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When it is deposited in the ocean, volcanic ash has the potential to release iron

and other nutrients into surface water to stimulate ocean productivity. In the

western South Pacific Ocean (SPO), one of the most important volcanic ash

deposition regions, occasional widespread transport of volcanic ash may supply

the nutrients not only locally around source islands but also within the wider the

western SPO, accompanied by phytoplankton response. Through a comparative

analysis of satellite and reanalysis data for the past 19 years (2004–2022), this

study reveals that four explosive volcanic eruptions, Rabaul volcano, Papua New

Guinea (October, 2006), Ambae volcano, Vanuatu (July, 2018), Ulawun volcano,

Papua New Guinea (June, 2019), and Hunga volcano, Tonga (January, 2022), had

the most strong stratospheric injection (>15 km) and mass loading of volcanic

materials over the wider the western SPO (covering an area of >765,000 km2).

The transport of 2006, 2018, 2019 volcanic emissions, was not likely associated

with significant ash deposition over the western SPO. However, the Hunga

eruption led to the deposition of ash-laden volcanic plumes over a wide area

(~2,000 km from source), and was followed by the increase in chlorophyll-a

concentrations (Chl-a) in the region (~70% increase). Minor changes related to

other nutrient sources (e.g., hydrothermal input) suggest a link between the

increase in Chl-a and 2022 Hunga ash falls over the western SPO. Our results

indicate that volcanic ash deposition has implications for phytoplankton

productivity in the western SPO, and highlights the need for further research

into understanding how nutrient supply alleviated limitations of phytoplankton at

the community level.
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1 Introduction

Anthropogenic greenhouse gas release to the atmosphere since

the beginning of the industrial era has caused climate change and

global warming, with the oceans taking up more than 90% of the

excess heat trapped in the earth system (Cooley et al., 2022). This

increased ocean temperature has resulted in greater water-column

stability and stronger ocean stratification, contributing to a decrease

in phytoplankton biomass, due to a decrease in upward nutrient

flux to the euphotic zone (Behrenfeld et al., 2006; Boyce et al., 2010;

Bindoff et al., 2019; Li et al., 2020b). The external supply of nutrients

to the marine environments (e.g., atmospheric deposition and

riverine input) therefore is recognized to play an increasingly

important role in marine biogeochemical cycles and marine

ecosystems, helping to offset reduced nutrient supply via

upwelling (Duce et al., 2008; Wang et al., 2015; Yoon et al., 2022).

Atmospheric deposition episodically transports macro- and

micronutrients (N, P, Si, Fe, and other metals) from natural (e.g.,

desert dust, volcanic ash, and forest fires) and anthropogenic

sources (e.g., fossil fuel combustion and biomass burning) to the

surface ocean throughout the globe (Guieu et al., 2014; Kim et al.,

2014; Jickells and Moore, 2015; Ventura et al., 2021; Longman et al.,

2022). In particular, volcanic ash, which is formed during explosive

volcanic eruptions, is highly reactive and can rapidly release iron

and other nutrients (Si, N, Mn) into the surface water to stimulate

ocean productivity (Frogner et al., 2001; Duggen et al., 2007; Jones

and Gislason, 2008; Longman et al., 2022). This can occur on local

to regional scales, with wide ranges in the nutrient supply,

dependant on ash-loading, ash particle size, chemical

composition, and surface salt coatings (Duggen et al., 2007;

Hamilton et al., 2022). Several studies have shown that elevated

fluxes of metals and nutrients following the deposition of volcanic

ash stimulated primary productivity (PP) not only in high-nitrate

low-chlorophyll (HNLC) regions but also in low-nitrate low-

chlorophyll (LNLC) regions (Hamme et al., 2010; Langmann

et al., 2010; Lin et al., 2011; Achterberg et al., 2013; Olgun et al.,

2013b). Accordingly, volcanic ash has been suggested as a fertilizer

material to promote ocean productivity (Duggen et al., 2010;

Hamme et al., 2010; Olgun et al., 2013b; Longman et al., 2019;

Longman et al., 2020).

The western South Pacific Ocean (SPO), a highly stratified

oligotrophic system (the low-nutrient situation; Bock et al., 2018),

has been recently described as a hot spot of dinitrogen (N2) fixing

organisms, which contribute to the high levels of PP (Bonnet et al.,

2017; Caffin et al., 2018). In this region, the west–east gradient of N2

fixation, with higher values in the western parts, has been attributed

to the alleviation of iron limitation by hydrothermal submarine iron

inputs, island sediment, and land runoff in the west of the Tonga arc

(Shiozaki et al., 2014; Bonnet et al., 2018; Guieu et al., 2018; Moutin

et al., 2018; Tilliette et al., 2022). However, the western SPO, as one

of most important volcanic ash deposition regions, has the potential

to be fertilized by the transport of volcanic ash from the explosive

eruptions, such as the volcano from Tonga, Vanuatu, and Papua

New Guinea (Figure S1A) (Kloss et al., 2020; McKee et al., 2021;

Filho et al., 2022; Hamilton et al., 2022; Mishra et al., 2022). As the

work of Barone et al. (2022) first detailed, the eruption of Hunga
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volcano on 15 January 2022, the most explosive of the 21st century,

led to a massive chlorophyll-a (Chl-a) increase around Tonga

island, stimulated by nutrients supplied through ash deposition.

