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ENSO vs glacial-interglacial-
induced changes in the
Kuroshio-Oyashio transition
zone during the Pleistocene

Lara Jacobi1*, Dirk Nürnberg1, Weng-si Chao2,
Lester Lembke-Jene2 and Ralf Tiedemann2

1GEOMAR, Helmholtz Centre for Ocean Research Kiel, Kiel, Germany, 2Alfred-Wegner-Institute -
Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
The subarctic front (SAF) in the pelagic North Pacific is the northernmost front of

the Kuroshio-Oyashio transition zone separating the subpolar and subtropical

gyres and is marked by a strong sea surface temperature gradient. A complex

interplay of e.g. variations of currents, the wind system and other forcing

mechanisms causes shifts of the SAF’s position on timescales from orbital to

interannual. In this study, we present proxy data from the Emperor Seamount

chain, which reveal a link between long-term ENSO (El Niño/Southern

Oscillation) dynamics in the tropics and shifts of the SAF. Based on sediment

core SO264-45-2 from Jimmu Seamount (46°33.792’N, 169°36.072’E) located

close to the modern position of the SAF, we reconstruct changes in (sub)surface

temperature ((sub)SSTMg/Ca) and d18Osw-ivc (approximating salinities) via

combined Mg/Ca and d18O analyses of the shallow-dwelling foraminifera

Globigerina bulloides and the near-thermocline-dwelling Neogloboquadrina

pachyderma, biological productivity (XRF-based Ba/Ti ratios), and terrigenous

input via dust (XRF-based Fe). From ~600 to ~280 ka BP we observe significantly

higher SSTMg/Ca than after an abrupt change at 280 ka BP. We assume that during

this time warmer water from the Kuroshio-Oyashio transition zone reached the

core site, reflecting a shift of the SAF from a position at or even north of our study

site prior to 280 ka BP to a position south of our study site after 280 ka BP. We

propose that such a northward displacement of the SAF between 600-280 ka BP

was induced by sustained La Niña-like conditions, which led to increased

transport of tropical ocean heat into the Kuroshio-Oyashio transition zone via

the Kuroshio Current. After ~280 ka BP, the change to more El Niño-like

conditions led to less heat transfer via the Kuroshio Current with the SAF

remaining south of the core location. In contrast, our productivity record

shows a clear glacial-interglacial pattern that is common in the North Pacific.

We assume that this pattern is connected to changes in nutrient supply or

utilization, which are not primarily driven by changes of the Kuroshio and

Oyashio Currents or the SAF.

KEYWORDS

foraminiferal geochemistry, North Pacific, Kuroshio Current, Mg/Ca SSTs, Emperor
Seamount chain, subarctic front (SAF), Ba/Ti ratio
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1 Introduction

The Kuroshio Current, as the northern boundary of the

subtropical gyre, and the Oyashio Current, as the southern

boundary of the subpolar gyre, are of significant importance for

the midlatitude pelagic North Pacific (Qiu, 2019). The area between

the two Currents is named the Kuroshio-Oyashio transition zone

and is marked by several fronts (Figure 1). For example, the

subarctic front (SAF), located close to our study site, is the

northernmost front in the Kuroshio-Oyashio transition zone.

Shifts of the Kuroshio and Oyashio Currents and their mixing

zones have significantly affected oceanographic conditions in the

North Pacific on various time scales and influence the global climate

as the Kuroshio-Oyashio transition zone acts as a sink for

atmospheric CO2 (Thompson and Shackleton, 1980; Hovan et al.,

1991; Kawahata et al., 2000; Yamane, 2003; Ogawa et al., 2006;

Takahashi et al., 2009; Ayers and Lozier, 2012; Chiyonobu et al.,

2012). Yet the timing and the causes of such shifts in the frontal

system are still a matter of debate.

Some authors suggest a connection between shifts of the oceanic

fronts in the North Pacific and climate changes related to glacial-

interglacial cycles (Thompson and Shackleton, 1980; Kawahata and

Ohshima, 2002; Harada et al., 2004; Yasudomi et al., 2014;

Gallagher et al., 2015), others hypothesize a connection between

El Niño-Southern Oscillation (ENSO), the Kuroshio strength and

the positioning of the front system (Yamane, 2003; Chen et al.,

2007). While ENSO is commonly known as the interannual
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oscillation between “El Niño” and “La Niña” phases, several

authors suggest that there are also changes from more La Niña-

like to more El Niño-like conditions on longer time scales (de

Garidel-Thoron et al., 2005; Wara et al., 2005; Zheng et al., 2016; Jia

et al., 2018). These authors use the paleotemperature gradient

between the West Pacific Warm Pool (WPWP) and the Eastern

Equatorial Pacific (EEP) (DTWPWP-EEP) as an indicator for ENSO on

geological time scales. During more El Niño-like phases, there is a

weak temperature gradient, whereas, during more La Niña-like

phases, there is an amplified DTWPWP-EEP (de Garidel-Thoron et al.,

2005; Wara et al., 2005; Zheng et al., 2016; Jia et al., 2018). Further,

the path and strength of both the Kuroshio and Oyashio Currents

are affected by changes in the wind system, e.g., the westerlies or the

East Asian Monsoon (Yatsu et al., 2013).

The investigation of upper ocean hydrography, particularly sea

surface temperature (SST), is promising for gaining further insights

into shifts of the Kuroshio-Oyashio transition zone and its frontal

systems. However, in the pelagic North Pacific, variations of SSTs

have little been studied beyond the availability of observational data

mainly because proxy records are sparse, especially over longer time

scales, beyond the last glacial (Lohmann et al., 2019; Zhong et al.,

2023). One of the main causes is the limited availability of

carbonate-bearing sediment records. These are restricted to, e.g.,

seamount areas, where the water depth does not exceed the depth of

the calcite compensation depth, which lies at about ~4000 m in the

open North Pacific (Chen et al., 2021). This constrains the use of

foraminiferal calcite as signal carrier for paleo proxies. Our study
FIGURE 1

Sea surface and subsurface hydrology of the North West Pacific. (A) Bathymetric map indicating the locations of the study site SO264-45 and
reference cores ODP Site 882 (Jaccard et al., 2010), SO202-39 (Korff et al., 2016), ODP Site 1210A (Chiyonobu et al., 2012), S-2 (Yamane, 2003), and
C9001C (Matsuzaki et al., 2014). The surface current and water-mass structure in the Kuroshio-Oyashio transition area is schematically illustrated:
EKC, East Kamchatka Current; KC, Kuroshio Current; KE, Kuroshio Extension; NPC, North Pacific Current; OC, Oyashio Current; SAC, Subarctic
Current; KBF, Kuroshio Bifurcation Front; SAB, Subarctic Boundary; SAF, Subarctic Front. (B) Potential sea surface temperature of the North West
Pacific from early summer 2021. The Oyashio-Kuroshio transition zone is characterized by large eddies. This figure was generated using EU
Copernicus Marine Service Information with data from GLOBAL_ANALYSIS_FORECAST_PHY_001_024 (Zammit-Mangion and Wikle, 2020).
(C, D) North-south-oriented annual temperature and salinity transects along 170°E illustrated with Ocean Data View (Schlitzer, 2019) based on data
from the World Ocean Atlas 2018 (Locarnini et al., 2018; Zweng et al., 2019). The position of fronts are marked by white dotted lines; the core
position by a red dotted line and depth habitats of G. bulloides and N. pachyderma by white arrows.
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site, however, is located on Jimmu Seamount (water depth< 2500

m) right beneath the modern position of the SAF (Figure 1) and

thus provides the rare opportunity to use foraminiferal calcite as a

proxy for the reconstruction of changes in SST and d18O
of seawater.

The SST variability in the mid-latitude North Pacific is

dominated by the Pacific Decadal Oscillation (PDO; Mantua

et al., 1997). It describes the variability between periods of warm

or cool surface waters and is a highly complex system combining

various forcing factors. According to Newman et al. (2016), these

include: (1) changes in ocean surface heat fluxes and Ekman (wind-

driven) transport related to the Aleutian low due to both local,

rapidly decorrelating, unpredictable weather noise and to remote

forcing from interannual to decadal tropical variability (largely El

Nino) via the “atmospheric bridge”; (2) ocean memory, or processes

determining oceanic thermal inertia including “re-emergence” and

oceanic Rossby waves, that act to integrate this forcing and thus

generate added PDO variability on decadal time scales; and (3)

decadal changes in the Kuroshio-Oyashio current system forced by

the multi-year history of basin-wide Ekman pumping, manifested

as SST anomalies along the subarctic front at about 40°N in the

western Pacific ocean. The whole complexity of the PDO is not yet

entirely understood. Thus, it is heavily discussed in ongoing

research within the meteorological and climate dynamics

communities, and attempts for paleo studies on the PDO

reaching back further than 500 years are rare (e.g., MacDonald

and Case, 2005; Yu et al., 2015; Johnson et al., 2020; Li et al., 2020;

Choi and Son, 2022). Since much of the PDO represents the oceanic

response to atmospheric forcing, it is difficult to consider the PDO

as a forcing function itself (Newman et al., 2016).

