to clean

up textile dye industry waste (Ihsanullah et al., 2020), or cleaning up

environmental metal, such as cadmium (Cd), mercury (Hg) and

arsenic (As) pollution (Verma and Kuila, 2019).
2 Fungi as bioremediating agents

Fungi are organisms gaining increasing attention because of their

broadpotential for bioremediation applications (SupplementaryFigure 1).

Fungi are a diverse kingdom in the tree of life, belonging to the domain

eukarya.Nevertheless, fungal taxonomy is amatter ofdebate anddiscussed

controversially. The most recent taxonomical update describes nineteen

major phyla: Aphelidiomycota, Ascomycota, Basidiobolomycota,

Basidiomycota, Blastocladiomycota, Calcarisporiellomycota,

Caulochytriomycota, Chytridiomycota, Entomophthoromycota,

Entor rh i zomycota , Glomeromycota , K ickxe l lomycota ,

Monoblepharomycota, Mortierellomycota, Mucoromycota,

Neocallimastigomycota, Olpidiomycota, Rozellomycota, and

Zoopagomycota (Wijayawardene et al., 2020). The number of described

species is only∼1million (Wu et al., 2019), but the total number of fungal

species is estimated to range between 2 to 4 million (Hawksworth and

Lücking, 2017). Fungi are ubiquitous chemoheterotrophic organisms,

prevalent throughout terrestrial and aquatic environments. Nevertheless

fungihavebeenstudied in terrestrial environmentsmoreextensively,while

they have gained less attention in aquatic, and particularly in marine

environments (Zeghal et al., 2021). The vast majority of known fungi are

aerobic and thus inhabit oxic environments; yet anaerobic fungi have been

found inoceanoxygenminimumzones or digestive tracts of animals (Stief

et al., 2014;Mura et al., 2018; Peng andValentine, 2021). Fungi are known

as the ultimate degraders of complex organic matter, involved in decay

processes and known to degrade wood including lignin and cellulose and

other plant-based materials, which are common waste products in

agriculture (Dinis et al., 2009; Janusz et al., 2017; Goodell et al., 2020).

Due to their intra and extracellular enzymatic machinery and their ability

to excrete acids, fungi are able to attack and metabolize a wide range of

compoundclasses comprising inorganic andorganicpollutants (Dashtban

et al., 2010;Harms et al., 2011;Deshmukh et al., 2016). Fungal enzymes are

often characterised by a low substrate specificity (El-Gendi et al., 2021).

Counterintuitively, this provides an advantage, because the non-specific

enzymes catalyse a broad range of reactions enabling fungi to use also a

wide range of compounds as carbon and energy source (Harms et al.,

2011). The biodegradation capacities of fungi are almost universally linked

to oxidative enzymatic reactionsmediated by a diverse set of oxidases and

peroxidases (Hofrichter, 2002). Hence, fungi typically require an oxic

environment for their function.

The enzymatic capabilities of fungi are well classified into intra- and

extra-cellular mechanisms (El-Gendi et al., 2021). The most widely

studied extracellular enzymes from fungi are different oxidoreductases

thus remove enzymes are after the word different, specifically laccases,

which use oxygen and peroxidases (manganese peroxidase, lignin

peroxidase), which use H2O2 as terminal electron acceptor (Baldrian,

2006; Hofrichter et al., 2010; Rodgers et al., 2010; El-Gendi et al., 2021;

Urlacher andKoschorreck, 2021). Among the most recognized pollutant

degrading extracellular reactions are oxidations with hydroxyl radicals

cleaving double bonds in cyclic or aliphatic structures (Hofrichter et al.,

2010). The hydroxyl radicals stem from quinone cycling after the action
frontiersin.org
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of laccases (Gómez-Toribio et al., 2009), or peroxide-dependent

hydroxylations. Both processes are exergonic in nature and these

reactions facilitate the degradation of complex pollutant structures

into more easily degradable metabolite intermediates. Intracellularly,

cytochromes catalyze a broad variety of oxidation reactions inside the

cells (Figure 1 and Table 1), with some species such as Phanerochaete

chrysosporium containing 150 Cytochrome P450 genes in its genome

(Ning et al., 2010).

The potential of fungi in bioremediation processes is for example

highlighted by their ability to degrade petroleum hydrocarbons,

comprising alkanes, aromatic and nitrogen-sulfur-oxygen-

containing compounds (Adenipekun and Lawal, 2012; Al-Hawash

et al., 2018; Miri et al., 2019; Mahmud et al., 2022). Fungi have also

been described as suitable bioremediation agents to counteract

environmental pollution of toxic metals (Li et al., 2020). Thus,

fungi are consequently attractive candidates for biotechnological

purposes and industrial bioremediation efforts (Hyde et al., 2019)

and have recently been gaining attention as suitable agents for

wastewater treatment (Shahid et al., 2021; González-González et al.,

2022; Morin-Crini et al., 2022).

This review aims at highlighting the potential of fungi in

bioremediation processes. In the following sections, we discuss

several emerging pollutant classes and provide an overview of the

current literature on the potential of fungi in mitigating the adverse

effects these pollutants pose in the environment.
3 Degradation of pesticides

Increased global food demand and the need to prevent global crop

losses due to pests have resulted in an extensive annual utilization of
Frontiers in Marine Science 03
about 2 millions tonnes of pesticides worldwide (Sharma et al., 2019;

Lykogianni et al., 2021). Pesticides are deliberately applied to kill

unwanted plants (weeds), insects, rodents and other living organisms

threatening the cultured crops (Matthews, 2015). However, it is

postulated that approximately 90% of agricultural pesticides do not

reach the intended target organism but instead disperse in the

environment (Ortiz-Hernández et al., 2011). Indeed, pesticides have

been detected in the atmosphere, soil systems, groundwater, and the

ocean (Ernst, 1980; White et al., 2006; Schipper et al., 2008; Wołejko

et al., 2020) as a result of high population densities and intensive

modern farming practices.

Pesticides such as organochlorines, organophosphates, pyrethroids,

and carbamates are associated with detrimental effects including high

environmental persistence, bioaccumulation, long-range transmission,

and adverse effects to non-target organisms (Kumari et al., 2014;

Kumar et al., 2019). Exposure to pesticides can for example cause

different types of human cancer, teratogenic and genotoxic defects as

well as endocrine and nerve dysfunction (Kim et al., 2017; Shah and

Parveen, 2021). Pesticides may cause acute lethal effects, however, some

seem to cause more long term health effects and environmental

concerns (Pretty and Hine, 2012). For example, the overuse of the

insecticide dichlorodiphenyltrichloroethane (DDT) since the 1940s,

resulted in adverse ecological consequences, which in some cases

only became apparent with a time delay of many years after

application (Turusov et al., 2002; Mansouri et al., 2017). Even though

the first countries banned DDT in the 1970s, it is still in use in many

countries and its derivatives persist in nature for decades (Loganathan

and Kannan, 1991). Fungi have been reported to degrade a wide range

of different pesticides, including organochlorines, organophosphorus

compounds, pyrethroids, and carbamates (Maqbool et al., 2016; Bokade

et al., 2021; Bose et al., 2021; Kumar et al., 2021); for example Lindane
frontiersin.org
FIGURE 1

Schematic overview of mycoremediation in the environments. Pollutants and commonly used fungal enzyme classes are highlighted. Pollutants follow
intracellular and/or extracellular enzymatic degradation, leading to the production of a diversity of metabolites and/or degradation products.
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(Dritsa et al., 2009), Endosulfan (Bhalerao and Puranik, 2007), DDT

(Purnomo et al., 2010), Atrazine (Bastos and Magan, 2009; Gonçalves

et al., 2012), Dieldrin and Aldrin (Xiao et al., 2011), among others. In

some cases, specific fungi are even suggested as candidates to degrade

fungicides, such as broad-spectrum pyrazole-carboxamide

fluxapyroxad (Podbielska et al., 2020), which is often applied to

counteract fungal diseases of apple trees (He et al., 2016). Just as the

term ‘pesticide’ encompasses a wider range of different compounds,

degradation of these is not confined to one fungal taxon. Known

pesticide-degrading fungi belong to the genera Trametes (Bastos and

Magan, 2009), Ganoderma (Dritsa et al., 2009), Aspergillus (Bhalerao

and Puranik, 2007), Fusarium (Guillén-Jiménez et al., 2012), Pleurotus

(Purnomo et al., 2010), Cladosporium, Rhizopus and Penicillium

(Gonçalves et al., 2012), Phlebia (Xiao et al., 2011), and Mortiella

(Badawi et al., 2009), among many others. These genera belong to

different fungal groups such as white rot fungi (WRF), brown rot fungi,

filamentous fungi, and yeasts and representative species of all groups

have been investigated for the degradation of pesticides.

WRF have been studied extensively due to their ability to degrade

wide range of pesticides and structurally highly variable organic

pollutants with their non-specific enzymes (Ghosh et al., 2014).