However, several studies have observed the presence of discolored

water plumes at the surface around Tonga island following Hunga

eruptions (2009, 2019, and 2022), and so the link between ash and

Chl-a is not certain (Shi and Wang, 2011; Whiteside et al., 2021;

Whiteside et al., 2023). Unusually sporadic and widespread

transport of ash from these explosive volcanic events may supply

the nutrients over the wider western SPO beyond the source region

(Kloss et al., 2020; McKee et al., 2021; Mishra et al., 2022). However,

little work has been dedicated to the response of phytoplankton

associated with the long-distance transport of explosive ash plumes

within the wider the western SPO.

In this study, through a comparative analysis of satellite and

reanalysis data for the past 19 years (2004–2022), we present the

temporal and spatial characteristics of transport pathways of

airborne volcanic ash over the western SPO during the period.

We investigate changes in satellite-derived Chl-a concentrations to

compare the phytoplankton responses to deposition of distally

transported ash plumes.
2 Methods & materials

2.1 Satellite data

Satellite observations of SO2 have previously been used as a

proxy for volcanic eruptions and volcanic ash transport (Thomas

and Prata, 2011; Sears et al., 2013). The temporal variability of

volcanic plumes produced over the western SPO (10°N–35°S, 125°

E–150°W) during the study period of October 2004 to February

2022 was examined using daily level-3 best pixel SO2 total column

products with a 0.25° regular grid, obtained from NASA’s Aura

satellite Ozone Monitoring Instrument (OMI), which is available

since October 2004 (https://disc.gsfc.nasa.gov/datasets/OMSO2e_

003/summary; Li et al., 2017; Li et al., 2020a). The background SO2

loads (<0.1 Dobson Units (DU); 1 DU = 2.69 × 1016 molecules

cm−2) were removed (Li et al., 2020a). To characterize the spatial

distribution of volcanic plumes, we also used the level-2 PCA SO2

total column products (NMSO2-PCA-L2) with a spatial resolution

of 50 km, taken from Ozone Mapping and Profiler Suite (OMPS)

onboard NASA/NOAA Suomi National Polar-orbiting Partnership

(SNPP) satellite, which is available since 2012 (https://disc.gsfc.

nasa.gov/datasets/OMPS_NPP_NMSO2_PCA_L2_2/summary).

To ensure data quality and maintain pixel numbers, we accepted

OMPS SO2 values with a solar zenith angle less than 75°, cloud

cover less than 80%, and SO2 values higher than 0.1 DU (Yang et al.,

2013; Li et al., 2020a). We analyzed the spatial distribution of OMI

level 2-PCA SO2 total column products with a spatial resolution of

13 × 24 km2 for the pre-OMPS period (i.e., prior to 2012). These

data were re-sampled to 0.25° by 0.25° using MATLAB cubic

interpolation methods. The vertical and horizontal transport of

ash plumes was detected using level-2 aerosol subtypes data

(version 4.x) and level-1 532 nm total attenuated backscatter

coefficient measurements (version 4.x) by the Cloud-Aerosol
frontiersin.org

https://disc.gsfc.nasa.gov/datasets/OMSO2e_003/summary
https://disc.gsfc.nasa.gov/datasets/OMSO2e_003/summary
https://disc.gsfc.nasa.gov/datasets/OMPS_NPP_NMSO2_PCA_L2_2/summary
https://disc.gsfc.nasa.gov/datasets/OMPS_NPP_NMSO2_PCA_L2_2/summary
https://doi.org/10.3389/fmars.2023.1072610
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Yoon et al. 10.3389/fmars.2023.1072610
Lidar with Orthogonal Polarization (CALIOP) onboard the Cloud-

Aerosol Lidar and Infrared Pathfinder Satellite Observations

(CALIPSO) satellite (https://www-calipso.larc.nasa.gov; Winker

et al., 2009; Vernier et al., 2016; Kim et al., 2018). To track the

vertical profile of ash particles from volcanic eruption, we further

used daily level-2 aerosol extinction coefficient at 675 nm (version

2) measured by OMPS Limb Profiler sensor on the Suomi-NPP

satellite (https://disc.gsfc.nasa.gov/datasets/OMPS_NPP_LP_L2_

AER_DAILY_2/summary; Kramarova et al., 2018; Loughman

et al., 2018). The aerosol extinction coefficient data have a vertical

resolution of approximately 1.8 km. To monitor atmospheric

features on volcanic eruptions, the NASA WorldView images of

true color corrected reflectance, derived from both SNPP-Visible

Infrared Imaging Radiometer Suite (VIIRS) and Aqua-Moderate

Resolution Imaging Spectroradiometer (MODIS) were also used

(https://worldview.earthdata.nasa.gov/).

The change in phytoplankton biomass over the western SPO was

evaluated using Chl-a products, derived using the OC4 blue-green band

ratio algorithm, which is applicable for Case 1 waters (i.e., typically

oligotrophic and open oceans) (O'Reilly et al., 2000). The Chl-a estimates

are 0.25° gridded daily merged products generated by the weighted

average method from the GlobColour dataset (https://hermes.acri.fr). To

exclude the local impact, we removed the Chl-a values over shallow

waters (bathymetry <200 m; Figure S1A). Furthermore, we estimated

ocean PP, using the vertically generalized production model (VGPM)

developed by Behrenfeld and Falkowski (1997). The input data required

for the PP estimation were obtained from GlobColour datasets for the

Chl-a, photosynthetic available radiation, and euphotic depth, and the

operational sea surface temperature and sea ice analysis (OSTIA) system

dataset for sea surface temperature (SST) (https://marine.copernicus.eu;

