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Time series of satellite-derived chlorophyll-a concentration (Chl, a proxy of

phytoplankton biomass), continuously generated since 1997, are still too short to

investigate the low-frequency variability of phytoplankton biomass (e.g. decadal

variability). Machine learning models such as Support Vector Regression (SVR) or

Multi-Layer Perceptron (MLP) have recently proven to be an alternative approach

to mechanistic ones to reconstruct Chl synoptic past time-series before the

satellite era from physical predictors. Nevertheless, the relationships between

phytoplankton and its physical surrounding environment were implicitly

considered homogeneous in space, and training such models on a global scale

does not allow one to consider known regional mechanisms. Indeed, the global

ocean is commonly partitioned into biogeochemical provinces (BGCPs) into

which phytoplankton growth is supposed to be governed by regionally-

”homogeneous” processes. The time-evolving nature of those provinces

prevents imposing a priori spatially-fixed boundary constraints to restrict the

learning phase. Here, we propose to use a multi-mode Convolutional Neural

Network (CNN), which can spatially learn and combine different modes, to

globally account for interregional variabilities. Each mode is associated with a

CNN submodel, standing for a mode-specific response of phytoplankton

biomass to the physical forcing. Beyond improving performance

reconstruction, we show that the different modes appear regionally consistent

with the ocean dynamics and that they may help to get new insights into

physical-biogeochemical processes controlling phytoplankton spatio-temporal

variability at global scale.

KEYWORDS

Convolutional Neural Networks, attention mechanisms, satellite ocean color,
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1 Introduction

Phytoplankton, the microalgae that populate the upper sunlit

layers of the ocean, plays a key role in the global carbon cycle and

fuels the oceanic food web. It accounts for half of the total carbon

fixation in the global biosphere through photosynthesis (Mélin and

Hoepffner, 2011) and conditions the oceanic protein production on

which ~3,3 billion people rely for their alimentation (FAO, 2020).

Thus, understanding and monitoring phytoplankton biomass past

and current spatio-temporal variability is of crucial importance to

predict and thus anticipate its future evolution in the context of

climate change.

Ocean color satellite observations allow documentation of its

synoptic variations. Global surface chlorophyll-a concentrations

(Chl, a proxy of phytoplankton biomass) can be retrieved from

space since the launch of the “Coastal Zone Color Scanner” (CZCS)

which has operated from 1978 to 1986. At the end of 1997, the

launch of the SeaWiFS sensor, followed by others, was the

beginning of 25 years of continuous observations. Although ocean

color remote sensing products present a number of uncertainties

[due among others to radiometric properties and stability of the

sensor, the conditions in the atmosphere or water, the design of the

algorithm or the irregular spatio-temporal sampling of the ocean,

(Gregg and Casey, 2007; IOCCG, 2019)], radiometric observations

have allowed one to point out regional seasonal and interannual

phytoplankton variability and to provide new insights about

mechanisms driving its spatio-temporal variations (e.g.,

Longhurst, 1995; McClain et al., 2004; Messié and Chavez, 2012;

Racault et al., 2017). However, available ocean color time-series

remain too short to inform without ambiguity the basin-scale

phytoplankton response to natural decadal climate cycles

(Martinez et al., 2009; d'Ortenzio et al., 2012), as well as to derive

reliable anthropogenic induced long-term trends for which at least

30-40 years of homogeneous observations would be required

(Henson et al., 2010). Some in-situ biogeochemical observatories

have locally collected long-term time series, but the network

coverage is far too sparse to study basin-scale evolutions (Henson

et al., 2016). Moreover, if coupled physical-biogeochemical models

are able to reproduce the main past global Chl interannual

variations, large discrepancies are reported regarding decadal

variabilities (Henson et al., 2009b; Patara et al., 2011).