WRF possess a variety of oxidative and extracellular ligninolytic

enzymes such as lignin peroxidase (LiP), manganese peroxidase

(MnP), versatile peroxidase (VP), and laccase (Lac) making them

one of the most studied candidates for pesticide bioremediation

purposes (Zhuo and Fan, 2021). For example, Trametes versicolor
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was utilized for the degradation of three different hydrophobic

pesticides: chlorpyriphos, dicofol and cypermethrin. These are an

organophosphorus, an organochlorine and a synthetic pyrethroid,

respectively. Their removal potential at 25°C was 95%

(chlorpyriphos), 88% (dicofol) and 93% (cypermethrin) over a time

period of 14 days. For all tested pesticides, an initial fast adsorption to

fungal pellets was monitored, followed by biodegradation. Based on

the identified metabolites, hydrolyzation, dichlorination and

oxidation were proposed to be important degradation mechanisms,

depending on the pesticide (Hu et al., 2020). T. versicolor has also

been shown to remove the herbicides Diuron and Bentazon from

agricultural wastewater (Beltrán-Flores et al., 2021). Diuron

degradation was also shown for another WRF, Ganoderma lucidum,

with Diuron increasing laccase activity (Coelho-Moreira et al., 2017).

In addition to extracellular ligninolytic enzymes, which give fungi

access to water-insoluble contaminants, intracellular enzymes such

the cytochrome P450 are important in the degradation of pesticides,

too (Magan et al., 2010) (Figure 1). T. versicolor degrades also

Fipronil, an insecticide with low aqueous solubility belonging to the

chemical class of phenylpyrazoles. This was metabolized

intracellularly by cytochrome P450 as confirmed by the production

of hydroxylated and glycosylated transformation products (Wolfand

et al., 2016). This enzyme was also shown to degrade the highly polar

pesticides Acetamiprid and Imidacloprid (Hu et al., 2022). P.

chrysosporium, with about 150 P450 monooxygenase genes in its

genome (Doddapaneni et al., 2005), has been shown to utilize two
TABLE 1 Summary of extracellular and intracellular mechanisms, only most general mechanisms are exemplified with the most common reactions and
case studies.

Extracellular conversions

Enzyme Reaction Example case Reference

Laccases Oxidations PAH, phenolic azo dyes, phenol and chlorinated phenol, TNT excreted
metabolites

(Majcherczyk et al., 1998; Chivukula and
Renganathan, 1995; Ehlers and Rose,
2005; Nyanhongo et al., 2006)

Manganese
peroxidase

Oxidations PAH, different types of dyes, TNT excreted metabolites (Van Aken et al., 1999; Baborová et al.,
2006; Qin et al., 2014)

Hydroxyl radical Hydroxyl attack and
oxidation

Hydroxylation of chlorinated hydrocarbons (Köller et al., 2000; Marco-Urrea et al.,
2009c)

Hydroquinone-
quinone

Peroxidase reactions to
produce Fenton reagent

2-fluorophenol (Jensen et al., 2001; Kramer et al., 2004)

Intracellular conversions

Enzyme Reaction Example case Reference

P450 Oxidases
encoded by over 100
genes in some fungi

Epoxidations,
hydroxylation

PAH, dioxins, pharmaceuticals, and herbicides
P. chrysosporium encoding for 150 cytochrome P450

(Hiratsuka et al., 2001; Marco-Urrea
et al., 2009b; Hata et al., 2010)
(Yadav et al., 2006; Kasai et al., 2010)

Transferases Removal of hydroxyl
groups to produce
conjugates

Excretion of conjugates (Hundt et al., 2000)

Aromatic nitro
reductases

Reductions of nitro
groups for further
extracellular
degradation

TNT reduction to hydroxylamine- and dinitrotoluene, nitro group reduction
in 1,3-dinitrobenzene, 2,4-dinitrotoluene, 2,4,6-trinitrotoluene, 1-chloro-2,4-
dinitrobenzene, and 2,4-dichloro-1-nitrobenzene

(Rieble et al., 1994; Esteve-Núñez et al.,
2001)

Quinone reductases Production of hydroxyl
radicals through Fenton
reaction

Enabling extracellular pollutant attack (Jensen et al., 2001)
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cytochrome P450 isozymes to degrade 4 neonicotinoids: Acetamiprid,

Clothianidin, Imidacloprid, and Thiacloprid (Mori et al., 2021).

Furthermore, the degradation of Endosulfan, a chlorinated

pesticide, may proceed either via a hydrolytic or oxidative pathway

in P. chrysosporium (Kullman and Matsumura, 1996). By using a

cytochrome P450 inhibitor, the oxidative metabolism was partially

suppressed and rather proceeded via a hydrolytic pathway. The

involvement of the P450 system was also shown for the degradation

of Lindane (Mougin et al., 1996). For an overview on the application

of fungi for pesticide degradation see Table 2, and the reviews of

Magan et al. (2010) and Maqbool et al. (2016).

In addition, it has been shown that a consortium of different fungi,

in contrast to single strains, can degrade some pesticides more

efficiently. For example, a consortium of 5 fungal isolates, (three from

the genus Pleurotus, one clustering with genus Coriolopsis, one

unknown) were better suited to degrade Diazinon and methomyl

pesticides than single isolates tested (Nyakundi et al., 2011). A similar

benefit was found for consortia of fungi (Mortierella LEJ702) and

bacteria (Variovorax SRS16 and A. globiformis D47) degrading

Diuron (Ellegaard-Jensen et al., 2014). The same Mortierella spp.

LEJ702 , enhanced the degradation of a herbicide, 2,6-

dichlorobenzamide, in a consortium with Aminobacter spp. MSH1
Frontiers in Marine Science 05
(Knudsen et al., 2013). However, the fungal contribution might not

have been to directly degrade the compounds, but that they stimulated

bacterial dispersal via hyphae and/or translocated the compound.

The combined application of fungi and certain minerals has in

some cases also proven more efficient for pesticide removal than

application of fungi or minerals alone. For example, the combined

application of the WRF P. chrysosporium together with the boron

silicate mineral tourmaline was used for the remediation of

agricultural soils contaminated with a variety of organochlorinated

pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs)

(Wang et al., 2014). Synergistic effects amounted to 44% removal of

OCPs from the agricultural soils, whereas individual treatment with

either P. chrysosporium or tourmaline had lower efficiencies of 34%

and 26%, respectively. Tourmaline was suggested to play a role in

promoting soil enzyme activities and biodiversity of the active

soil microorganisms.

Next to terrestrial fungi, also marine fungi are now slowly gaining

attention as potential candidates for the degradation of pesticides. For

example, one study investigated seven marine-derived fungal strains

of Aspergillus spp. and Penicillium spp. for the removal potential of

the insecticide Methyl Parathion (MP). Aspergillus sydowii CBMAI

935 was found to be the most efficient strain removing all MP within
TABLE 2 Examples of application of fungi for the biodegradation of pesticides.

Fungi Pesticide/Class Concentration Operational
conditions

Removal Efficiency Reference

Trametes versicolor Chlorpyrifos/
Organophosphate

5 µg/L pH 4.5, 25 °C,
135 rpm, 14 d

94.7% (Hu et al., 2020)

Trametes versicolor Dicofol/ Organochlorinated 5 µg/L pH 4.5, 25 °C,
135 rpm, 14 d

87.9% (Hu et al., 2020)

Trametes versicolor Cypermethrin/ Pyrethroid 5 µg/L pH 4.5, 25 °C,
135 rpm, 14 d

93.1% (Hu et al., 2020)

Bjerkandera
adusta

Atrazine/ Herbicide 25-100 ppm pH (2-8), 16-32
°C), 1-5 g
biomass

92% (Dhiman et al.,
2020)

Phanerochaete chrysosporium 16 Organochlorinated
pesticides

145.92 ± 1.92 mg/kg 35 °C, 60 d 34.2±3.9% (Wang et al.,
2014)

Ganoderma lucidum Diuron/ Herbicide 3.5 mg/mL 28 °C, 25 d >50% (Da Silva
Coelho-Moreira
et al., 2018)

Trametes versicolor Diuron and Bentazon/
Herbicides

10 ppm of diuron
and bentazon

pH 4.5, 1-3 d ~93% (Beltrán-Flores
et al., 2021)

Aspergillus sydowii, Penicillium decaturense,
Penicillium raistrickii

Methyl parathion/
Organophosphate

50 mg/L 32 °C, 130 rpm,
30 d

87-100% (Alvarenga
et al., 2014)

Marine Penicillium citrinum (DL4M3),
P. citrinum (DL9M3) and Fusarium
proliferatum (DL11A)

Methyl parathion/
Organophosphate

120-360 mg/L 32 °C, 130 rpm,
20 d

100% (Rodrigues
et al., 2016)