Good et al., 2020), respectively. The SST data with the spatial resolution

of 0.05° were re-sampled to 0.25° by 0.25° grid using MATLAB cubic

interpolation methods.
2.2 Reanalysis and simulated data

Emitted volcanic ashes are dispersed in the atmosphere and

transported by wind to the distance of ten to thousands of

kilometers away from their source. The NOAA’s hybrid single-

particle Lagrangian integrated trajectory (HYSPLIT) model was

applied to identify the atmospheric transport and dispersion of

volcanic ash (http://www.ready.noaa.gov) (Stein et al., 2015; Rolph

et al., 2017). Global data assimilation system (GDAS) metrological data

with a horizontal resolution of 1° were used as model input to calculate

the 96-hrs forward trajectories for heights in the surface layer (0.8 km)

and stratospheric layer (15 and 21 km) from Ulawun volcano, Papua

New Guinea on 7 October, 2006 (4.27°S, 152.20°E), Ambae volcano,

Vanuatu on 27 July, 2018 (15.40°S, 167.84°E), Ulawun volcano, Papua

New Guinea on 26 June, 2019 (5.05°S, 151.33°E) and Hunga volcano,

Tonga on 15 January, 2022 (20.54°S, 175.38°W), respectively. The

volcanic ash transport was also examined by using the daily zonal wind

(u) and meridional wind (v) at 925 hPa from the National Centers for

Environmental Prediction (NCEP)-National Center for Atmospheric

Research (NCAR) Reanalysis 1 (https://psl.noaa.gov/data/gridded/

data.ncep.reanalysis.pressure.html).
Frontiers in Marine Science 03
To confirm the influence of the vertical mixing of the water

column over the western SPO, we analyzed the weekly estimates of

mixed layer depth (MLD) with a 0.25° × 0.25° regular grid derived

from the Multi Observation Global Ocean ARMOR3D L4 near real

time weekly products and multi-year reprocessed products, for the

period of 2020 to 2022 and 2004 to 2021, respectively, distributed by

the Copernicus Marine Environment Monitoring Service (CMEMS)

(https://resources.marine.copernicus.eu). MLD data were estimated

as the minimum value of a density threshold equivalent to a 0.2°C

variation of the temperature conditions from the temperature at 10 m

depth and the MLD temperature criteria with 0.2°C threshold (de

Boyer Montégut et al., 2004). The weekly MLD data were re-sampled

to daily data using MATLAB resample function. We also used the

daily surface precipitation rate dataset derived from NCEP-NCAR

reanalysis 1 to understand the nutrient supply from river flux

(Shiozaki et al., 2014). To investigate the nutrient flux from the

sediment arounds the islands (Dutheil et al., 2018), we analyzed

surface zonal current using Ocean Surface Current Analysis Real-

time (OSCAR) dataset with a 1/3 degree grid with a 5 day resolution,

which was calculated from satellite datasets using a simplified

physical model of an upper ocean turbulent mixed layer (https://

podaac.jpl.nasa.gov/dataset/OSCAR_L4_OC_third-deg_YEARLY).
2.3 Geochemical analysis of ash

To investigate the role that varying chemical compositions of ash

may have had on phytoplankton response, the geochemical

composition of volcanic ash from the studied volcanic eruptions was

investigated. For the 2018 Ambae eruption, major and trace element

geochemistry for the bulk ash and individual ash glasses was taken

from Moussallam et al. (2019). Comparable data for the 2009 and

2014–2015 eruptions of Hunga were taken from Brenna et al. (2022),

supplemented by analysis of 2022 products collected on land from

Tongatapu, Tonga. These samples were collected in the aftermath of

the eruption, roughly 75 km south of Hunga volcano. Bulk X-Ray

Fluorescence (XRF) analysis of the whole ash sample from

Nakualolofa, Tongatapu and XRF analysis of pumice separated from

ash collected from Fu’amotu airport was completed by SpectraChem

Analytical Ltd. Christchurch using Li-Borate beads for major elements

and pressed-powder pellets for trace elements. Individual glass shards

from 2022 material deposited on Tongatapu were analyzed using a

JEOL Field Emission Electron Probe Microanalyser System 8530F

(Hyperprobe) at the University of Auckland. A defocussed beam of

10–20 mm diameter was used with an accelerating voltage of 15 kV,

with Na analyzed first and probe conditions monitored using

secondary international glass standards.
3 Results and discussion

3.1 The occurrence of four extreme
volcanisms in the western SPO

The spatial distribution of the combined climatology of the

OMI-derived mean SO2 in the western SPO averaged over last 19
frontiersin.org
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years (2004–2022) is shown in Figure S1B. Comparatively higher

SO2 total column values (>0.4 DU) were found in and around the

land than that over ocean. The highest values of SO2 are found in

the regions near the volcanoes shown in Figure S1, indicating the

SO2 variation for the study period in the western SPO is mainly

related to the state of volcanic activity. One exception is in Southeast

Australia where SO2 emissions are entirely anthropogenic from 19

coal-fired power stations operating in Australia (Hendryx

et al., 2020).

To describe the explosive volcanisms that occurred in the

western SPO over last 19 years, we first investigated the volcanic

explosivity index (VEI; https://volcano.si.edu/), which distinguishes

the volcanic eruptions in the range from 0 (non-explosive

eruptions) to 8 (mega-colossal explosive eruptions) on the

logarithm of 10, based on volume of magma erupted during an

eruption and plume height (Newhall and Self, 1982). During this

period, twelve explosive eruptions of VEI 3 or greater have been

observed (Table S1). The Hunga eruption from an andesitic

submarine caldera, on 15 of January 2022, a Paroxysmal eruption,

was the biggest explosion of the 21st century from with a VEI

estimated at 5, which is greater by two orders of magnitude than any

others in the dataset. However, there were four further events of

VEI 4 from the volcanoes in Papua New Guinea, which are Ulawun,

Manam, and Rabaul volcanoes. The Ambae event was the most

energetic episode of a longer period of sub-Plinian/Plinian

volcanism from a basaltic vent at ~1400 m elevation, with VEI of

3 (Moussallam et al., 2019).