To further identify the influence of shifts in the frontal system on

primary productivity, we also consider representative XRF-based proxy

data. In the North Pacific, primary productivity is mainly described to

be linked to glacial-interglacial cycles, with higher productivity during

interglacials and lower productivity during glacials (Narita et al., 2002;

Gorbarenko et al., 2004; Kienast et al., 2004; Jaccard et al., 2005;

Brunelle et al., 2007; Shigemitsu et al., 2007; Galbraith et al., 2008;

Gebhardt et al., 2008; Jaccard et al., 2010; Riethdorf et al., 2013).

However, the driving mechanisms for changes in productivity over

longer time scales are not yet entirely understood. For example, to what

extent the productivity was influenced by the complex interplay of

atmosphere and ocean and their respective circulation patterns

dependent on, e.g., sea ice formation, light limitation, wind strength,

nutrient supply, and stratification (Haug and Sigman, 2009; Jaccard

et al., 2010; Sigman et al., 2010; Sigman et al., 2021); Kawahata et al.,

2000; Matsumoto et al., 2002; Brunelle et al., 2007; Shigemitsu et al.,

2007; Jaccard et al., 2010; Nishioka et al., 2011; Costa et al., 2018;

Sigman et al., 2021).

Thus, our new dataset on upper ocean temperatures (based on

foraminiferal Mg/Ca), marine productivity (XRF-based Ba/Ti), and

terrigenous input via wind (XRF-based Fe) from the pelagic North

Pacific provide a unique opportunity to gain further insights into

upper ocean dynamics, primarily spatial and temporal shifts of the

Kuroshio-Oyashio frontal systems and a possible link to

productivity over the past 650 ka.
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1.1 Oceanographic setting

The North Pacific is characterized by two large-scale wind-

driven gyre systems: the cyclonic Subarctic Gyre in the north and

the anticyclonic Subtropical Gyre in the south (Huang, 2015). The

Subarctic Gyre has a strong western boundary current. The Oyashio

Current originates from the East Kamchatka Current and is further

fed by cold, low saline nutrient-rich water from the Okhotsk Sea.

Close to the coast of northern Japan the Oyashio Current has an

annual mean temperature of ~5°C and a salinity of ~33 (Locarnini

et al., 2018; Zweng et al., 2019). At ~42°N the Oyashio Current splits

and one path continues as the northeastward flowing Subarctic

Current (SAC) (Qiu, 2019). The western limb of the North Pacific

Subtropical Gyre is also formed by a strong western boundary

current. The Kuroshio Current originates from the warm, saline

North Equatorial Current (NEC) and transports oceanic heat from

the WPWP to the northern regions (Figure 1). The location where

the North Equatorial Current (NEC) bifurcates into the Kuroshio

Current and the Mindanao Current (Metzger and Hurlburt, 1996;

Qiu and Lukas, 1996; Ujiié et al., 2003) is located at ~15.5°N for the

annual average, but varies with time and depth. The meridional

migration of the NEC bifurcation is strongly influenced by ENSO

(Kim et al., 2004), which is the main driver of upper ocean

circulation in the tropical Pacific, (Hu et al., 2015; Joh and Di

Lorenzo, 2019). In El Niño years the NEC’s bifurcation point

migrates to the north and the Kuroshio velocity and volume

transport decrease. During La Niña years, in contrast, the NEC’s

bifurcation migrates to the south and the Kuroshio velocity and

volume transport increase (Qiu and Lukas, 1996; Yuan et al., 2001;

Kim et al., 2004). Close to the coast of southern Japan, the Kuroshio

Current has an annual mean temperature of ~19°C and a salinity

of ~35 (Locarnini et al., 2018; Zweng et al., 2019). After

separating from the Japanese coast at ~35°N, the Kuroshio

Current enters the open basin of the North Pacific and continues

as Kuroshio Extension (Qiu, 2002). At Shatsky Rise (~159°E), the

Kuroshio Extension bifurcates, where the main body of the

Kuroshio Extension continues eastward. A secondary branch,

the Kuroshio Bifurcation Front (KBF), extends northwards

(Qiu, 2002).

Along the northern boundary of the Kuroshio Extension/

Kuroshio Bifurcation Front, numerous meanders and mesoscale

eddies occur (Figure 1) due to the dia- and isopycnal mixing

between Kuroshio and Oyashio water with vertically different

temperature, salinity and velocity structures (Yasuda et al., 1996;

Shimizu et al., 2001; Yasuda et al., 2002; Isoguchi et al., 2006; Mitnik

et al., 2020). This mixing zone of water originating from the

Kuroshio and Oyashio currents is termed the Kuroshio-Oyashio

transition zone or mixed water region and is characterized by a

pronounced latitudinal sea surface temperature, salinity, and

nutrient gradient (Yasuda, 2003; Garcia et al., 2018; Locarnini

et al., 2018; Zweng et al., 2019) (Figure 1). The northern end of

the transitional zone is marked by the Subarctic Front (SAF) or

Oyashio Front, which is defined as the 4°C isotherm at 100 m depth

(Favorite, 1976). Subarctic surface water may drift southward across

the SAF, and may cover the surface in the transition zone between
frontiersin.org
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the SAF and the Subarctic Boundary (SAB). The SAB is a

near surface salinity front south of the SAF (Yasuda, 2003). East

of 180°W/E the distinction between the Kuroshio Extension and the

Subarctic Current is no longer clear and together they form the

broad eastward-moving North Pacific Current (Qiu, 2019). It has

been suggested, that there is a linkage between the latitudinal

displacement of the Kuroshio-Oyashio transition zone and the

climatic conditions of the tropical Pacific e.g. long term ENSO-

like variability (Yamamoto et al., 2005).

Intermediate water masses (~400-900 m) are dominated by

North Pacific Intermediate Water (NPIW) in the Subtropical Gyre

and the mixed water region (Talley, 1993), and by Pacific Subpolar

Intermediate Water (PSIW) in the subarctic Gyre (Emery, 2001;

Fuhr et al., 2021).
2 Material and methods

The 8.35 m long gravity core SO264-45-2 was recovered from

Jimmu Seamount at 46°33.792’N and 169°36.072’E from a water

depth of 2425 m during R/V SONNE cruise SO264 (SONNE-

EMPEROR) in August 2018 (Nürnberg, 2018). Additionally, the

sediment surface was sampled with a Multi Corer (MUC: SO264-

45-1, core length: 0.15 m; 46°33.795’N and 169°36.072’E). The core

site selection was based on a systematic bathymetric survey, as well

as sediment echosounder profiling. The upper 4.7 m of the core

presented in this study consist of foraminifera-bearing sandy silt to

foraminifera-bearing calcareous ooze, in some parts containing IRD

(Nürnberg, 2018) and intercalated by five tephra layers of 2-6 cm

width (Figure 2).
2.1 XRF scanning

To determine the sedimentary elemental composition, the

archive half of each core segment was scanned using an Avaatech

X-ray Fluorescence (XRF) core scanner at the Alfred‐Wegener‐

Institute (AWI) Bremerhaven. For preparation, the uppermost

sediment layer was removed to provide a fresh and undisturbed

surface, which was then covered with SPEXCerti Prep Ultralene foil.

Each core segment was triple scanned at a one-centimeter

resolution with a current of 0.15, 0.175 and 1 mA, tube voltages

of 10, 30, and 50 kV, and acquisition times of 10, 15, and 20 sec,

respectively. Element intensities were determined with the

proprietory Aavatech WinAxil (Batch) software covering elements

from aluminum to barium and are reported as counts per second

(cps). As proxy for changes in paleoproductivity we use the barium/

titanium ratio (Ba/Ti) (biogenic barium reflecting diatom

productivity; e.g. Nürnberg et al., 1997). Based on the assumption

that the covariance between aluminum (Al) and Ti content of

terrigenous material remained constant in space and time

(Galbraith et al., 2007), the XRF-derived barium counts

normalized against terrigenous background elements like Al or Ti

are well-established paleoproductivity proxies in the North Pacific

area (Nürnberg et al., 2004; Jaccard et al., 2010; Korff et al., 2016). Al

and Ti are both exclusively of detrital origin and correlate well at
Frontiers in Marine Science 04
our study site (Supplementary Figure 6). Yet the detection of light

elements like Al during XRF scanning shows a higher risk to be

influenced by water trapped between the sediment and the scanning

foil than heavier elements (Tjallingii et al., 2007). Thus, we use Ti

for normalizing our Ba record.