Marine Penicillium miczynskii CBMAI 930 Dieldrin/
Organochlorinated

25,50 and 75 mg/L 32 °C, 130 rpm,
14 d

90% (Birolli et al.,
2015)

Marine Aspergillus spp. CBMAI 1829,
Acremonium spp. CBMAI 1676,
Microsphaeropsis spp. CBMAI 1675 and
Westerdykella spp. CBMAI 1679

Lambda-cyhalothrin/
Pyrethroids

100 mg/L 32 °C, 130 rpm,
14 d

20.8-44.8% (Birolli et al.,
2018)

Aspergillus sydowii CBMAI 935 Chlorpyrifos, Methyl
parathion and Profenofos/
Organophosphates

50 mg/L 32 °C, 130 rpm,
15 d

Chlorpyrifos: 32%, Methyl
parathion: 80% and
Profenofos: 52%

(Soares et al.,
2021)
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20 days of incubation. The analysis of the metabolites further revealed

that the degradation pathway was involved in the formation of the

toxic intermediate methyl paraoxon. In a follow-up step, this was fully

degraded to p-nitrophenol, reducing toxicity levels by 120-fold

(Alvarenga et al., 2014). Furthermore, Aspergillus sydowii CBMAI

935, A. sydowii CBMAI 933, Penicillium miczynskii CBMAI 930 and

Trichoderma spp. CBMAI932 have been explored for the degradation

of the insecticide Dieldrin (Birolli et al., 2015). P. miczynskii was

found to be the most efficient species, degrading 90% of Dieldrin

within 14 days. Despite of some of the enzymatic systems being well

described, the enzymatic versatility of marine fungi remains vastly

unexplored, as recently shown for A. sydowii CBMAI 935 (Soares

et al., 2021). This strain expressed new phosphoesterases and

methyltransferases suitable for the degradation of chlorpyrifos,

methyl parathion and profenofos. These studies are evidence of the

potential of marine-derived fungi for bioremediation of pesticides.

Harnessing the capabilities of marine fungi could thus further

advance mycoremediation strategies.
4 Fungal degradation of
pharmaceuticals and personal
care products

Pharmaceuticals and personal care products (PPCPs) are an

emerging class of contaminants as modern societies are increasingly

focused on health, hygiene, and personal care. A substantial fraction of

PPCPs ends up in nature, e.g., via sewage streams and wastewater

treatment systems (Daughton, 2001; Yang et al., 2017). In fact, there is a

lack of regulations regarding use and discharge for many PPCPs (Boxall

et al., 2012). This raises concerns in particular related to potentially

adverse effects on ecosystems and human health if pharmaceuticals are

involved. Pharmaceuticals comprise a vast number of substances and

compounds used in healthcare to biochemically or physiologically

positively influence the functioning of biological systems, mainly

humans and animals. Pharmaceuticals, even though with varying

chemical structures are commonly intended to be active and

persistent. Pharmaceuticals are transported via hospital and

municipal wastewater to wastewater treatment plants (WWTP),

which have been identified as the primary source for the increase in

antimicrobial resistance genes (Frascaroli et al., 2021). Some of the

pharmaceuticals do not alter their chemical composition upon

consumption, and not all are removed in WWTPs. In fact, removal

efficiency for many of the widely used pharmaceuticals is as low as 10%

(Patel et al., 2019). Among the main reasons of concern are their high

persistence, water-solubility, bioactivity, bioaccumulation, and toxicity

(Brodin et al., 2014; Patel et al., 2019; Kayode-Afolayan et al., 2022).

They also trigger antibiotic resistance in bacteria, cause alterations in

gene expressions, abnormal protein and enzyme synthesis, and various

changes in growth and behaviour of non-target organisms (Brodin

et al., 2014; Patel et al., 2019; Kayode-Afolayan et al., 2022).

Pharmaceuticals can also be part of personal care products, for

example in facial creams or detergents. Furthermore, personal care

products may contain a variety of other hazardous compounds. For

example, some hair creams contain heavy metals (Ayenimo et al., 2010)

(see discussion on heavy metals in section 7) and some scrubs may be

based on plastic microbeads (Cheung and Fok, 2017; Lei et al., 2017;
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Guerranti et al., 2019) (see section 5 and 6 on plastics). Their removal

efficiency in communal wastewater is variable (Mohana et al., 2021) as

microplastics get adsorbed to sludge which ultimately possess risks

upon disposal (Rout et al., 2022; Singh et al., 2022). Even personal care

products labelled as ‘natural’ or ‘plant-based’ may contain compounds

that are hazardous, which hence does not make them ecologically safe

(Klaschka, 2016). Personal care products are widely used, in some

western societies by more than >93% of the population (Biesterbos

et al., 2013).

Fungi have been shown to break down a range of pharmaceuticals

ranging from antibiotics (Rodarte-Morales et al., 2011), anti-

inflammatory drugs (Dalecka et al., 2019), anticancer drugs

(Jureczko et al., 2021), antidepressants (Rodarte-Morales et al.,

2011), diuretics (Al-Aboudi et al., 2017), analgesics (Marco-Urrea

et al., 2009b) and beta-blockers (Jaén-Gil et al., 2019). The most

studied fungal group able to degrade pharmaceuticals, are WRF. For

the degradation of pharmaceuticals, these fungi make often use of the

same intracellular and extracellular enzymes that they also use for the

degradation of pesticides (see section 3 on pesticide degradation). A

variety of fungal strains and their application for the removal of

PPCPs are described in detail in Table 3.

T. versicolor has been widely investigated for the ability to degrade

a variety of pharmaceuticals (Tran et al., 2010). For example,

diclofenac, naproxen, indomethacin, ibuprofen, and fenoprofen,

while ketoprofen, clofibric acid, propyphenazone, and gemfibrozil

were only partially degraded. Lac enzyme was shown to preferentially

remove diclofenac, naproxen, indomethacin, and this indicated that

intracellular enzymes may be involved in the degradation of other

compounds. T. versicolor removed >99.9% and ~40% of diclofenac

and ketoprofen, respectively, within 14 days (Dalecka et al., 2019).

The removal mechanism was found to be related to the production of

laccase along with biosorption. As an interesting finding, a

monoculture of T. versicolor was more efficient when compared to

mixed cultures containing other fungi, too. This was probably related

to competition and growth inhibition. Another study using T.

versicolor for diclofenac degradation reported ≥94% removal in just

1 hour (Marco-Urrea et al., 2010). The cytochrome P450 system was

found to be the main responsible system in the initial steps of

diclofenac degradation and not Lac enzyme, as the time frame of 1

hour would not have enabled measurable laccase activity.

Degradation of carbamazepine, ibuprofen and clofibric acid was

investigated for T. versicolor, I. lacteus, G. lucidum and P.

chrysosporium, showing that all four strains degraded ibuprofen

already within 7 days of incubation. However only T. versicolor

showed substantial degradation of the more recalcitrant

carbamazepine and clofibric acid (Marco-Urrea et al., 2009a).

T. versicolor has been proposed as an efficient fungus for cleaning

up hospital wastewater. Hospital wastewater loaded with 51

pharmaceuticals and endocrine disrupting compounds were treated

in a bioreactor with complete or partial removal of 46 of these

compounds along with significant reduction in toxicity (Cruz-

Morató et al., 2014). Analgesic and anti-inflammatory drugs such

as ibuprofen, acetaminophen, naproxen, diclofenac, and phenazone

present in high concentrations (ranging between 10–100 µg/L) in the

hospital effluents were removed by more than 80% within 24 hours.

Antibiotic removal rates for sulfamethoxazole, trimethoprim,

metronidazole, and its hydroxylated metabolite (dimetridazole), and
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erythromycin showed large variations ranging from 26-100%

compared to the analgesics.

Further examples include the degradation of the anticancer drugs

bleomycin and vincristine by Fomes fomentarius, Hypholoma

fasciculare and T. versicolor with a high vincristine removal

efficiency (>94%) (Jureczko et al., 2021). However, bleomycin was

difficult to degrade with only 36% removal by T. versicolor. Probably,

bleomycin was toxic at high concentrations. Considering the

comparably low concentrations of pharmaceuticals in actual

wastewater, WRF could be efficiently applied for their degradation.

Bjerkandera spp. TBB-03, has been shown to degrade the

pharmaceuticals acetaminophen, carbamazepine, sulfamethoxazole,

and the plastic additive bisphenol A (Bilal and Iqbal, 2019). Bisphenol

A is a highly estrogenic compound found in high concentrations in

WWTP effluents (1000–10,000 mg/L). Oxidative coupling and radical

polymerization in acetaminophen and bisphenol A, respectively, were

the main degrading mechanisms by Lac enzyme. Complete

acetaminophen and bisphenol A removal was reported within 2

hours at 25-40°C and 12 hours at >25°C, respectively.

Carbamazepine and sulfamethoxazole were not well degradable,
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only 22% on sulfamethoxazole removal was observed in the

presence of acetaminophen (Kang et al., 2021).