Figure 1A shows the daily variations of OMI-derived SO2 total

column during the study period of October 2004 to February 2022

averaged over the western SPO (10°N–35°S, 125°E–150°W). The

daily mean SO2 total column averaged over the western SPO

displays generally low values (0.23 ± 0.05 DU), but episodic SO2

peaks occurred for twelve explosive eruptions of VEI 3 or greater

(>0.9 DU) (Figure 1A and Table S1). To identify which explosive

eruptions delivered the emitted substances with high intensity over

the broad area of the western SPO, we extracted extremely high

values fall that above 99.9th percentile of daily mean SO2 total

column (>0.931 DU), suggestive of high volcanic ash deposition to

the western SPO. There were four distinct peaks in October 2006

(maximum value: 1.63 DU), July 2018 (maximum value: 1.56 DU),

June 2019 (maximum value: 0.93 DU), and January 2022

(maximum value: 1.95 DU) (Figure 1B), corresponding with

timing of volcanic eruptions in the Rabaul, Papua New Guinea

(October 2006), Ambae, Vanuatu (July 2018), Ulawun, Papua New

Guinea (June 2019), and Hunga, Tonga (January 2022). The

number of pixels (0.25° grid) with SO2 values above 99.9th

percentile (0.931 DU) over the western SPO area also showed the

strong peaks (>1000 pixels) in the corresponding periods (Figure

S2), i.e., covering an area of >765,000 km2. The true color images

confirm the emissions of volcanic ash from Rabaul (7 October,

2006), Ambae (especially on 20 and 27 July, 2018), Ulawun (25

June, 2019), and Hunga eruptions (14 January, 2022) (Figure S3)

(https://worldview.earthdata.nasa.gov). Combined, these data

suggest the eruptions of Rabaul, Papua New Guinea (October

2006), Ambae, Vanuatu (July 2018), Ulawun, Papua New Guinea

(June 2019), and Hunga, Tonga (January 2022) were the most
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extreme volcanic plumes produced in the western SPO over last 19

years (2004–2022).
3.2 Horizontal and vertical transport of
four extreme volcanic plumes

During a volcanic eruption, buoyant plumes of ash and gas are

produced (fragmented volcanic glass and minerals, rich in macro-

and micro-nutrients; Duggen et al., 2007; Longman et al., 2022).

These are rapidly transported horizontally and vertically by the

wind, until deposition. Ash deposition in the western SPO may

supply limiting nutrients (particularly iron for N2 fixation; Bonnet

et al., 2017) for phytoplankton growth (Heffter and Stunder, 1993;

Langmann et al., 2010; Olgun et al., 2013a). To characterize the

spatial pattern of the deposition of volcanic materials into the

western SPO, in this section, we describe the horizontal and

vertical transport and dispersion of ash plumes from Rabaul

volcano in October 2006, Ambae volcano in July–August 2018,

Ulawun volcano in June–July 2019, and Hunga volcano in

January 2022.

Figure 2 shows the horizontal evolution of satellite-derived

mean SO2 total column over the western SPO averaged for the

periods of the four volcanic eruptions, 2006 Rabaul eruption (7–13

October), 2018 Ambae eruption (20–27 July and 28 July–4 August),

2019 Ulawun eruption (26 June–4 July), and 2022 Hunga eruption

(15–20 January). On 7 October 2006, very high SO2 columns (>14

DU) were observed around Rabaul volcano (Figure S4A), and SO2

plumes from this source were horizontally distributed over the

western SPO, showing two pathways of westward transport and

southeastern transport, respectively (Figures 2A and S4A). Highest

plumes were displayed over near coastal waters with a westward

relatively short distance (~700 km) around the northeastern area of

Papua New Guinea after leaving the source, during southeasterly

surface wind conditions. Following the continuous SO2 emission

from Ambae volcano (>14 DU) during the period of 20–27 July,

2018, with relatively high SO2 levels around source region (Ambae)

(shown in inset in Figure 2B), the SO2 plumes averaged during the

period of 28 July to 4 August 2018 showed eastward long-distance

(>2000 km) transport, showing highest plumes around the northern

part of Tongatapu island (29 July 2018), but the direction of surface

winds in 2018 case showed different pathways of long-distance

transport of SO2, suggesting that this transport was associated with

air masses at the higher altitude (Figures 2B and S4B). During 2019

Ulawun eruption event, the SO2 plumes were relatively less

dispersed over the western SPO, compared to those from other

volcanoes studied here (Figures 2C and S4C). This event showed

high plume concentrations only in the eastern area of Papua New

Guinea, a short-distance (~500 km) southward from the source

region as described in a recent study (McKee et al., 2021).

Conversely, the SO2 distribution averaged during the period of

15–20 January illustrates that the SO2 emitted from the Hunga

volcano travelled a long distance (>6000 km) westward, reaching

the northern part of Australia, passing over the waters around

Vanuatu and Fiji (Figures 2D and S4D). The highest SO2 values

(>14 DU) appeared in around source region (Hunga) and the water
frontiersin.org
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surrounded by Vanuatu, New Caledonia, and Fiji (i.e., an area of

~8.2 × 105 km2, ~2000 km from source; blue box in Figure 2D) on

16 January 2022. The transport of volcanic plumes in the 2022 case

was consistent with the easterly wind direction at the near surface.