Fe has been widely used to document variations in terrigenous

sediment delivery and often relates to aeolian dust flux and thus wind

strength (Jahn et al., 2003; Nürnberg et al., 2004; Jahn et al., 2005;

Mohtadi et al., 2007; Helmke et al., 2008; Kaiser et al., 2008; Lamy et al.,

2014; Abell et al., 2021). Therefore, we use the iron (Fe) record derived

via XRF scanning as proxy for relative changes in terrigenous Fe input.

Because the use of raw intensities or peak integrals of single element

counts cannot be interpreted in terms of sediment composition we

report our Fe-record as log-values (Weltje et al., 2008). The very good

correlation of our Ti and Fe records (R²=0.98) (Supplementary

Figure 6) implies that a potential diagenetic imprint on Fe is

negligible (Croudace and Rothwell, 2015).
2.2 Foraminiferal geochemistry

For geochemical studies, we use the most abundant planktic

foraminiferal species foraminifera Globigerina bulloides (G.

bulloides) and Neogloboquadrina pachyderma (N. pachyderma)

(sinistral-coiling, Darling et al., 2006). In the Northwest Pacific,

G. bulloides is a near-surface dweller and mainly found above the

thermocline (Iwasaki et al., 2017; Schiebel et al., 2017; Taylor et al.,

2018), which occurs at ~40-50 m at the study site (Locarnini et al.,

2018) (Figure 1 and Supplementary Figure 1). In the study region,

G. bulloides calcifies throughout the year (Kuroyanagi et al., 2008;

Sagawa et al., 2013; Taylor et al., 2018). In the North Pacific, N.

pachyderma is mainly found at thermocline depth (Sarnthein et al.,

2004; Riethdorf, 2013; Taylor et al., 2018), thus, we assume a depth

habitat of 50-130 m for our study site (Locarnini et al., 2018). N.

pachyderma is a subpolar species and prefers water temperatures

below 7°C (Reynolds and Thunell, 1986), thus in modern settings it

mainly occurs from autumn to spring at our study site, which is

shown by sediment trap studies from the North Pacific (Kuroyanagi

et al., 2008; Sagawa et al., 2013; Taylor et al., 2018). For a detailed

discussion about seasonality and habitat depth, see Supplement 1.

2.2.1 Magnesium and calcium element ratios
Mostly, ~50 visually well-preserved specimens of G. bulloides

and ~120 of N. pachyderma were selected from core SO264-45-2 at

2 cm sample spacing. Due to insufficient sample material in most of

the samples, specimens were selected from a rather wide size range

(G. bulloides: 250 – 400 μm; N. pachyderma: 125-315 μm; potential

side effects on Mg/Ca ratios are discussed in the Supplement 1).

Tests were gently crushed between cleaned glass plates to open the

test chambers for efficient cleaning. Chamber fillings e.g. sediment

or pyrite particles were removed. The fragmented and homogenized

samples were divided into one-third for stable isotope analyses and

two-thirds for trace element measurements.

Cleaning of foraminiferal fragments prior to trace element

analyses followed the procedures of Boyle and Keigwin (1985)

and Boyle and Rosenthal (1996). These include oxidative and
frontiersin.org
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reductive (with hydrazine) cleaning steps to e.g. remove oxide-rich

coatings which may influence the Mg/Ca values (see Supplement 3).

Samples were measured at GEOMAR - Helmholtz Centre for Ocean

Research, on a VARIAN 720 ES axial ICP-OES coupled with a

VARIAN SPS3 sample preparation system. The measurement

strategy included regular analyses of standards and blanks to

ensure analytical quality control. The data was drift-corrected and

standardized to the internal consistency standard BCS-DRM 393

(ECRM 752-1) with an Mg/Ca reference value of 3.761 mmol/mol

(Greaves et al., 2008). The long-term external reproducibility for the

ECRM standard for Mg/Ca is ± 0.1 mmol/mol (2s).
To monitor contamination and insufficient removal of

siliciclastic material during the cleaning procedure, Al/Ca, Mn/Ca

and Fe/Ca ratios were measured alongside the Mg/Ca. By assessing

this data, we could not find any evidence of an influence of

contamination on our Mg/Ca ratios. A detailed discussion can be

found in the supporting information (Supplement 3). In addition,

statistical Mg/Ca outliers were identified by applying the 1.5

interquartile method after Tukey (1977) (Supplement 3) and the

two identified samples were remeasured.

2.2.2 Stable oxygen isotopes
In addition to the planktic foraminiferal species (G. bulloides:

250 – 400 μm; N. pachyderma: 125-315 μm), 3-5 tests of the benthic

foraminiferal species Uvigerina spp. and Cibicidoides wuellerstorfi

were selected from the size fraction 315-400 μm for oxygen isotope

measurements. Planktic and benthic specimen were measured on a

Thermo Fischer Scientific MAT 253 mass spectrometer equipped

with an automated Kiel IV carbonate preparation device. Isotope

values were calibrated to NBS‐19 (National Bureau of Standards)

and reported relative to the Vienna Pee Dee Belemnite (VPDB)

standard. The long‐term external reproducibility (n =<3,000) was

monitored by the in-house Bremen standard (Solnhofen

Limestone) with an analytic precision of 0.06 ‰ for d18O.

Applying the 1.5 interquartile method after Tukey (1977) the

d18O records of both the planktic and benthic foraminifera were

checked for outliers (Supplement 3).

In order to combine the d18O-values of both benthic species, we

follow the conventional assumption that Uvigerina spp. calcifies in

equilibrium with surrounding seawater d18O (Shackleton, 1974;

Shackleton and Hall, 1984; Labeyrie et al., 1999; Fontanier et al.,

2006) and that C. wuellerstorfi deviates by ~0.64 ‰ from Uvigerina

values (Shackleton and Opdyke, 1973; Labeyrie et al., 1999; Waddell

et al., 2009). We hence corrected d18OC. wuellerstorfi by adding 0.64‰.
2.3 Upper ocean temperature and ice
volume corrected d18O seawater
assessment based on foraminiferal Mg/Ca
and d18O

For converting Mg/Ca of foraminiferal calcite into water

temperature we used well-established species-specific equations

from Elderfield and Ganssen (2000) for G. bulloides (Mg/

Ca=0.56e(0.10*T)) and from Kozdon et al. (2009) for N.

pachyderma (Mg/Ca=0.13*T+0.35) (Supplement 2). The
Frontiers in Marine Science 05
temperature derived from G. bulloides is referred to as annual sea

surface temperature (SSTMg/Ca: ~20-60 m) and the temperature

from N. pachyderma as subsurface temperature (subSSTMg/Ca: ~50-

130 m). Late Holocene temperatures of both species match the

modern annual mean temperatures in the defined depth habitats

(Locarnini et al., 2018; Supplementary Figure 1). For our

interpretations, we assume that the foraminiferal species did not

significantly change their habitat depth over time.

We are aware that changes in pH and salinity of the

surrounding seawater, calcite dissolution and diagenetic effects

can influence foraminiferal Mg/Ca, and hence the reconstructed

absolute temperature values. Yet, we assume that these effects are

either neglectable for our interpretation or lie within the assigned

error range. A detailed discussion can be found in the Supplement

2–4.

Via the combined d18O and Mg/Ca measurement of the

foraminiferal calcite, we calculate the d18O of seawater (d18Osw)

by removing the temperature effect from the initial foraminiferal

d18O signal. For G. bulloides we use the equation from Shackleton

(1974) (T=16.9-4.38*(d18Ocalcite-d18Osw)+0.1*(d18Ocalcite-d18Osw)²)

and for N. pachyderma the species-specific equation from Mulitza

et al. (2003) (T=3.55*(d18Ocalcite-d18Osw)+12.69). The d18Osw data is

further corrected for changes in global ice volume (d18Osw-ivc

reported in ‰ versus SMOW; ivc = ice-volume corrected) by

using a data set from De Boer et al. (2014). This was calculated

based on the global LR04 stack (Lisiecki and Raymo, 2005) and

simulations of continental ice sheets (De Boer et al., 2014). Modern

d18Osw is positively correlated to salinity (e.g. d18Osw = 0.44*S-

15.13; LeGrande and Schmidt, 2006), yet previous studies have

shown that this relationship can vary over time e.g. through changes

in regional freshwater budgets, ocean circulation, and sea ice

regimes (Caley and Roche, 2015; Holloway et al., 2016).