In that context, data-driven methods have appeared to be

relevant alternative approaches to reconstruct long-term,

continuous and homogeneous phytoplankton time-series based

on satellite observations (Schollaert Uz et al., 2017; Martinez

et al., 2020a; Martinez et al., 2020b). Phytoplankton growth is

limited by light and nutrient availability (e.g., nitrogen,

phosphorus, iron). Thus, along with a variety of other biological

factors influenced by temperature and/or seascape connectivity [e.g.

phytoplankton physiology (Grimaud et al., 2017) and ecology (Boyd

et al., 2010; Winder and Sommer, 2012)], the spatio-temporal

distribution of surface phytoplankton on a global scale is strongly

shaped by changes in the supply of nutrients to the sunlit upper

ocean through vertical exchange. Phytoplankton changes can also

be related to other known processes as the predation by grazers,

such as zooplankton (the so-called “top-down control”) whose
Frontiers in Marine Science 02
variability can also be related to their physical environment (e.g.,

temperature; Beaugrand et al., 2002). Consequently, as physical

ocean and atmospheric dynamics largely drive global

phytoplankton variability (Wilson and Adamec, 2002; Wilson and

Coles, 2005; Kahru et al., 2010; Feng et al., 2015), statistical

relationships can be determined between some physical predictors

and Chl. Once such statistical relationships are established and

validated, they provide new means to retrieve past and future Chl

based on physical data from satellites (with a longer time period

than for Chl) and/or numerical model simulations.

Schollaert Uz et al. (2017) were the first to use this approach in

the tropical Pacific Ocean ([20°S-20°N]) with a linear canonical

correlation analysis applied on Sea Surface Temperature (SST) and

Sea Surface Height (SSH) vs. Chl. They reproduced most of the Chl

variability within 10° around the equator over 1958-2008, and

evidenced decadal variations corresponding to the Pacific Decadal

Oscillation (PDO). Martinez et al. (2020a) extended such an

approach to the global ocean using a Support Vector Regression

(SVR) model relying on a larger number of surface oceanic and

atmospheric predictors from numerical models. Given their

capacity to model complex non-linear relationships between data

(Hornik et al., 1989), dense neural network models (namely Multi-

Layer Perceptrons, MLPs) have been successfully applied in

geoscience and biogeochemical oceanography to regress some

variables from predictors (Long et al., 2014; Sauzède et al., 2016;

Sammartino et al., 2020). Thus, in a second study, Martinez et al.

(2020b) extended their work to satellite observations and showed

that an MLP outperforms the SVR to retrieve both Chl spatial and

temporal patterns. However, in these two studies, the considered

point-wise machine learning models explicitly relied on spatial

coordinates (periodized longitude and latitude) and temporal

information (periodized month) as predictors. This may impede

the ability of neural networks to capture changes in the boundaries

of biogeochemical provinces (BGCPs) that are naturally time-

evolving (Oliver and Irwin, 2008; Devred et al., 2009; Reygondeau

et al., 2013). In addition, these results remained hard to interpret in

terms of processes involved in the Chl reconstruction and

variability, whereas data-driven approaches have great potential

to discover new patterns, structure and relationships in scientific

datasets (Bergen et al., 2019). Understanding what drives neural

network output is also essential to ensure they behave appropriately

to the field of application (Xie et al., 2020) so as to enhance the

degree of confidence that can be placed in them.

Besides MLPs, other deep learning schemes, in particular

Convolutional Neural Networks (CNNs), have shown a much

greater ability to decompose and represent the space-time variations.

We may cite numerous successful applications in Earth science

forecasting (Haidar and Verma, 2018; Ham et al., 2019; Pan et al.,

2019; Chattopadhyay et al., 2020;Weyn et al., 2020) and reconstruction

(Cooke and Scott, 2019; Sun et al., 2019; Ai et al., 2020; Kim et al., 2020;

Jeon et al., 2021; Meng et al., 2021; Pyo et al., 2021) problems, including

studies focusing on Chl data (Yu et al., 2020; Ye et al., 2021). CNNs

assume translation equivariance of the input data (Goodfellow et al.,

2016), so that they cannot learn region-specific representations when

trained over the whole ocean (Cachay et al., 2020). On the other hand,

the a priori definition of BGCPs to train region-specific CNN models
frontiersin.org
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are not fully relevant due to their time-evolving nature, especially as

they are expected to be impacted by climate changes (Polovina et al.,

2008; Irwin and Olivier, 2009; Reygondeau et al., 2020). By contrast,

attention mechanisms (Chen et al., 2017; Jetley et al., 2018) provide a

generic approach to account for different modes of variability within

CNNs. For instance, Pyo et al. (2021) inserted such attention blocks

into a CNN and improved both performance and interpretability to

predict cyanobacteria cells from spatialized water quality predictors.