Besides testing only single fungal species also multispecies

consortia were tested for pharmaceutical degradation. For example,

a consortium of WRF G. applanatum and the edible fungus

Laetiporus sulphureus removed 99.5% of all compounds in a

mixture of anti-inflammatory drugs (diclofenac, celecoxib, and

ibuprofen) within 72 hours (Bankole et al., 2020). In contrast,

removal efficiency was much lower (66-92%) when only one strain

was present. Significant induction in enzyme production of Lac, LiP

and MnP amounted to 201%, 180% and 135%, respectively in the

fungal consortia.
5 Conventional plastic polymer
degradation by Fungi

Conventional plastics are synthetic polymers, commonly of

petrochemical origin (Wayman and Niemann, 2021). Large scale

production of plastics begun in the 1950s and exponentially increased
TABLE 3 Examples of application of fungi for the biodegradation of pharmaceuticals and personal care products.

Fungi Compound Concentration Operational
conditions

Removal efficiency Reference

Consortia of Ganoderma
applanatum and Laetiporus
sulphureus

Mixture of Celecoxib, Diclofenac
and Ibuprofen

30 mg/L Ambient
temperature,
150 rpm, 72 h

99.5% (Bankole
et al., 2020)

Fomes fomentarius, Hypholoma
fasciculare, Phyllotopsis nidulans,
Pleurotus ostreatus
and T. versicolor

Bleomycin
and Vincristine

100 mg/L 14 d 36% Bleomycin,
>94% Vincristine

(Jureczko
et al., 2021)

Laccase derived from
Bjerkandera spp. TBB-03

Acetaminophen, Bisphenol A,
Carbamazepine, Sulfamethoxazole

20 mg/L Varied 19-100% (Kang et al.,
2021)

Trichoderma reesei DSM 768,
Trametes versicolor
DSM 6401, and Pleurotus
ostreatus DSM 1020, Irpex
lacteus IBB 104, Fusarium solani

Ketoprofen and Diclofenac 5 mg/L 25 °C, 150 rpm,
14 d

Diclofenac: >99.9% by T.
versicolor
Ketoprofen: ~40% by T.
versicolor

(Dalecka
et al., 2019)

Trametes versicolor Diclofenac 10 mg/L 25 °C, 135 rpm,
1 h

≥94% (Marco-
Urrea et al.,
2010)

Trametes versicolor Diclofenac, Naproxen,
Indomethacin, Ibuprofen,
Fenoprofen, Ketoprofen, Clofibric
acid, Carbamazepine,
Propyphenazone, and Gemfibrozil

10 µg/L 30 °C, 125 rpm,
48 h

Diclofenac, Naproxen,
Indomethacin, Ibuprofen,
and Fenoprofen: 100%
Ketoprofen, Clofibric acid,
Carbamazepine,
Propyphenazone, and
Gemfibrozil: 70-98%

(Tran et al.,
2010)

Trametes versicolor 51 PhACs 8185 mg PhACs (sterile
treatment), 8426 mg
(non-sterile treatment)

pH 4.5, 25 °C 83.2% (sterile treatment) and
53.3% (non-sterile treatment)

(Cruz-
Morató
et al., 2014)

Trametes versicolor Ibuprofen, Ketoprofen, Naproxen 20 mg/L pH 4.5, 25 °C Ibuprofen: 90%, Ketoprofen: 80%
and Naproxen: 60%

(Torán et al.,
2017)

Trametes versicolor Ketoprofen, Ibuprofen, and
Naproxen

10 mg/L 25 °C, 130 rpm,
14 d

>80% (Mir-
Tutusaus
et al., 2018)

Trametes versicolor + AOP 13 PhACs ~350 µg/L 25 °C, 150 rpm,
24 h

≥60% (Vasiliadou
et al., 2019)
f
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until today. Plastics are used in nearly all industry sectors, most

importantly packaging, textile, electronics and consumer products

(Geyer et al., 2017). Plastic polymer production in 2018 reached 359

Mt, however waste mismanagement and country-specific inadequate

policies lead to the disposal of plastics in landfills or direct littering in

nature. Of the global plastic production, it is estimated that 1.8-4.1%

enters the ocean (Jambeck et al., 2015) via coastal deposition or

riverine input (Lebreton et al., 2017; Onink et al., 2021), or through

atmospheric deposition (Liss, 2020). Plastic litter in the oceans has

raised concern, both in the scientific and public domains and was

identified as an environmental threat (Cózar et al., 2014; Jambeck

et al., 2015; Geyer et al., 2017; Macleod et al., 2021; Wayman and

Niemann, 2021). In the ocean, plastics may float at the surface or sink

to the seafloor, depending on the polymer’s density and shape

(Wayman and Niemann, 2021). Indeed, it has been suggested that

sedimented plastic debris might become a stratigraphic indicator of

the Anthropocene epoch (Zalasiewicz et al., 2016). Some plastics are

also ingested by marine biota (Giani et al., 2019; Savinelli et al., 2020).

Nevertheless, the ultimate fate of marine plastic is still largely

unknown. Global calculations of floating marine plastic debris only

account for a few percent of the expected amount that has entered the

ocean (Thompson et al., 2004; Van Sebille et al., 2015; Koelmans et al.,

2017). Several reasons for this “missing plastic paradox” have been

discussed, most importantly shear stress and weathering lead to the

fragmentation of larger plastic items into ever smaller particles that

escape current sampling techniques (Gewert et al., 2015; Romera-

Castillo et al., 2018; Chubarenko et al., 2019). Degradation through

solar radiation (UV-weathering) and microorganisms likely

contribute to plastic disappearance, but specifically the latter is a

poorly understood process (Wayman and Niemann, 2021; Zeghal

et al., 2021; Delre et al., 2023; Goudriaan et al., 2023). Marine plastic

creates a new habitat for eukaryotic and prokaryotic organisms

(Scales et al., 2021; Vaksmaa et al., 2021b), which was also termed

the plastisphere (Zettler et al., 2013).

A variety of plastic types exists of which the most prevalent ones

contain a carbon-carbon backbone, e.g., polyethylene (PE),

polypropylene (PP) and polystyrene (PS). However, others, such as

polyethylene terephthalate (PET) and nylon, contain also other

heteroatoms. Because plastics are rich in chemical energy, it has

been suggested that microbes may utilize the plastic as a carbon

substrate for energy gain and growth (Yoshida et al., 2016; Auta et al.,

2018; Taipale et al., 2019). Nevertheless, the high energy required for

the breakdown of the carbon bonds in plastic polymers renders them

a potentially problematic substrate for microbial enzymatic

degradation. Also, specific metabolic capabilities are likely necessary

to account for the variety of plastic formulations. Identification of

potential plastic-degrading microbes often includes analysis of

microbial biofilm formation and colonization with specific taxa on

plastic surfaces (Kettner et al., 2017; Kettner et al., 2019; Lacerda et al.,

2020). Several microbes have been isolated from these biofilms,

mostly from plastics in terrestrial environments, and tested for their

potential to degrade specific polymers in laboratory conditions. These

investigations revealed that some microbes, in fact, can degrade

certain polymers, typically those containing heteroatoms (Yoshida

et al., 2016).

Plastic colonizing fungi in terrestrial ecosystems have usually been

investigated with isolation-based assays (Taghavi et al., 2021);
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degrading potential (Yamada-Onodera et al., 2001; Sowmya et al.,

2015; Spina et al., 2021; Khan et al., 2022). As plastic degraders,

Aspergillus, Penicillium and Trichoderma are among the most

investigated taxa (Sowmya et al., 2015; Ojha et al., 2017; Sáenz

et al., 2019; Malachová et al., 2020). For example, Trichoderma

viride and Aspergillus nomius were two species isolated from a

landfill nearby Medan, Indonesia (Munir et al., 2018). These grew

on low density polyethylene (LDPE) causing deformations and

reducing the weight and tensile strength of the polymer. Other

Aspergillus species isolated from landfills include Aspergillus

clavatus (Gajendiran et al., 2016), Aspergillus flavus and Aspergillus

terreus (Verma and Gupta, 2019) and with, these were also shown to

degrade PE. Fusarium oxysporum, Fusarium falciforme and

Purpureocillum lilacinum isolated from an abandoned dumpsite in

Northern Italy, showed to cause changes in the PE film morphology

(Spina et al., 2021). The anaerobic fungus Paenibacillus spp. (isolated

from a landfill in Brazil) was able to degrade PE (Bardajı ́ et al., 2019).
This fungus was also found to contain the alkB gene in its genome,

which encodes the enzyme alkane hydroxylase, which is potentially

involved in plastic degradation. Penicillium citrinum isolated from a

soils of plastic dump yard in India degraded LDPE (Khan et al., 2022).