Therefore, we refrain from converting the calculated d18Osw-ivc

into absolute salinity units. However, we interpret high values in

terms of relative high saline conditions and low values in terms of

relative freshening. We present d18Osw-ivc as relative changes

deviating from the calculated modern value.
2.4 Chronostratigraphy

Accelerated mass spectrometer radiocarbon (AMS14C) dating

provides an age estimation for the sediment surface (0–1 cm) from

station SO264-45-1 (MUC). We chose the undisturbed surface

sample of the MUC for this measurement, because the surface of

gravity cores is often disturbed during core recovery.

Approximately 90 μg C of the planktic species G. bulloides and

the benthic species Uvigerina peregrina were measured at the

MICADAS (Mini Carbon Dating System) facility at the AWI in

Bremerhaven, Germany (AWI sample nr. 3976.1.1 and 3976.2.1).

The raw 14C age was converted into calendar age, using the

Calib8.20 software (Stuiver et al., 2020) along with the marine

calibration dataset MARINE20 (Heaton et al., 2020) and a regional

reservoir age correction of DR = 273 +- 70 years. In this case, DR is

the mean reservoir age of six sites from the North Pacific published

by Kuzmin et al. (2001; 2007) and Yoneda et al. (2007). The
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generated AMS14C age range (2 sigma) for U. peregrina is 263-745

years BP and 1871-1301 years BP for G. bulloides. This age

difference lies within the age range for one sample (~1500 years/

sample) as discussed below.

As benthic foraminiferal d18O values from the MUC SO264-45-

1 fit rather well to those of the uppermost centimeters of the gravity

core SO264-45-2 (Figure 2), it is likely that both have similar surface

ages. Thus, based on the 14C ages from the MUC’s surface we

assume that the gravity core top sediments are of late Holocene age.

The stacked benthic d18O isotope record of SO264-45-2 was

visually correlated to the global benthic isotope stack LR04 (Lisiecki

and Raymo, 2005) by using QAnalySeries v1.5.0 (Kotov et al., 2018).

Our benthic record shows smaller amplitudes than LR04, which is

most likely caused by low sedimentation rates, which mute extreme

values. By applying 21 tie lines and linear interpolation between the

tie lines, a correlation coefficient of r = 0.82 was achieved. Further

support for the age model is provided by the spectral analysis of the

benthic d18O stack that reveals dominant cyclicities with a

frequency of 0.01 and 0.025 as a response to the cyclic

fluctuations in the Earth’s orbital parameters eccentricity and

obliquity (Figure 2). The spectral analysis reveals that all obliquity

cycles of the past 650 ka are reflected in our benthic d18O stack. The

calculated sedimentation rates are rather low with an average of 0.66

cm/ka for the discussed interval, thus one sample of 1 cm width

reflects on average ~1500 years. Yet due to the observed

bioturbation of the sediment (Nürnberg, 2018), the absolute age

range of foraminifera in one sample might even be higher.

The ages of five tephra layers mentioned in the core description

(Nürnberg, 2018) are shown in Figure 2. We assume that T4 might

be the prominent Pauzhetka ash found in several records from the

Northwest Pacific and Okhotsk Sea and dated to 421.2 ± 6.6 ka BP

(Ponomareva et al., 2018). Yet according to our age model, the

depth of T4 refers to an age of ~390 ka BP, which is likely within the

range of dating uncertainty.
3 Results

3.1 Reconstruction (sub)SSTMg/Ca and
d18Osw-ivc

Over the last ~650 ka BP, d18O values of G. bulloides fluctuate

between 1.5 and 4‰, and those of N. pachyderma between 2.4 and

3.8 ‰ (Figure 3). With only few exceptions in MIS 6-8 the d18O of

N. pachyderma are consistently heavier than those of G. bulloides.

The d18O fluctuations of both species follow the glacial-interglacial

pattern of the LR04 reference record (Lisiecki and Raymo, 2005)

with heavy d18O values during glacials and light d18O values during

interglacials (Figure 3). In MIS 11, however, G. bulloides shows

lighter d18O values than in the adjacent interglacials. In MIS 7, the

d18O are not light throughout the entire interglacial, yet decrease

steadily. d18O of G. bulloides is lightest in MIS 15 and 13 compared

to the other interglacials in our record, while the d18O of LR04 is

heavier in MIS 15 and 13 compared to the other interglacials.

Mg/Ca ratios from G. bulloides vary between 0.82 and 2 mmol/

mol, which leads to SSTMg/Ca estimates between 3.8 and 12.7°C. The
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SSTMg/Ca development of G. bulloides can be divided into two

phases (Figures 3, 4). Between ~600 and 280 ka BP (phase B), the

surface ocean temporally reached SSTMg/Ca of up to ~12°C (with a

mean of 8.7°C), thereby being up to ~6.5°C warmer than modern

annual mean SST at 30 m (Figure 3). Within this time interval, the

SSTMg/Ca broadly follow glacial-interglacial cycles except for MIS

10, during which the SSTMg/Ca is high (~10°C) throughout the

glacial and MIS 11, where temperatures are ~2°C lower than in the

adjacent glacials. In contrast to the cold MIS 16 (min ~ 7°C), MIS 14

remains rather warm with minimum temperatures of ~9.5°C. At

480 ka BP, the SSTMg/Ca abruptly decreases by ~4°C (calculated as

the temperature difference between three data points prior and after

the decrease; the decrease itself occurs between two data points)

coming close to the modern-day SST value (Figure 3). This decrease

is followed by an overall increasing SSTMg/Ca trend for the next 200

kyrs. Phase B ends at ~ 280 ka BP after a second abrupt SSTMg/Ca

decrease of ~3.5°C (calculated as the temperature difference

between three data points prior and after the decrease; the

decrease itself occurs between two data points). From here on

(phase A) the SSTMg/Ca remain rather low with an average of ~ 6.1°

C and show only minor variations (max ±2°C) around the modern

annual mean temperature at 30 m of ~5.5°C (Locarnini et al., 2018).

The warmest SSTMg/Ca occur at the beginning and end of MIS 5 and

in MIS 2, while in the middle of MIS 7 and 6 the SSTMg/Ca

are coldest.

N. pachyderma shows consistently lower Mg/Ca ratios than G.

bulloides, which vary between 0.41 and 1.14 mmol/mol with subSSTMg/

Ca estimates between 0.5 and 6.1°C (Figure 3). Throughout the entire

record, the subSSTMg/Ca show amplitude variations of ±3°C around an

average of ~2.9°C. This average matches the modern annual

temperature at thermocline depth of ~3°C (Locarnini et al., 2018).

The highest subSSTMg/Ca of up to ~6°C is reached at the transition to

the Holocene and the lowest with ~0.5°C during MIS 12. In contrast to

the SSTMg/Ca the subSSTMg/Ca do not show a shift towards warmer

temperatures prior to 280 ka BP, yet rather cold subsurface conditions

between MIS 13 and MIS 10. From MIS 5 to MIS 1 subSSTMg/Ca and

SSTMg/Ca follow a similar low-amplitude pattern.

The d18Osw-ivc records reveal a different pattern than the SSTMg/

Ca and subSSTMg/Ca records (Figure 3). Both, the seasurface and

subsurface d18Osw-ivc records have rather similar amplitudes and

fluctuations. Between ~650 and 350 ka BP G. bulloides shows

constantly higher d18Osw-ivc values than N. pachyderma. Between

0 and ~350 ka BP, however, both records lie within error range of

each other and alternately show higher values. Prior to 280 ka BP

the d18Osw-ivc records of both species tend to be higher in

interglacials and lower in glacials.
3.2 Productivity and terrigenous input

The XRF-based Ba/Ti record and thus the reflection of marine

productivity shows a clear glacial-interglacial cyclicity. Ba/Ti values

start to increase during the deglaciations and reach their maxima

during the early interglacials (Figure 4). During the late interglacials

and the subsequent early glacials low Ba/Ti values predominate.

This pattern even holds for the period MIS 15-14, although the Ba/
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Ti ratios remain on an exceptionally high level during glacial MIS

14, which even exceeds typical deglacial to early interglacial values.

The deglaciation towards MIS 13 is again characterized by a

continuous increase in Ba/Ti. In the late interglacial MIS 13

(~500-480 ka BP), we observe a rapid and significant decrease in

Ba/Ti to typical glacial values, synchronous to significant changes in

Fe and SSTMg/Ca (Figure 4).