Here, we introduce a regular CNN, then a CNN with attention

mechanisms, referred to as a Multi-Mode Convolutional Neural

Network (CNNMM), to reconstruct phytoplankton dynamics from

physical predictors. The statistical models are trained between

ocean color observations vs. physical variables from satellite

observations and reanalysis outputs. The study is conducted from

1998 to 2015. We demonstrate that the CNNMM scheme

outperforms the state-of-the-art MLP data-driven approach and

illustrate its relevance to analyze the space-time variabilities of

physics-driven phytoplankton dynamics.
2 Material and methods

2.1 Chl observations, physical predictors
and climate index

The different datasets used in this study are briefly described

here. They comprise the same products as those used in Martinez

et al. (2020b), complemented with bathymetry data.

Several ocean color sensors embedded on different satellite

platforms have been operating since 1997. However, their limited

lifespan and differences in calibration lead to inter-sensor bias and

make them irrelevant for decadal time-scales studies. In order to

provide more homogeneous data, the European Space Agency

(ESA) has produced the Ocean Color Climate Change Initiative

(OC-CCI) Chl products, hereafter referred to as ChlOC-CCI.

Radiometric observations from the Sea-viewing Wide Field-of-

View Sensor (SeaWIFS, 1997-2010), the Moderate Resolution

Imaging Spectroradiometer (MODIS, 2002-present), the MEdium

Resolution Imaging Spectrometer (MERIS, 2002-2012) and the

Visible and Infrared Imaging Radiometer Suite (VIIRS, 2012-

ongoing) were consistently reprocessed to produce a global

longer-term and “bias-corrected” ocean-color time series

(Sathyendranath et al., 2019). Level 3 products from v4.2 were

downloaded at https://oceancolor.gsfc.nasa.gov/l3/, with a monthly

temporal resolution on a 1° grid and over 50°N-50°S to reduce the

number of missing data due to cloud cover and/or permanent night

in wintertime at high latitudes. Even though the OC-CCI Chl

products benefit from merged data from multiple satellite

missions to provide a better spatial and temporal coverage and a

more consistent long-term time series, it is worth noting that these

data still present some uncertainties. Indeed, with a global

uncertainty of about 30% for derived Chl (IOCCG, 2019;

Sathyendranath et al., 2019), reported accuracies may vary

significantly regionally (Szeto et al., 2011) and seasonally (Bisson

et al., 2021). Thus, one should be aware that the satellite-derived Chl

used in this study may not always properly describe the in-situ Chl
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variability. Yet, satellite-derived Chl, with the spatio-temporal

resolution chosen in this study, are still commonly used to study

global intra-annual to longer timescale variat ions in

phytoplankton biomass.

Short-Wave radiations (SW), referred to total solar irradiance

with wavelengths in the range of 300-3000 nm, are considered as a

proxy of Photosynthetically Active Radiation (PAR, 400-700 nm)

used for phytoplankton growth. SW are here preferred to PAR as

they are available over the historical period (e.g. from the 50’s) from

ocean and atmosphere numerical model outputs, that do not

include irradiance in the photosynthetic range, bearing in mind

that the model developed in this study is meant to be later used to

reconstruct phytoplankton past long-term time series. The

reanalysis daily product NCEP/NCAR (Kalnay et al., 1996)

del ivered by the National Oceanic and Atmospheric

Administration (NOAA) with a resolution of 2°x2° is used in this

study and available at https://psl.noaa.gov/data/gridded/

data.ncep.reanalysis.derived.html.

SST is usually considered as a good proxy of ocean vertical

mixing, being itself related to nutrient availability in the upper

ocean (e.g., Wilson and Coles, 2005; Behrenfeld et al., 2006;

Martinez et al., 2009; d'Ortenzio et al., 2012). Moreover, SST can

impact phytoplankton metabolic rates (Lewandowska et al., 2014).