Based on NOAA’ HYSPLIT 96-hrs forward trajectories model,

we investigated the vertical transport pathways of tropospheric

(0.8 km) and stratospheric air masses (15 and 21 km), originating

from the Rabaul, Ambae, Ulawun, and Hunga volcanoes

(Figure 3A). During the Rabaul volcano event (7 October, 2006),

air mass trajectories simulated by HYSPLIT showed that the air

mass movement at the altitude of 15 km captured the horizontal

distribution of SO2 plumes, suggesting the stratospheric injection

and mass loading of volcanic materials expelled from Rabaul

volcano (Figures 2A, 3A). The movement of air masses at the

altitudes of 0.8 and 21 km from Ambae volcano (27 July, 2018), was

consistent with that of near surface wind (Figure 2B). Unlike the

direction of other air masses, the air mass at an altitude of 15 km
Frontiers in Marine Science 05
showed a pathway consistent with the spatial distribution of SO2

total column, supporting the suggestion that volcanic ash from the

Ambae eruption in July 2018 was transported at an altitude of

15 km (i.e., stratosphere aerosol level). This result is also consistent

with the vertical distribution of the Ambae volcanic plume observed

with a core brightness temperature (Kloss et al., 2020). The airmass

at the altitude of 21 km following the Ulawun eruption (26 June,

2019) showed a pathway eastward, which is consistent with the

spatial distribution of SO2 with low levels (Figure 3A). On the other

hand, airmass forward trajectory, starting from altitude of 15 km,

depicted high SO2 plume distribution around the eastern area of

Papua New Guinea (Figures 2C, 3A). The pathways of air masses at

the altitudes of 0.8, 15, and 21 km, starting at the Hunga on 15

January 2022, appeared to be in the westward direction, showing

consistent pathways to the region of Vanuatu, New Caledonia, and

Fiji (Figures 2D, 3A). Dispersion of air mass at an altitude of 21 km

was nearly the same as that of the SO2 distribution, indicating that
A

B

FIGURE 1

The temporal variation of OMI-derived mean SO2 total column averaged over the western SPO (10°N–35°S, 125°E–150°W) (A) for the study period
of October 2004 to February 2022, enlarged figures (B) for October, 2006, July to August, 2018, June to July, 2019 and for January, 2022. The
asterisk markers and blue lines in (A) (circle markers and shading in Figure 1B) indicate the mean and one standard deviation of mean, respectively.
Red dotted line indicates the threshold of SO2 value that correspond to 99.9th percentile. Red circles indicate the SO2 values that exceeded 99.9th

percentile.
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volcanic ash is suspected to be more efficiently transported over a

long distance to the northern part of Australia along an altitude of

21 km, higher than the Ambae volcano. Recent studies also showed

that much of the plume reached an altitude higher than 30 km

during the Hunga eruption, and it developed a massive umbrella

region of ~400 km diameter (Carr et al., 2022; Smart, 2022), making

it much more effective in dispersing ash over large areas.

To identify whether long-range transportation of air mass in the

stratosphere (usually higher than approximately 12 km above the

surface) is associated with the dispersion of volcanic aerosol plumes

over the western SPO, we further analyzed the CALIPSO L2 aerosol

products after the 2006, 2018, 2019 and 2022 eruptions, which

classify aerosols into ten subtypes for the stratospheric layer; clean

marine, dust, polluted continental/smoke, clean continental,

polluted dust, elevated smoke, dusty marine, polar stratospheric

clouds aerosol, volcanic ash, sulphate/other (Figure 3B) (Kim et al.,

2018). The stratospheric aerosols were well spread at the altitudes of

around ~15 to 25 km in 2006, 2018, and 2019 eruptions. For the

2022 eruption, relatively higher heights, at the altitudes of 18 to

30 km, respectively, along the CALIPSO measurement orbit tracks,

as shown by the HYSPLIT atmospheric long-distance trajectories

(15 km in 2006, 2018, and 2019 year and 21 km in 2022 year) and

SO2 distribution (Figures 2, 3B). The presence of volcanic ash

plumes was also characterized by CALIPSO L1B total attenuated

backscattering coefficient at 532 nm (~0.002 km-1 sr-1; yellow in the

figure) (Figure S5). Most importantly, the CALIPSO measurements
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show that the composition of the 2006, 2018, and 2019 plumes was

primarily sulphate aerosols (grey in the figures), while the 2022

Hunga eruption was a mixture of volcanic ash and sulphate aerosols

(red and grey in the figure), indicating the persistence of ash-laden

plumes over the western SPO after the eruption (Figure 3B).