The XRF-based normalized log Fe record, which is used as a

proxy for terrigenous input commonly increases at the transitions

from late interglacials to early glacials and decreases during the

glacials. Prior to MIS 12, no distinct glacial-interglacial pattern is

recognizable. Between ~560 and ~500 ka BP, Fe values are

exceptionally low, which is followed by a sudden increase from

~500-480 ka BP (Figure 4). Ba/Ti and Fe appear to be anticorrelated

with low Fe values in times of high Ba/Ti and vice versa. Thus,

between MIS 13 and 5 Ba/Ti maxima occur on average ~30 ka

earlier than Fe maxima.
4 Discussion

4.1 Influence of changes in the Kuroshio/
Oyashio current system on upper ocean
temperatures at Jimmu Seamount

At the study site, glacial-interglacial changes are well

documented in the benthic and planktic d18O records of all

species with high d18O values during glacials and low d18O values

during interglacials. This indicates that climate variations did have

an effect on both the upper and deep ocean. Yet in our SSTMg/Ca and

subSSTMg/Ca records changes between glacial and interglacial

periods are neither particularly dominant nor continuously

reflected. Thus, the observed temperature variations and

especially the mode shift between phases A and B, recorded in

the SSTMg/Ca record must have been caused by different forcing

mechanisms. A shift from higher SSTMg/Ca prior to 280 ka BP to

colder SSTMg/Ca in more recent times, as reflected in our proxy data,

does occur in few records from certain areas in the North Pacific (cf.

4.1.1) but it is neither a global phenomenon nor significant in the

entire Pacific region (Morley and Heusser, 1997; Herbert et al.,

2001; Lang and Wolff, 2011; Bordiga et al., 2013). Thus, our

observed SSTMg/Ca shift cannot be explained by a general cooling

of the (North) Pacific climate after 280 ka BP yet must be linked to

changes in local hydrography, most likely the complex interplay of

the Kuroshio and Oyashio Current.

4.1.1 Influences of changes in the tropical Pacific
on the study region

Today the volume transport of the Kuroshio Current is linked

to ENSO and the induced changes of the location of the NEC’s

bifurcation point (cf. 1.1). This way the Kuroshio velocity and

volume transport is increased during La Niña years and reduced

during El Niño years (Qiu and Lukas, 1996; Yuan et al., 2001; Kim

et al., 2004). It is likely that such changes do not only appear on

decadal timescales, but also over longer time periods. This is
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indicated by a study from the Ryukyu Arc region (north of the

NECs bifurcation point) based on planktic foraminiferal

assemblages. It shows that during the last 21 ka BP lower rates of

surface transport in the Kuroshio Current occurred when more El

Niño-like conditions prevailed in the Equatorial Pacific (Ujiié et al.,

2003). Assuming that these mechanisms did not significantly

change over the past 650 ka BP, they would also have affected the

upper ocean dynamic at our study site.

To test this hypothesis, we compare our SSTMg/Ca record to

proxy records from de Garidel-Thoron et al. (2005) and Jia et al.

(2018) (Figure 5). Both studies reconstructed mean states of more

La Niña-like and more El Niño-like conditions in the WPWP on

millennial timescales. de Garidel-Thoron et al. (2005) used records

from the WPWP (MD97-2140: SSTs generated via Mg/Ca from

planktic foraminifera) and the EEP (ODP846: SSTs generated from

alkenones) to calculate the temperature difference between the

WPWP and the EEP (DTWPWP-EEP). Jia et al. (2018) calculated

the DTWPWP-EEP by using four Mg/Ca-based SST records from the

WPWP as well as three SST records from the EEP generated from

Mg/Ca and Uk 0
37 . The records from Jia et al. (2018) and de Garidel-

Thoron et al. (2005) are not entirely concordant (Figure 5). This is

likely a result of different seasonality of the proxies, regional

differences, local influences on the temperature development

besides ENSO, which reflects the highly dynamic development of

the WPWP and EEP, and uncertainties in age models. Yet, the

general trends of both records are rather similar and thus, reliably

reflect major changes of ENSO dynamics on long time scales. By

comparing our SSTMg/Ca record to these paleo-ENSO records, we

focus on the long-term development and identify threshold-

like events.

In phase B (~650-280 ka BP) we observe up to 6.5°C higher

SSTMg/Ca than modern values. During this phase, the records from

Jia et al. (2018) and de Garidel-Thoron et al. (2005) show several

intervals of very large temperature gradients between the WPWP

and the EEP pointing to prevailing La Niña-like conditions

(Figure 5). From MIS 16 to MIS 15 we observe a strong increase

of SSTMg/Ca from ~7.5 to >11°C, while both ENSO records indicate

a shift from El Niño-like to ‘extreme’ La Niña-like conditions. This

coherent shift to higher SSTs and predominant La Niña-like

conditions implies an increased Kuroshio Current and thus a

northward shift of the SAF through the increased amount of

Kuroshio water in the Kuroshio-Oyashio transition zone.

Compared to the modern SST distribution, we hypothesize that

the SAF shifted at least 5° latitude northwards, so that it reached a

position north of our study site (Figures 1, 6). This way surface

water from the mixed water region would have reached the study

site, thereby causing SSTs that were significantly higher than during

times where the SAF is located south of the study site and the

surface water is dominated by water from the Subarctic Current

(Figures 1, 6).

At ~480 ka BP we observe an abrupt SSTMg/Ca decrease of ~4°C,

which is accompanied by an abrupt and pronounced change from

very strong La Niña-like to the strongest El Niño-like phase in the

record from Jia et al. (2018). This change is also reflected in the

record from de Garidel-Thoron et al. (2005) yet less pronounced

(Figure 5). This change has most likely reduced the volume and
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velocity transport of the Kuroshio Current so immensely that it

induced the southward displacement of the SAF to a position south

of our study site (Figure 6). Between ~470-440 ka BP both tropical

ENSO records show a further increase of DTWPWP-EEP and thus La

Niña-like conditions (Figure 5). Similar to before, this change likely

increased the Kuroshio Current’s volume and velocity transport and

thus, caused another significant northward shift of the SAF. From

here until ~280 ka BP La Niña-like conditions prevailed,

particularly reflected in the record from de Garidel-Thoron et al.

(2005). Minor decreases of the DTWPWP-EEP between ~600-480 ka

BP and ~440-280 ka BP do not seem to have had major impact on

the Kuroshio Current strength to induce a shift of the SAF to a

position south of the study site. We hypothesize that there might be

a tipping point in Kuroshio Current strength that needs to be

reached in order to induce a shift of the SAF to a position north of

the study site.

At ~280 ka BP we observe a second abrupt SSTMg/Ca decline by

~3.5°C (Figure 5), while the ENSO records from de Garidel-Thoron

et al. (2005) and Jia et al. (2018) indicate a change from extreme La

Niña-like to more El Niño-like conditions. Thus, we assume that there

was another southward displacement of the SAF to a position south of

our study site. From here on (phase A: 280-0 ka BP) the SSTMg/Ca is on
Frontiers in Marine Science 08
average 3.6°C lower than in phase B and shows minor variations (~ ±

2°C) around the modern annual mean seasurface temperature (~5.5°C

at ~30 m) (Figure 5). During this period both ENSO records indicate

that El Niño-like conditions prevailed in the tropical Pacific, with

almost no strong La Niña-like phases (except for ~20-5 ka BP in the Jia

et al. (2018) record. Variations between El Niño-like and La Niña-like

conditions within phase A are not corresponding to SSTMg/Ca changes,

which further implies that tropical surface water entering the Kuroshio-

Oyashio transition zone via the Kuroshio Current/Kuroshio Extension

did no longer have an influence on the SSTMg/Ca development at the

study site. The SAF likely remained south of the study site between 280-

0 ka BP.

The assumption of the intensification and northward migration

of the Kuroshio Current/Extension in times of more La Niña-like

conditions in the tropics is supported by a study from Shatsky Rise

(Yamane, 2003; core S-2; Figure 1). Shatsky Rise is located ~13°

south of our core location, were the surface water is dominated by

the Kuroshio Current. Yamane (2003) compared d13C values of

shallow and deep-dwelling planktonic foraminifera and interpreted

small Dd13C gradients as sustained influence of Kuroshio

(Extension) water (Figure 5). This record implies that in phase B,

where we observe high SSTMg/Ca there was a greater influence of the
D

A
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FIGURE 2

Chronostratigraphy of core SO264-45 from Jimmu Seamount (Emperor Seamount Chain). (A) Top: Benthic d18O stack of core SO264-45 (green
line = gravity core; yellow line = multicorer) in comparison to the global benthic LR04 d18O reference stack from Lisiecki and Raymo (2005). White
triangles = tie lines used for tuning the core SO264-45 d18O to LR04. Black triangle = AMS14C dating. Bottom: The filtered 41 kyr component of
the benthic d18O stack of SO264-45 (red) in comparison to the orbital obliquity. Gray shadings and numbers mark Marine Isotope Stages (MIS 1-17).
Tephra layers identified in core SO264-45 are indicated as blue vertical lines. (B) The first 20 ka of A as a close up to better indicate the MUCs d18O
in correlation with the gravity core and LR04. (C) The frequency spectrum of the benthic d18O stack (green = 95% significance line) indicates
dominant cyclicities of 100, 41 and 23 kyr as a response to cyclic fluctuations in the Earth’s orbital parameters eccentricity, obliquity and precession.
(D) Age-depth diagram for core SO264-45; the sedimentation rate is given by the curve’s slope.
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subtropical Kuroshio water at Shatsky Rise than in phase A or

modern days, where we observe lower SSTMg/Ca (Figure 5).