In freshwater systems, plastic colonizing fungi or potential

degraders have been reported. The fungal strains Cladosporium

cladosporioides, Xepiculopsis graminea, and Penicillium griseofulvum

and Leptosphaeria spp, isolated from plastic debris from the shoreline

of lake Zurich, were tested for their ability to degrade polyurethane

(PU) and PE (Brunner et al., 2018). While some degraded PU, none

was able to degrade PE. Further incubation experiments in freshwater

were conducted with a diversity of plastic debris (PE, PP, PS and

polybutylene terephthalate (PBT)) collected from the Urumqi River,

(Xue et al., 2021). The fungal communities on plastic differed from the

fungal community of the surrounding water and Cladosporium and

Alternaria were enriched on plastic debris.

Investigations of plastic-colonizing microbiota in the environment

mainly examined bacteria, whereas fungi remain generally an

understudied taxa particularly in marine ecosystems (Harrison et al.,

2014; Oberbeckmann et al., 2016; Frère et al., 2018; Oberbeckmann

et al., 2018; Miao et al., 2019). Furthermore, in contrast to studies from

terrestrial environments, many marine studies focused on investigating

the natural fungal community on the plastic, while less effort was

undertaken to isolate and to characterize single species (Zeghal et al.,

2021; Vaksmaa et al., 2021a). Fungi have been found as part of biofilms

on plastic surfaces, for example on polyethylene terephthalate (PET)

drinking bottles, exposed to the North Sea (Oberbeckmann et al., 2016).

Members of the Ascomycota, Basidiomycota and Chytridiomycota

together with prokaryotes were identified as colonizers on the PET

bottles incubated in-situ for ~6 weeks.

Exposure experiments with PE and PS were carried out in the

Baltic Sea, the river Warnow and a wastewater treatment plant with

wood as a control surface (Kettner et al., 2017). In total, 81 fungal taxa

were identified, including Chytridium, as well as fungi-like

Rhinosporideacae, Rhizidiomyces, and Pythium. In contrast to the

study with PET in the North Sea (Oberbeckmann et al., 2016), the

fungal community on the plastic differed from that on the control

surface after ∼2 weeks of incubation. Longer incubations of 44 weeks
with PE sheets and dolly ropes (installed at the sea bed), were
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conducted at a harbor and an offshore location in the North Sea (De

Tender et al., 2017). Among the fungal community, Ascomycota were

predominantly detected, followed by Basidiomycota, Zygomycota and

Lecanoromycetes. Chytridiomycota have been identified as the

predominant plastic-colonizing fungal taxon on different synthetic

polymers incubated in a laboratory flow through system with North

Sea water (Kirstein et al., 2018). Chytridiomycota have been described

as a prevalent fungal taxon throughout aquatic environments

(Comeau et al., 2016).

Assessment of fungal diversity may depend on a variety of

environmental and experimental factors. For example, salinity is a

significant factor influencing fungal communities as shown in the

Baltic Sea (Rojas-Jimenez et al., 2019). Among experimental factors,

the selection of primers, sequencing depth and reference data bases

will strongly influence phylogenetic resolution (Zeghal et al., 2021).

The potential influence of using different molecular marker genes to

analyze fungal communities on plastic was addressed by comparing

three genes: ITS2, 18S rRNA V4 and 18S rRNA V9 (Lacerda et al.,

2020). These were used for analyzing the fungal community on

floating plastics from the Western South Atlantic and the Antarctic

Peninsula. The study found that by using 18S v4 primers, only 2.2%

(Atlantic) and 4.3% (Antarctica) of the reads could be assigned. By

using primers targeting the 18S v9 region, a similarly low percentage

was assigned. In stark contrast, primers targeting the ITS2 region

worked much better allowing to assign 60% (Atlantic) and 80% of

reads (Antarctica). In total, 64 fungal orders were associated with

plastics. The fungal community on the different plastics was highly

diverse, and no differences were found between polymer types,

shapes, size classes or even sampling stations and locations.

However, novel fungal phyla of Aphelidomycota, Zoopagomycota,

Mucoromycota and Blastocladiomycota were reported for the first

time as part of the biofilms on marine plastics.

Fungi are seemingly an important part of microbial biofilms

coating plastic fragments in the marine realm. Yet, it remains to be

tested in how far fungi on marine plastics are also able to degrade

them. In fact, only a few species, such as Zalerion maritimum and

Aternaria alternata were shown to degrade PE (Paço et al., 2017; Gao

et al., 2022).
6 Fungal degradation of biobased
biodegradable plastics

Biodegradable plastics are defined as plastic-like polymers which

degrade under standardized conditions (e.g., ISO 17088:2021). However,

these mostly include industrial compositing conditions with elevated

temperature or moist content, which often do not resemble conditions as

found in nature. Thus, even when a certain plastic type is certified as

biodegradable plastic, it might only degrade sluggishly or not at all in the

environment. On the other hand, plastic types that do not fulfill the

biodegradability norm, might, in fact, be degraded by microbes, however,

possibly not at the necessary velocity at degradation conditions as

determined in the standards. From a purely scientific standpoint, it

would nevertheless be considered biodegradable.

Biobased raw materials for bioplastic production are originating

from renewable sources such as vegetable oil, corn starch, soybean

proteins, sugars, potatoes and even microbes (Rudin and Choi, 2013;
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Lackner, 2015; Ashter, 2016; Pieja et al., 2017). The common

misconception is that biobased plastics are, by default, biodegradable,

whereas, in fact, also conventional recalcitrant plastics such as PE can

be synthesized from biological source materials. Biodegradable

biobased plastics – in the following termed as bioplastics - are

intended to (partially) replace conventional petroleum-based plastics.

However, at present, they only hold a market share of ~1%. With an

increasing demand for ecologically friendly materials and growing

restrictions on conventional plastics, the market share is estimated to

increase in the future.

One of the most common bioplastics is polylactic acid (PLA),

which is an aliphatic polyester, often produced from the fermentation

of agricultural products of which the resulting lactic acid monomers

can be polymerized (Dubey et al., 2016; Balla et al., 2021). PLA is

biodegradable under composting conditions, with high relative

humidity at 50°C (Karamanlioglu and Alkan, 2020). Its degradation

can be further enhanced by the addition of natural plasticizers, such as

acetyl tributyl citrate and CaCO3 (Brdlı ́k et al., 2021). PLA

degradation has been reported for several fungal genera such as

Aspergillus (Maeda et al., 2005), Fusarium, Penicillium (Torres

et al., 1996a; Torres et al., 1996b), Tritirachium (Jarerat and

Tokiwa, 2001), Cryptococcus (Masaki et al., 2005), Trichoderma

(Lipsa et al., 2016). These genera express protease and cutinase

enzymes, described to be responsible for hydrolyzation and

depolymerization of PLA. PLA degradation by Tritirachium album

ATCC 22563 was stimulated after the addition of 0.1% of gelatin and

the responsible enzyme was hypothesized to be a protease (Jarerat and

Tokiwa, 2001).

Polyhydroxyalkanoates (PHAs) is a group of biopolymers with

over 100 formulations originating from microbial metabolism, such

as poly (b-hydroxybutyrate) (PHB), poly (3-hydroxybutyrate-co-3-

hydroxyvalerate) (PHBV), polyhydroxyvalerate (PHV) etc. PHAs are

superior to PLA in biodegradability, as degradation of these occurs in

composts as well as in the marine environment, where PLA based

plastics may need ~1000 years to degrade (Digregorio, 2009). PHBs

are recognized as one of the most common PHAs and often used in

investigating fungal degradation potential. PHB degradation has been

shown for Penicillium spp., which produced extracellular PHB

depolymerase (Zhou et al., 2008). PHBV depolymerase production

has been shown for Aspergillus spp. (Nadhman et al., 2012).

Aspergillus ustus, was shown to degrade PHB under pressure,

similar to deep sea conditions (Gonda et al., 2000). Emericellopsis

minima W2, isolated from wastewater was shown to be capable of

degrading PHB (Rhee et al., 2002). Fungal strain NKM1712 (Phylum

Ascomycota), isolated from soil, stimulated the degradation of poly

butylene adipate-co-butylene terephthalate (PBAT) (Kasuya et al.,

2009). A PHB depolymerase purified from Penicillium funiculosum

(IFO6345), showed a strong hydrolytic activity towards 3-

hydroxybutyrate oligomers (Miyazaki et al., 2000).

An interesting finding is that fungi are able to degrade more than

one type of bioplastics. A lipase of Cryptococcus spp. strain S-2 was

shown to degrade PLA as well as polybutylene succinate (PBS),

polycaprolactone (PCL) and PHB (Masaki et al., 2005). Similarly, a

cutinase was characterized for Aspergillus oryzae. This showed specific

activities of 0.42 U/mg, 11 U/mg and 0.067 U/mg for PBS, poly

(butylene succinate-co-adipate) (PBSA) and PLA respectively (Maeda

et al., 2005). In addition, Fusarium moniliforme encodes for a
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cutinase, which allows degradation of polycarpolactone (Murphy

et al., 1996).