Furthermore, we investigated the vertical distribution of OMPS

L2 aerosol extinction to understand the quantitative retrievals of

volcanic ash transported and deposited to the western SPO

following 2018, 2019, and 2022 eruptions (Figure 3C). There was

no available data in 2006. The vertical distribution of aerosol

extinction along the OMPS orbit track on 29 July 2018,

confirmed a slight increase (~0.02 km-1) at altitudes of ~15 to

20 km in the northern area of Tongatapu island where the highest

levels in SO2 were shown, indicating relatively potential low

deposition (Figures 2B, 3C). After the 2019 volcanic eruption,

aerosol extinction coefficients on 27 June 2019 also showed a

slight increase (>0.02 km-1) at altitudes of ~15 to 20 km around

Papua New Guinea. However, unlike these events, the vertical

distribution of aerosol extinction coefficients on 16 January 2022

showed relatively higher values with levels of >~0.05 km-1 at all

observed altitudes (<30 km) in the water surrounded by Vanuatu,

New Caledonia, and Fiji (Figure 3C), where ash-laden plumes and

high levels in SO2 were mainly observed, but relatively low aerosol

extinction coefficients in the western part of Vanuatu on 17 January

2022 (Figures 2D, 3A, C). Mishra et al. (2022) showed that on 16

January the maximum SO2 value in the region occurred when the
A B

C D

FIGURE 2

A spatial distribution of the SO2 total column averaged over the period of (A) 7-13 October, 2006, (B) 28 July - 4 August, 2018, (C) 26 June - 4 July,
2019, and (D) 15-20 January, 2022, with surface wind (at 925 hPa). Inserted figure in (B) is the spatial distribution of SO2 total column averaged over
the period of 20-27 July, 2018.
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spread speed of atmospheric westward plume was lowest as

<1000 km day-1, but >2500 km day-1 after 17 January. Ash

deposition maxima can result from the trapping of ash related to

relatively low wind speed, as shown in a numerical modeling study
Frontiers in Marine Science 07
(Poulidis et al., 2018). Therefore, these results suggest 2022 Hunga

eruption was accompanied by high deposition of ash-rich aerosols

over the water surrounded by Vanuatu, New Caledonia, and Fiji on

16 January 2022, probably by relatively weak winds.
A

B

C

FIGURE 3

(A) The HYSPLIT forward trajectories (96-hrs) at altitudes of 0.8 km (green), 15 km (red), 21 km (blue) from Rabaul (7 October, 2018), Ambae (27 July,
2018), Ulawun (26 June, 2019), and Hunga (15 January, 2022). Grey lines indicate CALIPSO orbits. Pink lines indicate OMPS orbits. (B) The vertical
distribution of CALIPSO-derived aerosol subtypes in 2006, 2018, 2019 and 2022 along the orbits shown in (A). Colorbar indicates stratospheric
aerosol subtypes (0: not determined, 1: clean marine, 2: dust, 3: polluted continental/smoke, 4: clean continental, 5: polluted dust, 6: elevated
smoke, 7: dusty marine, 8: polar stratospheric clouds aerosol, 9: volcanic ash, 10: sulphate/other). (C) The vertical distribution of OMPS-derived
aerosol extinction coefficient on 29 July, 2018, 27 June, 2019, 16 and 17 January, 2022 along the orbits shown in Figure 3A.
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3.3 The volcanic ash composition

The composition of the deposited volcanic ash has the potential

to control the phytoplankton response, with differing levels of

nutrient release from different ash compositions already noted

(Jones and Gislason, 2008; Longman et al., 2022). Our ash

classification showed that in October 2006, the large sub-Plinian

eruption from Rabaul volcano, with a whole-rock composition of

Trachydacite (Figure S6) (Bouvet de Maisonneuve et al., 2015;

Bernard and Bouvet de Maisonneuve, 2020). The 2018 Amabe

volcano, which is a basaltic shield volcano, produced basaltic

andesite to trachy-basalt ash (Moussallam et al., 2019). The 2022

Hunga eruption produced andesitic to basaltic andesite ash, similar

to earlier eruptions of this volcano (Brenna et al., 2022). Figure S7

shows that both Ambae and Vanuatu ash contain high iron

contents in their total glass and bulk analyses (often >10 wt%),

which is a common nutrient deficiency in the ocean, but Rabaul ash

contains relatively low iron contents (<10 wt%) (Table S2 and S3)

(Moore et al., 2013). This may explain the lack of phytoplankton

response to Rabaul, but our data do not contain information on

bioavailability of the Fe contained within the ash. As such, further

research is necessary to confirm the hypothesis that changing ash

composition leads to different phytoplankton response.
3.4 The response of chlorophyll-a
concentrations to distal plumes transport

To understand the response of phytoplankton subsequent to

distal ash transport from four extreme eruptions (2006 Rabaul, 2018

Ambae, 2019 Ulawun, and 2022 Hunga eruptions) in the western

SPO, we carried out an inspection of area-averaged time series of

GlobColour-merged Chl-a concentrations in the distal region

(Figures 4A–D), i.e., regions having highest atmospheric SO2

loading (>14 DU) extending toward the western SPO (blue box;

2006: 0–4°S, 145–150°E, 2018: 12–18°S, 178°E–169°W; 2019: 6.5–

10°S, 147–157°E; 2022: 15–23°S, 165–174°E) (Figure 2). A time

series of Chl-a estimates in the distal region, which is affected

regions by long-range transport of volcanic plumes (>500 km),

showed profoundly different response to 2022 Hunga events when

compared to all other volcanic events (2006, 2018, 2019 events;

Figures 4A–D). Following long-range transport of the 2006, 2018,

2019 volcanic emissions (Figures 2A–C), Chl-a concentrations did

not show any noticeable increases (Figures 4A–C), suggesting

limited nutrient supply (particularly iron) probably due to low

volumes of ash deposition. However, in regions affected by likely

high deposition of long-distance transported Hunga ash on 16

January 2022 (Figures 2D, 3C), Chl-a estimates were two times

higher than that of climatological mean and one standard deviation

for approximately 10 days after a lag period of 6 days (Figure 4D).