Moreover, the abrupt SSTMg/Ca decrease at ~280 ka BP (this

study) goes along with Yamane’s observation of a reduced

influence of the Kuroshio Current at Shatsky Rise. Another study

from the Shatsky Rise (ODP 1210A) by Chiyonobu et al. (2012)

indicates a decrease of warm-water species of calcareous

nannofossils from 5x109 specimens/m²/kyr to 2x109 specimens/

m²/kyr at ~300 ka BP, while the relative abundance of the cold-

water species Coccolithus pelagicus increased. Notably, the time

difference between the abundance change and our SSTMg/Ca

decrease could be a feature of the different resolution of age

models in the study of Chiyonobu et al. (2012) and our own

study and is not necessarily an indicator of a different timing

between Shatsky Rise and our core location.

A similar change has also been described by Bordiga et al. (2014).

They observe higher primary productivity at Shatsky Rise prior to MIS

8 and lower primary productivity in younger periods. Moreover, they

detected a significant change in the faunal composition between MIS 8

and 7: While the nannofossil abundance decreases, the productivity

associated with biogenic opal and foraminifera increases. Similar to our

assumptions, Bordiga et al. (2014) link this change to an ‘elongated

state configuration’ of the Kuroshio Extension with larger meanders

prior to MIS 8 in connection to more La Niña-like conditions in the
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equatorial Pacific (Beaufort et al., 2001; Bordiga et al., 2014; Qiu, 2019).

Additionally, both Bordiga et al. (2014) and Chiyonobu et al. (2012)

discuss a change in the input of eolian Asian dust connected to an

intensification of the East Asian Monsoon from MIS 7 onward that

might have strengthened seasonality and thus, increased alternation

between intensely stratified and vertically mixed surface waters that

could have contributed to the change in the productivity regime.

These simultaneous changes of the Monsoon system as well as

the tropical east-west temperature gradient were likely caused by

physical processes (Chiyonobu et al., 2012; Bordiga et al., 2014) as

this threshold-like behavior can neither be explained by orbital

variations nor modulations in ice volume (Lisiecki and

Raymo, 2005).

Thus, we assume that during very strong La Niña-like

conditions in the tropical Pacific, as observed temporally in phase

B, the high velocity transport of the Kuroshio Current and thus, the

enhanced amount of tropical water in the Kuroshio-Oyashio

transition zone caused a northward shift of the SAF. During

times of more El Niño-like conditions, like in phase A, the SAF

stayed south of the core location, which is reflected by the

temporally cooler SSTMg/Ca. Yet the temperature variations within

phase A and B cannot exclusively be explained by variations in the

SAF position but must have had additional influencing factors (cf.

4.1.2). It is likely that the connection between the observed changes
FIGURE 3

Foraminiferal sea surface (red = G. bulloides, all data (thin line) overlain by a 10 ka unweighted smooth (thick line)) and sub sea surface (dark blue = N.
pachyderma) proxy data of core SO264-45 versus age. (A) global benthic LR04 d18O climate record (Lisiecki and Raymo, 2005) for reference. (B)
foraminiferal d18O; (C) foraminiferal Mg/Ca; (D) reconstructed sea surface (SSTMg/Ca) and subsurface (subSSTMg/Ca) temperatures; dashed blue lines =
modern annual mean water temperatures at the defined living depths of G. bulloides (~30 m) and N. pachyderma (~70 m) (Locarnini et al., 2018). (E)
Relative changes in Ice-volume corrected d18Osw deviating from the calculated modern value (gray line). Gray shadings and numbers mark Marine
Isotope Stages (MIS 1-17). Error bars mark the 95% standard deviation (2s). Phase A (0-270 ka) and B (270-600 ka) are indicated by gray boxes.
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in SSTMg/Ca at our study site and the long-term ENSO development

in the tropical Pacific is not straightforward yet that it is further

connected to long-term variation in the PDO and its forcing

mechanisms. The PDO is connected to the tropical ENSO on

shorter timescales in modern days (Newman et al., 2016); thus,

changes in the long-term development could have affected these

systems, which in return could have influenced the SST at our study

site. Due to the high complexity of this system and missing paleo

studies of the PDO, we cannot finally clarify this and instead

consider a simplified model of enhanced heat transport via the

Kuroshio Extension to our study site in times of very strong La

Niña-like conditions.

4.1.2 Variations of the Oyashio/Subarctic current
Aside from changes of the Kuroshio Current/Extension,

changes of the Oyashio/Subarctic Current are of major

importance for the surface temperature development at our study

site. Changes in the strength of the Oyashio Current are not

necessarily linked to variations in the Kuroshio Current yet can

have the same forcing mechanisms, e.g., changes in the intensity of

the Aleutian low, mid latitude westerlies (Qiu, 2019) or glacial/

interglacial climate variations (e.g. Ujiié et al., 2003; Matsuzaki et al.,

2014). Therefore, a strengthening of the Kuroshio Current does

neither imply that also the Oyashio Current becomes stronger nor

weaker at the same time. The importance of variations in the

Oyashio current for our study site becomes apparent when

comparing our SSTMg/Ca record to the proxy record of Matsuzaki
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et al. (2014) (Figure 5). They investigated the radiolarian fauna east

of Japan, where the Oyashio Current deviates from the coast and

enters the open Pacific as Subarctic Current (core C9001C)

(Figures 1, 6). Although there is no peak-to-peak correlation

between increased abundances of species typical for the Oyashio

Current and thus an intensification of the Oyashio and lower

SSTMg/Ca at our study site, some parallels are apparent.

Between 600 and 480 ka BP, there are events of strong La Niña-

like conditions in the tropics, and our SSTMg/Ca record shows its

highest values while Matsuzaki et al. (2014) observes a weak

Oyashio Current. At ~480 ka BP, where we observe a sudden

temperature decrease at our study site there is not only a change

from strong La Niña-like to strong El Niño-like conditions yet also

an intensified Oyashio Current. Thus, the combination of an

intensified Oyashio Current in line with the change towards

strong El Niño-like conditions (and thus a weak Kuroshio

Current) could have caused the a southward displacement of the

SAF. Through such a southward shift of the SAF more cold

subarctic water would reach our study site and could cause the

observed sudden temperature decrease at ~480 ka BP.

After 480 ka BP, SSTMg/Ca increases again, which we link to

several phases of strong La Niña-like conditions. Yet, even though

the La Niña-like phases are similarly pronounced and long, as

before 480 ka BP, the maximum SSTMg/Ca remains lower (Figure 5).

We assume that this observed SSTMg/Ca difference is linked to the

Oyashio Current. Between 480-390 ka BP and 360-340 ka BP the

Oyashio Current is transiently enhanced (Figure 5; Matsuzaki et al.,
FIGURE 4

Marine productivity and eolian flux in comparison to the SSTMg/Ca development: (A) LR04 d18O benthic isotope stack from Lisiecki and Raymo (2005). (B–
D) XRF-based productivity records from the North Pacific; high Ba/Al and Ba/Ti values point to a high marine productivity. (B) Ba/Ti record of SO202-39-3
(Korff et al., 2016). (C) Ba/Al record of ODP 882 (Jaccard et al., 2010). (D) Ba/Ti record SO264-45 (this study). (E) XRF-based normalized Fe record as
indicator for eolian dust supply to core SO264-45 (this study); note the descending y-axis. (F) SSTMg/Ca record SO264-45 (thin line = raw data; thick line =
10 ka unweighted smooth). Gray shadings and numbers mark Marine Isotope Stages (MIS1-17).
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2014). As both Currents contribute to the water of the Kuroshio-

Oyashio transition zone it is likely that this enhanced influence of

the Oyashio Current caused an overall lowered SST-level in the

Kuroshio-Oyashio transition zone. Thus, the enhancement of the

Oyashio/Subarctic Current system after 480 ka BP muted the SST-

effect of the La Niña-like induced enhancement of the Kuroshio

Current at our study site.

Between ~20-5 ka BP the record of Jia et al. (2018) shows

another phase of very strong La Niña-like conditions in the tropical

Pacific. Similar DTWPWP-EEP values have caused a shift of the SAF in

phase B. Yet, between ~20-5 ka BP our SSTMg/Ca record does not

show any significant rise (Figure 5). In contrast to previous

northward migrations of the SAF in phase B, the Oyashio
Frontiers in Marine Science 11
Current is very strong between ~20-5 ka. We hence assume that

the strong Oyashio/Subarctic Current prevented a significant

northwards shift of the SAF between ~20-5 ka BP.