Environmental exposure studies have shown that fungi colonize

and degrade bioplastics in terrestrial, freshwater systems as well as

marine environments (Emadian et al., 2017). However more studies

can be found that are conducted in soil systems than in marine water

or sediments. For example, PLA films were buried to Mediterranean

soil for 11 months and showed a low degree of degradation (Rudnik

and Briassoulis, 2011). A similar setup was used for tropical soil

conditions (Boyandin et al., 2013). PHA pellets were buried in several

locations for 10 to 12 months and the daily rate of mass loss ranged

from 0.02 to 0.33% across all locations. The fungal species

Gongronella butleri , Penicillium spp., Acremonium recifei,

Paecilomyces lilacinus, and Trichoderma pseudokoningii were

identified as colonizers and potential PHA degraders. Addition of

PBSA to the soil was shown to nearly double the fungal biomass

(Guliyev et al., 2022). When PBSA was exposed to field soil conditions

Tetracaldium spp. doubled in abundance in 328 days (Purahong et al.,

2021). Similarly, when PHBV was buried in soil, the latter isolation of

potential plastic degraders revealed that fungi Fusarium oxysporium

F1–3, Paecilomyces lilacinus F4–5 and Paecilomyces farinosus F4–7

had the highest contribution to the PBHV degradation (Sang

et al., 2002).

Recently, a meta-analysis of studies on PHAs degradation in

seawater (in-situ and laboratory conditions) found that the average

biodegradation rate would range between 0.04 and 0.09 mg per day/

cm2 (Dilkes-Hoffman et al., 2019). However, little focus has been on

the identification of the total fungal communities colonizing biobased

biodegradable polymers in natural environments. For overview of

fungi shown to degrade biodegradable plastic polymers, see

Supplementary Table 1.
7 Mycoremediation of heavy metals

Metals are generally malleable or ductile elements, but no clear

definition exists that well-defines the term heavy metal. Heavy metals

may be described as dense metals (≥5 g/cm-3) forming a block of

almost all elements in groups 3 to 16 that are in periods 4 and greater

of the periodic table of elements (Hawkes, 1997). The block of earth

and rare earth elements as well as titanium, aluminum and silicon

may then be described as light metals. Almost all metals are scarce

and unevenly scattered in the Earth’s crust, but may be concentrated

in certain regions as a result of geological or anthropogenic processes

(Rankin, 2011). They are also transported by natural phenomena or

anthropogenic activities to the atmosphere and aquatic environment,

where most heavy metals pose a risk to almost any ecosystem on

Earth and human health.

For example, arsenic, nickel, thallium, cadmium, lead and

mercury are notably harmful or poisonous (Mathai and Bhanu,

2010; Signes-Pastor et al., 2021). Potential pathways of heavy metal

contamination/exposure are manyfold but are often related to erosion

of geogenic sources and mining for metal ores combustion of fossil

fuels, and disposal of industrial waste (Candelone et al., 1995; Dudka

and Adriano, 1997; Lottermoser, 2010; Harms et al., 2011). High

levels of heavy metals are also found in certain agricultural products

and paints from which they leach into the environment (Ogilo et al.,
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2017; Karimi et al., 2021). Heavy metals generally persist in nature for

long periods of time (Fashola et al., 2016) and may also accumulate in

plants or animals, such as arsenic in rice (Rehman et al., 2020) and

mercury in fish (Zupo et al., 2019). They are also subjected to trophic

transfer (Soliman et al., 2022) and eventually pose a considerable

threat to human health (Noman et al., 2022). Heavy metal toxicity has

been characterized for plants, animals, humans and microbes, where

the metals can cause DNA damage, denature proteins, inhibit enzyme

activities, inhibit cell division and disrupt cellular membranes

(Rajendran et al., 2003).

Heavy metals, in contrast to organic pollutants, cannot be

degraded but their oxidation state may be changed, which can

change their toxicity and mobilize or precipitate them. Thus,

bioremediation of heavy metals relies on bacteria, microalgae and

fungi that have tolerance to heavy metals (Leung et al., 2001; Iyer

et al., 2005; Ledrich et al., 2005; Hassan et al., 2009; Marques et al.,

2009). Among these, organisms that are able to assimilate heavy

metals and thereby alleviate the pollution in nature, are preferentially

chosen for bioremediation applications. Fungi possess extra and

intracellular biochemical and molecular mechanisms which rely on,

firstly binding of the metal to the cell surface via an ion exchange

reaction, surface binding, and complexion with functional groups –

(known as biosorption) and secondly, cellular uptake and

compartmentalization (Goutam et al., 2021).

Extracellular mechanisms intend to preclude the entrance of the

toxic metal (Bellion et al., 2006). Thus, binding or biosorption is

considered one of the first extracellular barriers to preclude metal

toxicity in fungi. For instance, the proportion of Cd binding to cell

walls of Paxillus involutus was similar to that found intracellularly

(Blaudez et al., 2000). Extracellular release of suppressor enzymes or

pollutant chelating agents, as well as suppression of toxicant influx

transporters, are other mechanisms to prevent the entrance of metals

into the cells (Meharg, 2003).

Intracellular mechanisms and high capacity for metal uptake has

been shown for multiple genera of filamentous fungi, including

Trichoderma, Penicillium, and Aspergillus species (Dusengemungu

et al., 2020), among others. After being incorporated in the cell,

intracellular mechanisms tend to reduce metal accumulation, toxicity,

or concentration. The active efflux by enhancing cell wall

transporters, biochemical transformation into less harmful species

and antioxidant cellular processes such as binding to nonprotein

thiols, accumulation in vesicles or mobilization and translocation, are

the main known mechanisms (Meharg, 2003; Harms et al., 2011).

The ability of fungi to mobilize and translocate molecules and

chemical compounds, including toxic metals, between different parts

of their mycelium or between their mycelium and plant symbionts

makes particularly filamentous fungi interesting organisms for

bioremediation applications (Lindahl et al., 2002; Allen et al., 2003;

Allen, 2007; Harms et al., 2011). Furthermore, the microtubules

system and secretory vesicles serve as paths and media for long-

distance transport (Hyde et al., 1999; Horio and Oakley, 2005;

Mouriño-Pérez et al., 2006; Uchida et al., 2008). Previous studies in

arable lands and tropical forest soils have reported total length

estimates of fungal hyphae of 19 to 292 m/g soil, 2 to 34 m/g soil,

respectively (Frey et al., 1999; Camenzind and Rillig, 2013). Earlier

studies report on fungal hyphae lengths reaching even 10000 m/g soil

(Kjøller and Struwe, 1982), attesting to the substantial dimension of
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networks of filamentous fungi. Despite the fact that translocation of

toxic metals has not been documented yet, an increase of Cd in both

the cytosol and secretory vesicles of Paxillus involutus soon after

exposure (Blaudez et al., 2000), suggests its availability for long-

distance transport and detoxification.

Bioremediation of metals (including heavy metals) through fungi

have more frequently been addressed in terrestrial ecosystems than in

aquatic ecosystems (Chaturvedi et al., 2015). Reduction of toxic Cr

(VI) into non-toxic Cr (III) has gained interest for bioremediation.

The brown-rot fungus, Gloeophyllum sepiarium, removed 94% of Cr

(VI) in chromium contaminated soil within 6 months (Achal et al.,

2011). Neocosmospora spp., Aspergillus spp., Penicillium spp. and

Rhizopus spp. isolated from arsenic contaminated soils, were shown

to survive sodium arsenate concentrations of 10 g/L (Srivastava et al.,

2011). In another study Trichoderma spp., and Aspergillus spp.

survived up to 10 g/L of arsenate and members of the genera

Chaetomium, Myrothecium, Stachybotrys, Rhizomucor, Fusarium,

Rhizopus, Microdochium, also showed tolerance up to 10 g/L of

arsenate (Singh et al., 2015). Trichoderma asperellum and F.

oxysporum and Penicillium janthinellum were shown to

bioaccumulate arsenic in the cells (Su et al., 2010).

In aquatic environments, magnetic nanoparticles coated with

Aspergillus fumigatus and Aspergillus niger were used as a bio-

sorbent to remove Cr(VI) (Saravanan et al., 2021). With a removal

efficiency of 249.9 mg/g magnetic nanoparticles could be a suitable

removal material of Cr(VI) in aquatic environments. The removal

was affected by the presence of chitin or glucan polysaccharides.

These have been shown to promote potential binding sites for ion

exchange and metal chelation by the presence of ionizable functional

groups (e.g., carboxyl, sulfate or phosphate). Several works suggest

that biosorption capacity of metals is species-dependent

(Dusengemungu et al., 2020). For instance, it has been reported

that the EPS of Laccaria bicolor bound less than 30% of the added

cadmium and that copper binding could not be detected (Chai

et al., 2019).