The difference between Chl-a values from the 2022 Hunga event

with the climatological values were statistically significant (p <0.05;

t-test analysis). The response of Chl-a values to 2022 Hunga

eruptions (0.15 mg m-3) showed a 67% increase in average

compared to climatological values (0.09 ± 0.03 mg m-3) (red
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shading in figure). Oceanic PP estimates subsequent to 2022

Hunga eruptions (383 mg C m-2 d-1) also showed a 43% increase

compared to climatological value (268 ± 74 mg C m-2 d-1). This

conclusion is echoed by the findings of a recent study, which

showed increasing Chl-a in close proximity to Hunga volcano,

but with a higher magnitude in Chl-a values (>10-fold than before

eruption) immediately after the eruption (Barone et al., 2022).

However, as the presence of ash particles can directly influence

the satellite ocean color signatures, in turn biasing the appraised

Chl-a estimates, monitoring of the phytoplankton response to the

ash deposition using satellite-derived optical datasets should be

interpreted with caution (Johnson et al., 2011; Browning et al.,

2015). The ash particles have residence times of up to 2 days in the

euphotic zone depending on the particle sizes (Duggen et al., 2007).

Whiteside et al. (2023) revealed that there were extremely high

amounts of suspended ash particles in the surface waters around the

Hunga volcano 2 days after 2022 eruption, which probably led to

ash-contaminated Chl-a estimates but 9 days after the eruption the

ash-related values recovered to normal, suggesting the removal of

ash signal in the surface with time. In addition, previous studies

have shown that the phytoplankton began to respond five to six

days after deposition of volcanic ash, as shown in mesoscale iron-

fertilization experiments (Coale et al., 2004; Duggen et al., 2007;

Langmann et al., 2010; Lin et al., 2011; Yoon et al., 2018). Therefore,

in the context of this study, the increase in Chl-a at a time period ∼6
days after 2022 Hunga eruption, potentially after sinking of ash

particles below surface waters, would exclude the misinterpretation

of Chl-a estimates by ash particles itself in the surface water

(Langmann et al., 2010).

Furthermore, we analyzed the spatial distribution of the

difference of 10-days mean Chl-a concentrations 6 days after

volcanic eruption (2006: Chl-a2006 (13–22 October); 2018: Chl-a2018 (2-

11 August); 2019: Chl-a2019 (2–11 July); 2022: Chl-a2022 (21–30 January)) and

10-days mean climatological Chl-a concentrations (2006: Chl-

a2006clim (13–22 October); 2018: Chl-a2018clim (2-11 August); 2019: Chl-

a2019clim (2–11 July); 2022: Chl-a2022clim (21–30 January)) averaged for

corresponding periods for 19 years (2004–2022) except

corresponding year, respectively (e.g., DChl-a 2006 (13–22 October) =

Chl-a2006 (13–22 October) – Chl-aclim (13–22 October) except 2006)

(Figures 4E–H). As shown in the temporal analysis, the long-

distance transport of 2006, 2018, 2019 volcanic plumes over

western SPO was not followed by any apparent response in Chl-a

over regions that have high levels in SO2 (Figures 2A–C, 3C, 4E–G).

However, in 2022, considerable positive anomalies of Chl-a values

(Figure 4H) were also distinctively visible over the water surrounded

by Vanuatu, New Caledonia, and Fiji which showed potential high

deposition following the long-range transport of ash released from

Hunga (Figures 2D, 3C). Furthermore, an anomalously high

phytoplankton stock was detected in waters in close proximity to

Hunga volcano at a time period 6 days after the 2022 eruption

(Figure 4H), as shown in Barone et al. (2022), indicating a continued

response in Chl-a even under a substantial sinking of ash particles

(Duggen et al., 2007; Whiteside et al., 2023). These results suggest that

volcanic ash deposition is considered the likely explanation for the

enhancements in phytoplankton response in the western SPO.
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FIGURE 4

The area-averaged time series of Chl-a (red markers) over the distal region in (A) 2006 (0–4°S, 145–150°E), (B) 2018 (12–18°S, 178°E–169°W), (C)
2019 (6.5–10°S, 147–157°E), and (D) 2022 (15–23°S, 165–174°E). Each region is shown as blue box in Figure 2. The blue dotted line indicates the
area-averaged climatological mean and blue shading indicates one standard deviation of climatological mean. Star markers indicate main volcanic
eruptions. The red shading indicates a Chl-a response subsequent to 2022 Hunga event. The spatial distribution of DChl-a for the period of (E) 13-22
October, 2006, (F) 2-11 August, (G) 2-11 July, 2019 and (H) 21-30 January, 2022. DChl-a is difference of Chl-ayear and Chl-aclimatology except year for
corresponding each period, respectively.
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3.5 Other possible drivers of 2022
chlorophyll-a response

In the western SPO, PP has been linked to the occurrence of N2

fixing organisms, and high N2 fixation rates have been recently

assumed to be due to the alleviation of iron limitation, driven by

multiple potential iron inputs, such as shallow hydrothermal

plumes, island sediment, and river runoff (Shiozaki et al., 2014;

Caffin et al., 2018; Dutheil et al., 2018; Guieu et al., 2018; Tilliette

et al., 2022). Therefore, to investigate the hypothesis that significant

ash deposition on the western SPO led to the Chl-a increase

following the 2022 Hunga eruption, we investigated the possibility

of Chl-a response to nutrient supply from other sources.

First, the shallow hydrothermal sources along Tonga-Kermadec

arc have the potential to fertilise the western SPO with iron (Guieu

et al., 2018; Tilliette et al., 2022). However, as Tilliette et al. (2022)

say, shallow hydrothermal plumes release high levels of iron only

around the shallow hydrothermal sources on the Tonga-Kermadec

arc, and to lesser extent, into the water surrounded by Vanuatu,

New Caledonia, and Fiji. This indicates the Chl-a increase following

the 2022 Hunga eruption was not driven by a shallow hydrothermal

source of iron.