4.1.3 Glacial-interglacial shifts of the SAF
Several studies suggest that the frontal zones in the Kuroshio-

Oyashio transition area migrated northwards during interglacials

and southwards during glacials at least during the last two glacial-

interglacial cycles (Thompson and Shackleton, 1980; Kawahata

and Ohshima, 2002; Harada et al., 2004; Yasudomi et al., 2014;

Gallagher et al., 2015). Assuming that the described changes

occurred throughout our entire studied time interval, such shifts

could have further contributed to changes in SSTMg/Ca and
FIGURE 5

ENSO effect on the N Pacific oceanography. (A) SSTMg/Ca record (thin line = raw data overlain by a 10 ka unweighted smooth (thick line) at core
location SO264-45. Maximum SSTMg/Ca divided into different time periods are marked as dotted lines. (B) Mg/Ca based SST from the East China
Sea (ECS; light blue) and the North Pacific Subtropical Gyre (NPSG; dark blue) (Ujiié et al., 2016). (C, D) Proxy records of ENSO variability from de
Garidel-Thoron et al. (2005); thin green line = complete record overlain by a 10 ka unweighted smooth = thick green line; (B) and Jia et al. (2018;
green; C). High DSSTWPWP-EEP values point to more La Niña-like conditions in the tropical W Pacific. (E) Relative abundance of cold water species
(blue) and absolute abundances of warm water species (red) reflecting a significant change in Kuroshio influence at Shatsky Rise (Chiyonobu et al.,
2012). (F) d13C gradient between shallow- and deepdwelling planktonic foraminifera revealing Kuroshio Current strength variations at Shatsky Rise
(Yamane, 2003). (G) Oyashio Current strength off the Japanese coast approximated from the abundance of radiolarian fauna typical for the OC
(Matsuzaki et al., 2014). Curve fillings (B, C, E, F) mark the upper 25% of the data. Phase A and B denote two phases of different ocean settings
characterized by a mode shift between a phase of extreme La Niña-like conditions (~240-650 ka) to a phase of less strong La Niña-like and more El
Niño-like like conditions (~260 ka - present). Marine Isotope Stages (MIS1-17) are marked. Black arrows mark prominent transitions between phases.
Phase A (0-270 ka) and B (270-600 ka) are indicated by gray boxes.
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d18Osw-ivc at our study site. However, during phase A were our

study site was located north of the SAF and thus dominated by

subarctic water, our SSTMg/Ca record does not show changes that

would fit to glacial-interglacial variations (Figures 3, 6). Therefore,

we assume that if there had been a northward migration of the

SAF during interglacials it can only have migrated to a position

still south of our study site. In phase B, were we consider our study

site to be located south of the SAF (Figure 6), the SSTMg/Ca and

d18Osw-ivc broadly follow glacial-interglacial cycles except for MIS

11-10. So if the SAF migrated further north during interglacials it

could have caused warmer, more saline water from the Kuroshio-

Oyashio transition to reach the study site, whereas southwards

shift during glacials could have brought the SAF closer to the core

location and thereby caused an increase of colder, less saline water

from the Subarctic Current. Thus it is likely that glacial/

interglacial induced shifts of the SAF contributed to our

observed SSTMg/Ca pattern.
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4.1.4 The subSSTMg/Ca record from
N. pachyderma

The subSSTMg/Ca record derived from N. pachyderma is

consistently lower than the SSTMg/Ca record derived from G.

bulloides (Figure 3). This difference reflects firstly the deeper

habitat depth of N. pachyderma in comparison to G. bulloides,

where the latter inhabits water depths above the thermocline,

whereas the former occurs at and below the thermocline. Thus

the temperature difference between the two species indicates a

stable and pronounced thermocline stratification. Secondly the

seasonal bias is expressed, as G. bulloides reflects annual SSTMg/Ca,

whereas N. pachyderma reflects subSSTMg/Ca, derived from the

colder seasons from autumn to spring. In phase A (280-0 ka BP)

our SSTMg/Ca and subSSTMg/Ca records show similar variations in

amplitude in MIS 7 and 5-1, yet with an average offset of 3.5°C,

while in MIS 6 the SSTMg/Ca and subSSTMg/Ca records show

opposing trends.
A

B

FIGURE 6

Schematic scenarios to explain the SST development and SAF positioning in the study region in terms of more La Niña-like (B) and more El Niño-like (A)
climate conditions. The heat distribution and flux between the Western Pacific Warm Pool (WPWP) and the Eastern equatorial Pacific (EEP) are indicated by
arrows and color shading in. Thicker (thinner) arrows indicate stronger (weaker) currents. ECC, Equatorial Counter Current; KC, Kuroshio Current; KE,
Kuroshio Extension; MC, Mindanao Current; NEC, North Equatorial Current; OC, Oyashio Current; SAC, Subarctic Current; SAF, Subarctic Front. Gray boxes
display thermocline variations in the tropical region.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1074431
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Jacobi et al. 10.3389/fmars.2023.1074431
In phase B (600-280 ka BP) the SSTMg/Ca record yields

significantly (up to ~6.5°C) higher values than in phase A, while

the subSSTMg/Ca record does not reflect this trend. This indicates

that the dispersal of Kuroshio-Oyashio transition water in phase B

was either a pure surface phenomenon, or was linked to the

different temperature tolerance of both species. In the first case,

water from the Kuroshio-Oyashio transition would have migrated

northwards in form of a warm surface water lens, while the

subsurface would have still been dominated by water from the

Subarctic Current. Thus, there would have been a very pronounced

shallow thermocline, as indicated in Supplementary Figure 7.

However, we consider it more likely that the different

temperature trends of N. pachyderma and G. bulloides are not

only a phenomenon of significantly different surface and subsurface

temperature evolution, but an ecological phenomenon. N.

pachyderma is less tolerant to warmer temperatures and prefers

values below 7°C (cf. 2.2 and Supplement 1). Therefore, it occurs

less during warmer seasons than G. bulloides. We assume that in

phase B, with an increased influence of Kuroshio-Oyashio

transition water at the study site, temperatures in the preferred

depth habitat of N. pachyderma exceeded optimal temperatures

even in spring and autumn. Thus, in times of a northward

displacement of the SAF N. pachyderma would most likely reflect

a pure winter signal, which is significantly colder than the annual

signal from G. bulloides. This change in seasonality is in accordance

with plankton tow studies from the North Pacific that suggest that

in modern days, N. pachyderma occurs from autumn to spring at

colder sites (~50°N, ~165°E) while their abundance stays low until

December at warmer sites (~40°N, ~165°E) (Taylor et al., 2018;

Supplement 1).
4.2 Marine productivity changes

Higher marine productivity during deglaciations and

interglacials and lower productivity during glacials as observed in

our Ba/Ti record is common in the North Pacific and its marginal

seas (Narita et al., 2002; Gorbarenko et al., 2004; Kienast et al., 2004;

Nürnberg and Tiedemann, 2004; Jaccard et al., 2005; Brunelle et al.,

2007; Shigemitsu et al., 2007; Galbraith et al., 2008; Gebhardt et al.,

2008; Jaccard et al., 2010; Riethdorf et al., 2013). In our record we

further observe, that the productivity already starts to increase

during the deglaciations and decreases during the late

interglacials. This is similar to observations at ODP Site 882

(Jaccard et al., 2010) located north of our site (Figure 1) which

also shows productivity increases during deglaciations and its

highest values in the early interglacials (Figure 4). A similar

feature is observed for site SO202-39-3 (Korff et al., 2016) located

south of our study site in the area of the Kuroshio Extension

(Figures 1, 4). The forcing mechanisms for these productivity

patterns, however, are still a matter of debate (Jaccard et al., 2010;

Knudson and Ravelo, 2015; Korff et al., 2016). For the North Pacific,

most authors suggest a change of nutrient supply, and in the

subarctic marginal seas light limitation through sea ice cover and
Frontiers in Marine Science 13
changes in stratification as main drivers for productivity changes

(Narita et al., 2002; Gorbarenko et al., 2004; Kienast et al., 2004;

Jaccard et al., 2005; Brunelle et al., 2007; Shigemitsu et al., 2007;

Galbraith et al., 2008; Gebhardt et al., 2008; Jaccard et al., 2010;

Riethdorf et al., 2013; Davis et al., 2020). As our site is located south

of the area where sea ice would have a direct influence on

productivity and the average winter SST exceeds 3°C, we exclude

it as a forcing mechanism (Supplementary Figure 1). Therefore we

conclude that the availability of nutrients or their utilization causes

the observed glacial-interglacial productivity pattern.