On the other hand metal sorption experiments with Cu, Pb and

Cd and A. fumigatus showed a selective metal binding affinity in the

order of Cu(II) > Pb(II) > Cd(II) (Yin et al., 2011). Furthermore, the

majority of the fungal isolates (Aspergillus, Penicillium, Alternaria,

Geotrichum and Fusarium genera) from water and sediment samples

from five contaminated sites in the Moghogha river (Tangier,

Morocco) showed tolerance to Pb, Cr, Cu and Zn (Ezzouhri

et al., 2009).

Reports on marine fungi as agents for potential heavy metal

bioremediation are scarce, though the available results seem

promising. For instance, Yarrowia lipolytica is a potential candidate

for several biotechnological applications, e.g., treatment of palm oil

mill effluents, crude oil as well as 2,4,6-trinitrotoluene (TNT) (Oswal

et al., 2002; Zinjarde and Pant, 2002; Jain et al., 2004). Two marine

strains of Yarrowia spp. (Idd1 and Idd2) showed high removal

efficiencies of Hg. Yarrowia spp. removed more than 97% of Hg

from a medium containing 16 mg/mL Hg+2 (Oyetibo et al., 2016).

Absorption to the cell wall was the most prominent removal

mechanism and responsible for 49-83% of the removal. However,

bioaccumulation and volatilization were also important pathways in

removing Hg (Oyetibo et al., 2015). Furthermore, Yarrowia lipolytica

(NCIM 3589 and 3590) showed a high tolerance to various heavy
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metals; yet the heavy metal removal capacity was not studied (Bankar

et al., 2018). Aspergillus candidus, isolated from waters of Bhavnagar

coast was found to tolerate arsenic (Vala, 2009). Higher removal

capacities were observed in the treatments exposed to a high As

concentration (50 mg/L), and pentavalent As was removed more

efficiently than trivalent As (16 mg/g for As (V) and 8.5 mg/g for As

(III), respectively).

The marine fungi Corollospora lacera and Monodictys pelagica

have also been shown to sequester Cd and Pb. Although both strains

showed contrasting bioaccumulation patterns. C. lacera was

extremely efficient in bioaccumulating Pb but not Cd (up to 250

mg/g and over 7 mg/g of mycelium, respectively), while M. pelagica

efficiently bioaccumulated cadmium but not lead (over 60 mg/g and

over 6 mg/g of mycelium, respectively) (Taboski et al., 2005). Heavily

contaminated coastal sediments from the Mediterranean Sea have

been tested for microbial and fungal biodegradation potential, subject

to historical deposition of mining waste. Aspergillus niger and

Trichoderma spp. Showed 8-fold higher As removal than

conventional chemical treatments and higher removal rates than

bacteria-mediated remediation. Non-mobile Zn and Cd were

removed by fungi-induced bioleaching (Dell'anno et al., 2022). This

was more efficient than bacteria augmented treatments as well, likely

because of a fungi-mediated pH decrease, which enhanced

mobilisation of these metals. Two other Aspergillus species, A.

flavus and A. niger, associated with a marine seaweed, tolerated

hexavalent chromium (Cr(VI)) at different concentrations. Both

strains accumulated similar amounts of Cr(VI) linearly correlating

with the levels of Cr(VI) in the experiment, i.e., 4.4, 9.4 and 22.3 mg/g

and 3.5, 7.8 and 18.1 mg/g dry weight of fungal biomass in treatments

containing 25, 50 and 100 ppm of Cr(VI), respectively (Lotlikar et al.,

2018). Both isolates were able to remove up to 25% of the supplied

chromium in 15 days. Further species of Aspergillus, such as A.

sydowii achieved 26% Cr(VI) removal through exopolysaccharide

mediated mechanisms as well as intracellular deposition of Cr2O3.

Finally, one member of the Kalmusia genera, Kalmusia italica,

isolated from marine sediments has shown tolerance to Ni, Cr, Pb

and Zn although the mechanisms for immobilization are yet to be

characterized (Sumathi et al., 2020). For a recent review on aquatic

fungi and heavy metal accumulation, see (Sharif et al., 2022).
8 Application potential of
mycoremediation

Various strategies have been suggested for bioremediation of

pollutants in soil, sediment and aqueous environments. The

application of mycoremediation can be conducted on site, referred

to as in-situ mycoremediation or by excavating or removing the

contaminant or contaminated soil, sediment or water matrix to a

different location where the mycoremediation is carried out ex-situ

(Figure 2). Most common in-situ bioremediation methods are

bioaugmentation, bioventing, biosparging and natural attenuation

(Azubuike et al., 2016). Ex-situ bioremediation methods depend on

the matrix; biopiling, composting, land farming, applied for solid

matrixes and bioreactors and water treatment facilities can be used for

liquid media such as slurries and water (Kumar et al., 2011). The

feasibility of a certain remediation strategies depends on
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environmental conditions, nature and extensiveness of the pollution,

associated costs and the availability of suitable fungal candidates

for remediation.
8.1 In-situ mycoremediation

Implementation of in-situ mycoremediation is unavoidably

dependent on the matrix, as it is carried out on site. This requires

preliminary investigation and characterization of the polluted site

prior to the implementation of a fungi-based bioremediation

technique (Winardi et al., 2019). The mycoremediation on site is a

multi-factor system, where the pollutant input has already caused

changes to the chemical, physical and biological native system.

Addition of a live bioremediation component will influence not

only the pollutant, but potentially higher organisms and microbial

communities as well as physicochemical conditions at the site. In

addition, subsequent chemical transformations after application of

fungi might be influenced by or influence the microbial communities

on the site in positive or negative ways. This is compound specific and

depends on native microbial communities, their metabolic

capabilities and ability to survive.

In-situ application of fungi is advantageous due to the limited

disturbance that this approach induces to the polluted site (in contrast

to e.g., soil excavation). As a bioremediation strategy, this has been

applied successfully already by using bacteria to treat sites

contaminated with hydrocarbons, dyes, heavy metals, and

chlorinated solvents. Dispersal of fungi in soils is not dependent on

water(saturated)-soil phases (in contrast to bacteria), because fungal

hyphae can grow in air-soil interfaces and penetrate both soil and

rock matrices. Furthermore, on site treatment minimizes exposure of

fungi to shear forces, which would occur for example in bioreactors
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via stirring. This allows for mycelia to develop and penetrate soils

without alterations (Harms et al., 2011).

One of the major limitations of in-situ bioremediation is dilution

of the contaminant, leading to lowering of the contaminant

concentration. Filamentous fungi are advantageous in situations of

low concentration and large dispersion, due to their translocation

capabilities inherent to their mycelium growth. Filamentous fungi can

extend their hyphae networks in the magnitude of kilometres of soil

and are suited for heterogenous environmental conditions (Ingham

et al., 1991). Due to their penetration capabilities, fungi can also act as

an adjuvant to bacterial degradation by breaking physical barriers in

air-soil interfaces where water transport is limited (Kohlmeier et al.,

2005; Wick et al., 2007) or even act as fungal highways, allowing

bacteria to disperse along fungal mycelium (Junier et al., 2021). This

has been demonstrated for hydrocarbon degrading bacteria using

common soil fungi such as F. oxysporum or Rhexocercosporidium spp.

to mobilize (Kohlmeier et al., 2005). Also, Pythium ultimum was

shown to facilitate the chemostatic dispersal of PAH degrading

Pseudomonas spp. along its mycelia (Furuno et al., 2022).

In-situ large scale bioremediation applications in soils are,

however, not carried out extensively due to some biological,

operational/economic challenges. In some cases, additional

treatments of the contaminated soil/site are necessary, such as

tillage, aeration and water additions (Wick et al., 2007). These may

be cost intensive and might make in-situ applications economically

unfeasible (Cristorean et al., 2016). In addition, transplanting fungi to

polluted sites may result in loss of function. This have been observed

for ligninolytic basidiomycetes where mechanical fragmentation of

fungi, leads to detrimental effects in their capabilities (Nielsen and

Krabben, 1995; Li et al., 2000). Furthermore, one major disadvantage

of fungi in in-situ application is competition of the bioremediatory

fungus with indigenous microbial communities in particular bacteria,
FIGURE 2

Illustration of most commonly applied in-situ and ex-situ mycoremediation strategies. Bioventing and biosparging - addition of oxygen to promote
activity of aerobic microbes. Biostimulation – Addition of nutrients to promote microbes remediating the pollutant. Bioaugmentation – addition of
microbes to the site of pollution. Ex-situ strategies – Bioreactors for treatment of pollutants in aqueous matrix. Composting – treatment of polluted
matrix (often soil) in confined space (often also includes thermal treatment). Landfarming is based on regular tilling of the soil, collected on a designated
bed. Biopiling is a system, which includes irrigation, aeration systems and collection of leachates. In biopiles, the moisture, oxygen, pH and nutrients are
controlled.
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which renders the prospects of applications limited (Baldrian, 2008).