Dutheil et al. (2018) showed that the spatial distribution of Chl-

a estimates is tightly controlled by iron release from the sediment

flux, which are related to the zonal (eastward) advection of iron

downstream of the islands, a second potential iron source. Figure

S8A shows the spatial distribution of the 5-day mean surface zonal

current anomalies for January 2022 against 2004–2021 climatology.

Positive (negative) values of surface zonal currents imply eastward

(westward) anomalies. However, the surface zonal current dataset

showed the insignificant changes in this region between pre- and

post-eruption of Hung volcano in January 2022, when compared to

other years.

Many islands could also deliver terrigenous nutrients through

runoff to the western SPO. A large amount of runoff from land is

expected to be triggered by high precipitation, which causes the

water column stratification and land drainage required for N2

fixation (Shiozaki et al., 2014). Figure S8B shows the daily

variation of precipitation rates averaged over the western SPO for

2022 vs. climatological mean with one standard deviation of the

mean (2004 to 2021). However, there was no significant increase in

precipitation over the waters of Vanuatu, New Caledonia, and Fiji

during 2022 volcanic episodes compared to climatological values,

indicating a likely minor impact of river runoff on nutrient supply.

A final alternative explanation for the changes in phytoplankton

biomass in the western SPO may be the changes in MLD, related to

the supply of nutrients from below the thermocline to the euphotic

zone (Vaughan et al., 2007; Boyce et al., 2010; Mantas et al., 2011;

Jutzeler et al., 2014; Jutzeler et al., 2020). Indeed, Terry et al. (2022)

reported the tsunamis produced by the 2022 Hunga eruption, were

up to 15 m on the islands near to the source volcano. However,

there was no significant change in the area-averaged MLDs in 2022

year with time, relative to climatological area-averaged MLDs

(Figure S8C). Therefore, in summary, the lack of alternative

plausible hypotheses supports our conclusion that the increase in

Chl-a is linked to the 2022 Hunga ash fall over the western SPO.
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4 Summary and conclusion

Usingmultiple satellite and reanalysis data sets during the past 19

years (2004–2022), we analyzed the transport pathways of extreme

explosive volcanic plumes and their impacts on phytoplankton

biomass in the western SPO. Our study revealed that there were

four extreme volcanic events, which have a VEI above 3 and exceeded

99.9th percentile of daily SO2 values averaged over the western SPO

over last 19 years, from Rabaul volcano (October 2006), Ambae

volcano (July 2018), Ulawun volcano (June 2019), and Hunga

volcano (January 2022). Four extreme volcanic eruptions produced

sporadic SO2 plumes which have the long-distance transport

(covering an area of >765,000 km2) over the western SPO and

injection into the stratosphere (>15 km). The 2006 Rabaul and

2019 Ulawun eruptions showed relatively high volcanic plumes

over coastal waters around the source volcano. In July 2018,

Ambae eruption showed eastward long-distance (>2000 km)

transport, reaching the northern part of the Tongan archipelago.

On the other hand, the SO2 emitted from the 2022 Hunga volcano

travelled a long distance (>6000 km) westward, reaching the northern

part of Australia, passing over Vanuatu and Fiji. In particular, there

was likely high deposition of ash-laden plumes transported long-

distance over the waters surrounded by Vanuatu, New Caledonia,

and Fiji (~2000 km from source). In addition, this study showed that

the high positive Chl-a anomaly to the 2022 Hunga volcanic eruption

was spatially distributed in the water surrounded by Vanuatu, New

Caledonia, and Fiji. The phytoplankton response to 2022 Hunga

eruptions was associated with a ~70% increase in Chl-a (~40%

increase in PP), compared to climatological changes. However, the

other three events studied here (2006 Rabaul, 2018 Ambae, and 2019

Ulawun eruptions) were not associated with a Chl-a response over

the regions with the high volcanic plumes, likely a result of low ash

deposition. Minor changes in nutrient supply from other sources for

2022 vs. climatological means suggest a link between the increase in

Chl-a and the 2022 Hunga ash fall. These results indicate that the

phytoplankton response to the long-distance transport of the

explosive volcanic plumes is not ubiquitous. Only volcanic events

accompanied by high ash deposition strongly impact ocean

productivity over the western SPO, supporting the hypothesis that

volcanic ash fertilization has a potential to alleviate the limited

nutrients of phytoplankton growth (particularly iron for N2

fixation) in the western SPO. Assuming that an increase of surface

ocean iron concentrations by 2 nM (usually with surface condition of

~0.5 nM Fe in the waters around Vanuatu and Fiji; Tilliette et al.,

2022) is needed to induce the optimal phytoplankton growth

condition (Fitzwater et al., 1996), observed phytoplankton response

for the distal ash deposits over the area of ~8.2 × 105 km2 with MLD

of ~20 m (Figures 2D, 4H, S8C) might be supported by the supply of

a total amount of ~2.5 × 1016 nmol Fe following 2022 Hunga

eruption. Our findings underline the importance of further studies

based on geochemical experiments and shipboard bioassay

experiments, to improve our understanding of which nutrients

alleviate nutrient limitation of phytoplankton at community level

following volcanic ash deposition in the western SPO (Duggen et al.,

2007; Browning et al., 2014; Mélançon et al., 2014; Vergara-Jara

et al., 2021).
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