The monthly 1°x1° SST of the Reyn_SmithOIv2 dataset produced at

NOAA using both in situ and satellite data (Reynolds et al., 2002)

was downloaded at http://iridl.ldeo.columbia.edu/.

Sea Level Anomaly (SLA) variability has been shown to be a

proxy for the thermocline/pycnocline/nutricline depth variability in

most parts of the global ocean (Wilson and Adamec, 2002). The

Ssalto/Duacs merged satellite altimetry product of CNES/

SALP project is used here. It consists in a weekly product with a

1/3°x1/3° spatial resolution and was retrieved at https://

resources.marine.copernicus.eu (accessed on December 2020).

Zonal and meridional surface currents (U and V, respectively)

could supply nutrients from remote regions through lateral

advection (Messié and Chavez, 2012). The Ocean Surface Current

Analysis Real-time (OSCAR) unfiltered product (ESR, 2009) is used

here to depict global ocean surface currents. It was generated by

NASA Earth Space Research (ESR) at a 1/3° x 1/3° resolution every

5-days from 1993. Horizontal velocities are computed from

satellite-sensed SSH gradients, surface vector winds and SST fields

with simplified physics. This product allows detection of eddies that

range from 100 to 300 km (Dohan, 2017). The data is available from

the NASA Physical Oceanography data center at https://

podaac.jpl.nasa.gov/dataset/OSCAR_L4_OC_third-deg.

Zonal and meridional surface wind stress (Uera and Vera,

respectively) exhibits global large-scale correlation patterns with

Chl (Kahru et al., 2010). In the open ocean, increased winds

contribute to deepen the mixed layer and thus to either reduce

phytoplankton light exposition in subpolar regimes or to increase

nutrients availability in subtropical regions. They account for one

part of the interannual and decadal mixed layer depth (MLD)

variability, that is reflected on phytoplankton bloom timing and

magnitude variations (Henson et al., 2009a; Kahru et al., 2010;

Martinez et al., 2011). Monthly global atmospheric reanalysis

computed by the ECMWF was used. The ERA-Interim 4 product
frontiersin.org
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was downloaded with a spatial resolution of 0.25° x 0.25° at: https://

www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/

era-interim.

The General Bathymetric Chart of the Oceans (GEBCO) produced

under the auspices of the International Hydrographic Organization

and the Intergovernmental Oceanographic Commission of UNESCO

is used. It consists in a continuous, global terrain model for ocean and

land, with a spatial resolution of 15 arc seconds. The GEBCO_2020

product was downloaded at ht tps : / /www.gebco .ne t /

data_and_products/gridded_bathymetry_data/gebco_2020/.

The monthly Multivariate El Ninõ Southern Oscillation Index

(MEI) is provided by the National Oceanic and Atmospheric

Administration (NOAA) website at https://psl.noaa.gov/enso/mei/.

The choice of the 8 physical predictors (SW, SST, SLA, U, V,

Uera, Vera, Bathy) is motivated by our will to use the most realistic

environmental conditions, that only observations allow, to learn

relationships with Chl. Among routinely measured oceanic

properties, we chose to rely on surface ones only (except for the

bathymetry), for which observations are much less scarce at global

and interannual scales than the ones below the surface. These

variables have also been selected as they are known to be proxies

of dynamical processes which drive the variability of phytoplankton

to the first order. In addition, deep neural networks are expected to

derive other related quantities (e.g., wind curl, eddy kinetic energy,

etc) on their own through operations (squares, cubes, gradients,

etc), although some subjective choices of predictors can sometimes

help the network to identify meaningful relationships.