Iron fertilization has been invoked as an important driver for

nutrient sequestration efficiency and thus, an enhanced supply of

the micronutrient Fe could increase productivity (Boyd et al., 2004;

Harrison et al., 2004; Tsuda et al., 2003). One of the sources of Fe is

aeolian transport (Hovan et al., 1991; Kawahata et al., 2000; Boyd

et al., 2007; Shigemitsu et al., 2007). To test whether the Fe input via

dust caused our observed productivity pattern, we compared our

XRF-Fe record of core SO264-45, used as a proxy for terrigenous

input via wind to our Ba/Ti record (Figure 4). The proxy records are

apparently anticorrelated suggesting that Fe fertilization via dust is

not the (principal) driver of marine productivity at our study site,

although, we cannot say to what extent it still contributed to the

observed pattern.

The amount of nutrient transport via water masses could have

contributed to changes in productivity (Jaccard et al., 2005;

Galbraith et al., 2007; Nishioka et al., 2011; Costa et al., 2018;

Gray et al., 2018). Today, nutrient-rich water from the Oyashio/

Subarctic Current dominates the upper ocean at our study site. The

transported nutrients reach the mixed layer through vertical

wintertime mixing (Nishioka et al., 2011). Our SSTMg/Ca record,

which is linked to changes in the Kuroshio-Oyashio transition zone

does not show the same fluctuations as our productivity record.

Thus, although it could have contributed to changes in productivity

we assume that the interplay of the Kuroshio and Oyashio Current

is not the main driver for the observed productivity pattern at our

study site. We do, however, consider that the amount of transported

nutrients might have changed on glacial-interglacial timescales.

Lembke-Jene et al. (2017) show that the export of nutrients from

the Okhotsk Sea increased at the beginning of the deglacial warm

phases Allerød and Preboreal, because of an enhanced input of iron

and nutrient-rich terrestrial material from the Siberian hinterland

via the Amur River caused by melting processes. They argue that

such an increased export of nutrients from the Okhotsk Sea could

have caused temporary nutrient-replete conditions in the Subarctic

North Pacific. Riethdorf et al. (2013) also observe an enhanced

input of terrestrial-derived organic matter from flooded shelf areas

during early deglacial phases. As water from the Bering and

Okhotsk Sea feeds the Oyashio/Subarctic Current, these nutrients

could have reached the study site and caused an increase in

productivity. Assuming that an enhanced terrestrial sourced

nutrient supply from marginal seas like the Okhotsk Sea and the

Bering Sea via subsurface water did not only occur on millennial-

but also on glacial-interglacial timescales, this could contribute to

our observed productivity pattern. Yet to further clarify on this
frontiersin.org

https://doi.org/10.3389/fmars.2023.1074431
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Jacobi et al. 10.3389/fmars.2023.1074431
additional proxy records on longer time scales and in the open

North Pacific would be needed.

Further it has been proposed for subarctic and Antarctic sites that

strong stratification during glacials limits nutrient availability at the

surface while weak stratification in interglacials enables upwelling of

nutrients-rich deep water thereby enhancing productivity (Jaccard

et al., 2005; Brunelle et al., 2007; Galbraith et al., 2008). Yet this topic

alongside the efficiency of nutrient uptake is still a matter of debate (e.g.

Knudson and Ravelo, 2015) for which further studies with detailed

nutrient records and very reliable control would be needed.
5 Conclusion

Through the reconstruction of Mg/Ca and d18O based (sub)

surface temperature and d18Osw-ivc in the open Northwest Pacific

and a comparison of XRF-based Ba/Ti and iron records we draw the

following conclusions regarding the hydrological and productivity

variations at the northern boundary of the Kuroshio-Oyashio

transition zone:
Fron
-The SSTMg/Ca development at our study site is strongly related

to changes in heat transport of the tropical Kuroshio

Current induced by ENSO. In phases of very strong La

Niña-like conditions in the tropics, the NEC bifurcation

point migrates southward which enhances the velocity

transport of the Kuroshio Current/Extension. This way

more tropical water enters the transition zone, which

causes a northward displacement of the SAF to a position

north of our study site, thus a relocation of at least 5°. This

way more transition water reaches our core position, which

we observe as higher SSTMg/Ca in the time interval 280-600

ka BP. Further, we show that shifts of the SAF cause very

abrupt strong temperature changes at our core position e.g.

at 480 and 280 ka BP. Such shifts of the SAF have been

proposed on shorter timescales and for areas closer to the

coast, yet our SSTMg/Ca record makes it possible to track

these shifts on longer time scales and into the open Pacific.

-The SSTMg/Ca development at our study site is further

influenced by changes in the strength of the Oyashio/

Subarctic Current. Both, the Kuroshio Current/Extension

and the Oyashio/Subarctic Current contribute to the water

in the Kuroshio-Oyashio transition zone so that an

enhancement of the Oyashio Current can mute the effect

of an enhancement of Kuroshio Current. We observe such

an effect a) between 480-280 ka BP, where the enhanced

influence of the Subarctic Current at our study site causes

temperatures to stay lower than in the time interval 480-600

ka BP, even though there are similarly strong and long La

Niña-like phases in both intervals and b) between ~20-5 ka

BP, where a strong Oyashio Current seems to prevent a

shift of the SAF up to a position north of our study site.

-Glacial-interglacial variations in the Kuroshio-Oyashio

transition zone also influence the SSTMg/Ca development
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at our study site, yet they are less pronounced in our data

than the mode shift between phases A and B. In phase B,

where the SAF is located north of our study we observe an

increase of warmer, more saline water in interglacials and

colder, less saline water during glacials. We link these shifts

to general glacial-interglacial variations of the Kuroshio-

Oyashio transition zone and the front system.

-The productivity at our study site follows glacial-interglacial

patterns with high values during the deglaciations/early

interglacials and low values during glacials. Thus, we

conclude that productivity is not primarily linked to the

changing influences of Kuroshio/Oyashio water at our

study site.

-Our Fe and Ba/Ti records are anticorrelated, thus we conclude

that Fe fertilization via dust is not the (principal) driver of

marine productivity at our study site. We further

hypothesize that the observed productivity pattern might

be linked to (a) glacial/interglacial variations in the

subpolar marginal seas and the induced nutrient supply

via the subarctic water masses in deglaciations because of

melting processes and (b) changes in stratification that have

an influence on nitrate availability and utilization.
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M. P., et al. (2021). The southern ocean during the ice ages: A review of the Antarctic
surface isolation hypothesis, with comparison to the north pacific. Quat. Sci. Rev. 254.
doi: 10.1016/j.quascirev.2020.106732

Sigman, D. M., Hain, M. P., and Haug, G. H. (2010). The polar ocean and glacial
cycles in atmospheric CO2 concentration. Nature 466, 47–55. doi: 10.1038/
nature09149

Stuiver, M., Reimer, P. J., and Reimer, R. W. (2020) CALIB 8.2. Available at: http://
calib.org (Accessed 2020-10-9).

Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A.,
Chipman, D. W., et al. (2009). Climatological mean and decadal change in surface
ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep. Res. Part II. Top.
Stud. Oceanogr. 56, 554–577. doi: 10.1016/j.dsr2.2008.12.009

Talley, L. D. (1993). Distribution and formation of north pacific intermediate water.
J. Phys. Oceanogr. 23, 517–537. doi: 10.1175/1520-0485(1993)023<0517:DAFONP>2.
0.CO;2

Taylor, B. J., Rae, J. W. B., Gray, W. R., Darling, K. F., Burke, A., Gersonde, R., et al.
(2018). Distribution and ecology of planktic foraminifera in the north pacific:
Implications for paleo-reconstructions. Quat. Sci. Rev. 191, 256–274. doi: 10.1016/
j.quascirev.2018.05.006

Thompson, P. R., and Shackleton, N. J. (1980). North pacific palaeoceanography:
Late quaternary coiling variations of planktonic foraminifer neogloboquadrina
pachyderma. Nature 287, 829–833. doi: 10.1038/287829a0

Tjallingii, R., Röhl, U., Kölling, M., and Bickert, T. (2007). Influence of the water
content on X-ray fluorescence corescanning measurements in soft marine sediments.
Geochem. Geophys. Geosyst. 8, 1–12. doi: 10.1029/2006GC001393

Tsuda, A., Takeda, S., Saito, H., Nishioka, J., Nojiri, Y., Kud, I., et al (2003). A
mesoscale iron enrichment in the Western subarctic Pacific induces a large centric
diatom bloom. Science (80-) 300, 985–961. doi: 10.1126/science.1082000

Tukey, J. W. (1977). Exploratory data analysis (Reading, MA: Addison-Wesley).
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