Nonetheless, fungi may serve as potential agents at decontamination

sites that are physically challenging for bacteria to access or where

extreme environmental conditions favour fungal growth. Finally, in-

situ mycoremediation can be applied more easily to terrestrial

settings, while a successful fungal application to aquatic, specifically

marine environments is usually complicated because of dilution and

dispersal of the pollutant and the fungus.
8.2 Ex-situ mycoremediation

Implementation of ex-situ mycoremediation can be feasible but

heavily depends on whether the pollutant can be collected and

transported to facilities for remediation, e.g., designated landfills,

large collection tanks and bioreactors or a combination of existing

solid waste and wastewater treatment facilities with designated

sections. Ex-situ mycoremediation enables better control over the

process as it typically allows better monitoring and control of

environmental parameters, growth and performance of the fungi.

For example, environmental conditions such as oxygen and pH

influence the fungal degradation efficiency of certain pesticides

(Castillo and Torstensson, 2007), which can be adjusted in

bioreactors. Also, the high requirement of most fungi for oxygen

and the costs and practicalities associated with facilitating this in-situ

makes ex-situ mycoremediation often more feasible. Furthermore,

elevated temperatures as can be achieved in ex-situ facilities, typically

result in accelerated and improved remediation (Dhiman et al., 2020).

In aqueous media, advances in integrating biological treatment

methods using fungi (T. versicolor) (Mir-Tutusaus et al., 2018) or

consortia of fungi and bacteria (Del Álamo et al., 2022) to clean up

hospital wastewater are extensively investigated. In bioreactor

settings, initial coagulation-flocculation pre-treatment steps were

shown to improve the viability of fungi within the reactor (Mir

Tutusaus et al., 2016). Additionally, the advantage of coupling

advanced oxidation processes (AOP) with biological treatment has

been investigated utilizing T. versicolor for the removal of

pharmaceuticals (Vasiliadou et al., 2019). Addition of the redox

mediators, such as quinones, has shown to increase the removal of

pharmaceuticals. This appears to be species specific, as the most

efficient redox mediators for T. versicolor and G. lucidum were 2,6-

dimethoxy-1,4-benzoquinone (DMBQ) and gallic acid, respectively.

Furthermore, the combination of DMBQ and T. versicolor resulted in

the removal of all 13 pharmaceuticals (≥60%) within 24 hours.

In ex-situ setting, bioremediation can be enhanced in consortia of

fungi and other microbes and/or higher organisms or when applied in

tandem with other physicochemical remediation approaches. Fungi

growing in symbiosis with plants (maize) have been shown to

enhance degradation of a range of compounds, including the

herbicide Atrazine (Huang et al., 2007). The approach of employing

microbial consortia, fungal cultures and their enzymes seems

promising for removing PPCPs in conventional waste water

treatment plants (Bilal et al., 2019).

Bioremediation of plastic polymers in wastewater treatment

plants have been addressed as a potential mitigation strategy for

removal of microplastics. At present, the bioremediation has focused

on higher aquatic plants and animals as agents, that can physically
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remove plastic particles from the aqueous phase, e.g., retaining

particles on their surface (e.g. seaweeds) or filter particles from the

water (e.g., bivalves) (Masiá et al., 2020). Fungi, on the other hand, are

able to biochemically degrade plastics in terrestrial and aquatic

environments. Thus, their potential as plastic degraders and

applicability needs further investigations.

Ex-situ mycoremediation could also benefit from using

genetically modified organisms (GMOs) (Jaiswal and Shukla, 2020),

specifically designed to target a pollutant or a variety of pollutants.

Using GMOs is only feasible in closed systems, where they can be

neutralized after treating the polluted matrices and ensuring to ensure

no viable GMOs are released to the environment.
8.3 Mycoremediation strategies based on
enzyme expression and immobilization

Ascomycete fungi are candidates for genetic manipulation, and

expression of enzymes for the upscaling of remediation capabilities

(Halaouli et al., 2006; Rodgers et al., 2010). Some candidate enzymes

are laccases and tyrosinases with a large range of applications.

Peroxidases from basidiomycetes have already been used for

commercial applications, with enhanced resistance to peroxide and

a wider redox spectrum for degradation through modifications (Ruiz-

Dueñas et al., 2009).

Recent studies have been focusing on the exploration and

expression of enzymes such as laccase-mediator systems (LMS)

(Bilal et al., 2019). However, the major disadvantage of these

processes is the high cost of the synthetic mediators. This can be

averted by using mediators that have a natural origin such as lignin-

derived phenolics (Grijalva-Bustamante et al., 2016). Removal of

different pesticides (Carbofuran, Diuron, Bentazone, Tebuconazole,

Pyraclostrobin, Clomazone) from aqueous samples using an

optimized laccase-mediator system has been investigated. Screening

of a variety of mediators including caffeic acid, p-coumaric acid,

vanillin, gallic acid, chlorogenic acid, protocatechuic acid, ferulic acid

and 2,2′-azino-bis-(3-ethylbenzothiazoline- 6-sulfonate) has shown

that the laccase-vanillin system was the most efficient resulting in 77%

removal of pesticides (Kupski et al., 2019). Biodegradation of

Isoproturon, a widely used herbicide known to produce potentially

carcinogenic intermediates, was studied using T. versicolor derived

laccase and 1-Hydroxybenzotriazole (HBT) as a redox mediator for

enhanced removal in aqueous systems (Zeng et al., 2017). In the

absence of HBT, there was negligible degradation of Isoproturon

whereas LMS in conjugation with HBT resulted in its complete

degradation within 24 hours

Next to that, there have also been advancements towards

immobilizing laccases on novel support materials for efficient

pesticide degradation (Bilal and Iqbal, 2019). The immobilized

laccase from Coriollopsis gallica on mesoporous nanostructured

silicon foam (MSU-F), was found to efficiently oxidize

dichlorophen pesticide and reduced the associated apoptotic and

genotoxic effects (Vidal-Limon et al., 2018). Laccase from

Myceliophthora thermophile (MtL) was fixed onto microspheres of

poly (glycidyl methacrylate) (PGMA), and used in a biocatalytic

system for degradation of azinphos-methyl (AZPM), an

organophosphate pesticide (Vera et al., 2018). Not only was this
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hybrid system found to be effective in a broad range of pH and

temperature, had a better stability (thermal, storage and operational),

but it also promoted a rapid biodegradation rate for AZPM with

ABTS as a mediator. The immobilization of enzymes in nano

materials has emerged, too, as biocatalysis strategy to treat

pharmaceuticals. Another type of successfully used carrier materials

are hollow mesoporous carbon spheres (HMCs), with improved

stability (pH, temperature), longer storage life and increased

reusability (Shao et al., 2019). In comparison to free enzymes, the

immobilized Lac showed good enzymatic activity up to 8 cycles with

efficient removal of the antibiotics tetracycline hydrochloride (TCH)

and ciprofloxacin hydrochloride (CPH). In both cases, the

syringaldehyde mediator SA (3 mmol/L) was found to increase

removal efficiencies and reusability of the carrying material. These

examples represent the future landscape in mycoremediation

technologies based on enzymatic potential without direct reliance

on an organism. Despite the effort to express exogenous enzymes

from fungi and with a wide range of available successes, the main

challenge remains to upscaling the expression of these enzymes for

concrete applications.
9 Conclusion and future perspective

This review provides an overview on fungi with a particular focus

on their ability to degrade recalcitrant and toxic compounds in

aquatic environments. The known role of fungi in bioremediation

of different classes of emerging pollutants accumulating in natural

systems as a result of anthropogenic activities is highlighted. Fungi

with their intra- and extracellular enzymatic machineries have been

shown to mitigate the effects of these pollutants, breaking them down

or demobilising them and thus act as natural bioremediating agents.

In bioremediation applications, the same set of fungal taxa or enzymes

are often used to substitute conventional pollution mitigation

strategies. Yet, the wealth of fungal taxa and useful enzymes seems

not to be explored fully. Specifically in aquatic environments, fungi

are understudied. We therefore suggest that future research efforts

should aim at unravelling the extent of (aquatic) fungal species that

are suitable and effective bioremediation agents and to decipher their

metabolic pathways in detail. For technical applications, future

bioremediation strategies could (i) exploit the symbiotic action of

fungi with bacteria and/or plants or design synthetic communities, (ii)

enhance enzyme production via genetic engineering and apply

enzymes to different carrying materials for mycoremediation in

nature, and (iii) extract compounds such as heavy metals after

mycoremediation, and thereby advance the use of natural resources
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which are exhaustible in nature and/or use the bioremediation

process for production of value-added products.
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Esteve-Núñez, A., Caballero, A., and Ramos, J. L. (2001). Biological degradation of
2,4,6-trinitrotoluene. Microbiol. Mol. Biol. Rev. 65, 335–352. doi: 10.1128/
MMBR.65.3.335-352.2001
Frontiers in Marine Science 16
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