Moreover, monthly physical fields are used in this study to

predict simultaneous monthly Chl, without considering any time-

lag. This choice is motivated by the rapid response of

phytoplankton growth to changes in physical forcing, with an

associated average turnover time of global oceanic plant biomass

on the order of a week or less (Falkowski et al., 1998). It is also

consistent with the strong large-scale correlation patterns that were

previously reported in the literature between environmental forcing

and synchronous phytoplankton biomass at monthly timescales

(Wilson and Adamec, 2002; Wilson and Coles, 2005; Feng et al.,

2015; Schollaert Uz et al., 2017).
2.2 Data pre-processing

The eight physical predictors’ datasets are extracted over [1998-

2015] and resampled to the same spatio-temporal resolution as Chl,

i.e. monthly on a 1°x1° grid between 50°N and 50°S. Some missing

values (NaN: Not a Number) remained in the different datasets such
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as on land for oceanic variables. As CNNs cannot account for NaN

values for the input predictors, a gap-filling scheme is applied. A

classic zero-filling strategy is discarded as it may lead to spurious

results especially in coastal areas. Alternatively, we extrapolate

missing data using the heat diffusion equation (see Equation 1),

that is widely used in the field of computer vision (Aubert et al.,

2006):

∂ u
∂ t (t, x) − Du(t, x) = 0,     t ∈ N   t ≤ 1000f g,   x ∈ R2  

u(0, x) =   u0(x)
        (Eq :   1

(

where u0 is the field with a zero-filling scheme for missing data,

u the interpolated field, t the iteration step and x the space

coordinates. This diffusion is applied to all the input fields

involving missing data (as illustrated in Figure S1) but is not

needed for the output field (Chl).

Given the well-known log-normal distribution of Chl data, Chl

is logarithmically transformed prior to being used in the machine

learning schemes. Back-transformation is applied afterwards to the

reconstructed log(Chl) (where log stands for the natural logarithm,

to the base e) to retrieve Chl fields that can be validated against Chl

satellite observations. As classically done in deep learning

approaches to stabilize training, we normalize each variable by

subtracting its mean from the original values and dividing by its

standard deviation over [1998-2015].
2.3 Deep learning schemes

In this study, we explore three different neural architectures: the

baseline MLP considered in Martinez et al. (2020b), a basic CNN

and the proposed multi-mode CNN. According to our choice of not

considering time-lags, those three models have in common to only

rely on instantaneous relationships. We detail below these

three architectures.

2.3.1 Baseline MLP
We implement the same MLP as in Martinez et al. (2020b). The

MLP is composed of seven dense layers (see Table 1) with

LeakyReLU activations. We refer the reader to Martinez et al.

(2020b) for more details about its architecture. It involves

1,800,000 parameters. We may point out that the MLP applies

pixel-wise, that is to say to a vector of input data, corresponding to a

predefined set of features defined at each space-time location.

Similarly to (Martinez et al., 2020b), the feature vector comprises

the following 12 variables: SLA, SST, Uera, Vera, U, V, SW, sin(lat),
TABLE 1 Summary of the models’ architectures. CNNMM8 corresponds to the multi-mode CNN composed of an attention-based module W and 8
CNNs submodels Mi trained in parallel.

Model Layers Number of neurons/filters Number of parameters

MLP 7 dense layers 12:1000:1000:500:500:120:120 ~1 800 000

CNN1 5 convolutional layers 9:16:32:64:128 ~100 000

CNNMM8 W 3 convolutional layers 9:16:32 ~7 000

Mi 5 convolutional layers 9:16:32:64:128 ~100 000
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sin(lon), cos(lon), sin(month), cos(month). Cosine and sine of

longitude are used to account for periodicity (longitude 0° =

longitude 360°), and sine of latitude is used to keep the same

ranges of values between longitude and latitude predictors. In a

similar manner, months are periodized using sine and cosine of

month to account for seasonal similarities (month 1, i.e. January, is

seasonally related to month 12, i.e. December).

2.3.2 Baseline CNN
CNNs, and their variants such as convolutional ResNets (He

et al., 2016) and Unets (Ronneberger et al., 2015) are state-of-the-

art architectures for a variety of image processing and computer

vision applications. They offer a new way of processing

multidimensional data by extracting patterns using convolution.

Here, we consider a basic CNN architecture composed of a

sequence of five 2 dimensional convolutional layers with 3x3

kernel sizes, stride and padding 1x1, and with ReLU activations.

We report the details of the mono-mode CNN (hereafter referred to

as CNN1) architecture in Table 1. Overall, it involves ~100,000

parameters. Contrary to the MLP, the CNN applies directly to the

concatenation of the 2D fields predictors.

2.3.3 Multi-mode CNN
The proposed multi-mode architecture aims at better accounting

for the space-time variabilities of the relationship between plankton

dynamics and the physical forcing. Modular neural networks were

proposed in the 80’s (Micheli-Tzanakou, 1987; Anzai and Shimada,

1988) with the aim of enabling decomposing complex tasks into more

practicable sub-parts (Auda and Kamel, 1999; Azam, 2000). They rely

on the idea that the combination of several estimators can lead to better

results than when using only one. More recently, attention-based

mechanisms (Chen et al., 2017; Kirsch et al., 2018) provide means to
Frontiers in Marine Science 05
implement this general concept. As sketched in Figure 1, the proposed

architecture applies in parallel i CNNs (referred to as Mi). These i

CNNs have the same architecture than the baseline CNN introduced

above, and only differ from one another in the way their respective

weights are optimized during training. As such, for a given set of 2D

fields predictors, we are provided with i outputs with the same size than

the target Chl field. We then compute a pixel-wise weighted average of

these i outputs according to weights computed by the attention-based

network W (this product is hereafter referred as “mode”). W is also a

CNN with the same architecture than the baseline one, but with 3

convolutional layers only. This CNN also uses as inputs the

multivariate 2D fields formed by the physical forcing. Importantly,

the last layer of this CNN is a softmax layer, so that the weights are

positive and sum to one for each pixel. The key features of this multi-

mode CNN architecture are three-fold: (1) it can explicitly account for

regional physics-driven variabilities, (2) there is no need to a priori

delineate BGCPs boundaries, (3) the learnt attention-based module

defines the space-time activation domain of each mode, which may

improve the interpretability of the network. As summarized in Table 1,

the multi-mode CNN for an 8-modes configuration (referred to as

CNNMM8) comprises ~807,000 parameters (8*100 000 + 7000).
2.4 Learning settings

For evaluation purposes, the whole database is split into three

independent datasets to train, validate and test the deep-learning

schemes. We consider non-overlapping time periods for each

dataset as sketched in Figure 2: the training is performed over

[2003-2010], the validation dataset covers [1998-2001] to monitor

the generalization performance of the models during the training

phase and select models’ parameters through sensitivity tests, and
FIGURE 1

Diagram of the CNNMMi architecture. For a given set of input 2D predictors, each of size n x m, i outputs of size n x m x 1 are computed from the i
CNN submodels (Mi). Those are spatially weighted according to the i dynamic probability maps outputted at each time t from the W spatial attention
module, and summed to obtain the output Chl 2D field.
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reconstructed Chl are compared to satellite Chl over [2012-2015]

(i.e., the test time-period). Years 2002 and 2011 are discarded so

that the training, test and validation datasets are not auto-

correlated. This configuration delivers long-enough test time

periods to assess the seasonal and interannual timescales of

interest (i.e., El Niño Southern Oscillation - ENSO). It also

defines time periods during which the number of ocean color

sensors remains the same in the OC-CCI dataset (Sathyendranath

et al., 2019) to avoid confusions between possible Chl variations due

to switch in sensors or occurring in nature (Gregg et al., 2017).

We train all models using a Mean Squared Error (MSE) loss and

Adam optimizer (Kingma and Ba, 2014). The MLP is trained over

200 epochs with a learning rate of 10-4 and a dropout of 0.15. The

CNNs and CNNMMi are trained over 500 epochs with an initial

learning rate of 0.001 that is decreased to 0.0001 at the 400th epoch

to stabilize the training. Dropout values of 0.15 and 0.35 are used for

the CNN1 and CNNMMi, respectively, to prevent overfitting

(Srivastava et al., 2014)(see respective learning curves in Figure

S3). Hyperparameters settings were chosen according to sensitivity

tests summarized in (Supplemental Table S1).

During each training run, we assess the score of the trained

model on the validation dataset at the end of each epoch and save

the one with the best score. We implement all models using Python

with the Pytorch library. We run numerical experiments with a

GPU NVIDIA Tesla T4 with 32Go of RAM. As recommended by

many ethics’ guidelines for developers (Vinuesa et al., 2020; Ryan

and Stahl, 2021; Taddeo et al., 2021), we also report the carbon

footprint of the training phase of each model using the

Carbontracker Python library (Anthony et al., 2020). Our

computing server is located in France, with a detected averaged

carbon intensity of 294.21 gCO2/kWh.
2.5 Evaluation framework

We consider the following three quantitative metrics for

evaluation purposes: the root-mean-square error (RMSE, Eq. 2),

the coefficient of determination (R2, Eq. 3) and the linear regression

slope are used to compare the reconstructed log(Chl) times series vs.

OC-CCI satellite observations:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(log(Chl) − log(ChlOC−CCI))

2

N

s
              (Eq :   2)
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R2 = (o(log(Chl) − log(Chl))(log(ChlOC−CCI) − log(ChlOC−CCI))

N*  slog(Chl)*  slog(ChlOC−CCI)

)2         (Eq :   3)  

with N the number of samples, s the standard deviation and the

horizontal bar the time average, both calculated over the considered

time period.

Global map of correlation and of normalized RMSE (NRMSE,

Eq. 4) of Chl times series vs. OC-CCI satellite observations are also

used to assess regional discrepancies:

NRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(Chl − ChlOC−CCI)

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(ChlOC−CCI)

2
q           (Eq :   4)

To estimate the model’s ability to reproduce seasonal and

interannual variabilities, an Empirical Orthogonal Function (EOF)

analysis is performed as follows. First, the annual (monthly) ChlOC-

CCI average is removed from the initial time series to obtain the

seasonal (interannual) Chl anomalies which are then normalized

with respect to their standard deviations. We project the

reconstructed Chl time series onto these seasonal and interannual

ChlOC-CCI spatial patterns and the resulting seasonal and interannual

temporal patterns (i.e. the principal components, PCs) are compared to

those of ChlOC-CCI using Pearson correlation.

For each pixel, the percentage of variance explained by each of

the i modes of the multi-mode CNNMMi is derived to assess their

relative importance. It relies on (1) successively reconstructing Chl

while putting the probability weights of the corresponding mode to

zero, and (2) calculating the difference in RMSE that is observed

compared to when Chl is inferred with the full model.

From the obtained i percentages of variance Pk, we further

compute, for each pixel, the following entropy-based metric H:

H = −o
i

k  =1

Pk*log2(Pk)               (Eq :   5)

It allows us to evaluate to which extent the reconstruction at a

given pixel truly results from a multi-mode relationship (large

entropy values) or from a single-mode one (low entropy values).

Finally, we also assess the relative importance of each physical

predictor to reconstruct Chl using a perturbation-based method as

in Kim et al. (2020). From a given CNNMMi, the difference of the

RMSE of the predicted Chl when using the initial data vs. randomly

shuffled data (both in time and space) for each predictor

individually is computed. RMSE differences are normalized so
FIGURE 2

Time-series of the MEI. The validation, training and test time periods used to compare the implemented regression models’ performances are
indicated as orange, red and green filled sections, respectively.
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that the relative importance of all the predictors sums up to one for

each pixel.
3 Results and discussion

3.1 Performance of the mono-mode CNN
vs. MLP baseline

The reconstructed Chl from both the mono-mode CNN1 and the

state-of-the-artMLP are compared to satellite Chl over the [2012-2015]

test period to assess the added value of convolutions. When the 12

predictors [namely SLA, SST, Uera, Vera, U, V, SW, sin(lat), sin(lon),

cos(lon), sin(month), cos(month)] are used, performances obtained

with the MLP and CNN1 remain close (Table 2). However, the CNN1

contains almost twenty times less parameters than the state-of-the-art

MLP (~100 000 vs. ~1 800 000, respectively), is ten times faster to

compute and more than ten times more energy-efficient, supporting

that convolutions are better suited to reconstruct Chl.

To avoid learning constraints of time and space, the models are

trained removing the spatial coordinates, i.e. on 9 predictors. Results

further stress the relevance of convolutional architectures to reconstruct

ChlOC-CCI. Indeed, whereas the MLP highly drops in performance (R2

down to 0.59 and RMSE up to 0.5), the CNN1 still presents satisfactory

scores (R2 = 0.80 and RMSE = 0.35) (Table 2). These results averaged at

global scale are consistent over the three oceanic basins with a higher R2

between ChlOC-CCI and CNN1 than with MLP by 0.23 and 0.24

respectively in the Indian and Pacific oceans and by 0.14 in the

Atlantic Ocean (Figure 3 lower row vs. upper row).

Interestingly, removing the temporal predictors (i.e., sin(month)

and cos(month)) does not reduce the CNN1 performance and even

tends to slightly improve it (slope of 0.81 vs. 0.77, and interannual

correlation coefficient of 0.96 vs 0.94, Table 2). It suggests that temporal

predictors only bring redundant information already included into the

seasonally-fluctuating physical fields provided as predictors. This result

also suggests that the network benefits from being no longer monthly
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constrained when interannual time-series are considered. Indeed,

learning on periodized months may force the network to learn static

seasonal phytoplankton bloom characteristics (e.g., start, duration and

amplitude) over several years. Thus, it would impede to correctly

account for interannual delays in bloom timing or difference in the

length of the growing period (Henson et al., 2009a) that can for

instance reach ~10 weeks for major ENSO events (Racault et al., 2012)

and that would be otherwise considered through other physical fields

such as SST.

The CNN1 is further improved by the addition of two other

predictors: the bathymetry and a continental mask. The bathymetry

is considered as it would participate to distinguish open ocean

ecosystems from coastal ones, where specific processes can occur

(shelf break fronts, tidal mixing, river discharge, coastal upwelling,

etc) and where the water-leaving radiance measured by ocean color

sensors may only partially represent Chl (inorganic particles

dominate over phytoplankton concentration). Moreover, as being

more spatially resolved than OSCAR data, it is also expected to

bring additional information about the ocean circulation (especially

concerning the fine-scale dynamic) that is regionally related to the

seafloor topography (Gille et al., 2004; Bryan, 2016). The binary

continental mask (0 on ocean and 1 on land) is also added because

the oceanic predictors are filled over land with data through

diffusion (see the data section) inducing that no information on

the exact boundary between ocean and land are no longer available.

Doing so, results are slightly improved (R2 = 0.84, RMSE = 0.31 and

slope = 0.85) and the CNN1 better captures Chl spatial structure in

some places as observed over the tropical Atlantic Ocean

(Supplemental Figure S2).
3.2 Chl reconstruction improvement from
mono-mode CNN1 to multi-mode CNNMM8

Given the overall good performance of the CNN1, we chose this

model as a basis to document the impact of multi-modality. With
TABLE 2 Global performance metrics obtained with the state-of-the-art MLP, CNN1 and CNNMM8 over the [2012-2015] test period.

Predictors
Global scatterplot Corr.

Seas. PC
Corr.

Inter. PC N param
Time

computation
Km travelled

by car

Model R2 RMSE Slope

12 MLP 0.85 0.30 0.84 0.99 0.97 1 840 000 50h13 13.5

CNN1 0.86 0.30 0.87 0.99 0.98 99 889 5h 0.95

9 (without sin(lat), cos(lon), sin
(lon))

MLP 0.59 0.50 0.57 0.97 0.85 1 836 000 50h13 13.4

CNN1 0.80 0.35 0.77 0.99 0.94 99 457 4h53 0.93

7 (without sin(month), cos
(month))

CNN1 0.80 0.35 0.81 0.98 0.96 99 169 4h52 0.92

9 (+ bathymetry + continental
binary mask)

CNN1 0.84 0.31 0.85 0.99 0.95 99 457 4h54 1.04

CNNMM8 0.87 0.28 0.90 1.00 0.96 803 920 39h 8.9
The R2, RMSE and slope metrics are calculated between the reconstructed log(Chl) and satellite log(ChlOC-CCI). Correlations of seasonal and interannual 1st principal components from EOF
analysis are calculated between the reconstructed Chl and satellite ChlOC-CCI. The number of parameters used and the computation time of the training phase (performed over [2003-2010]) are
reported, as well as the associated carbon footprints in equivalent km traveled by car. Performance metrics of the proposed multi-mode approach are highlighted in bold.
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the same 9 predictors, performances of the proposed multi-mode

CNNMMi schemes are investigated from 1 to 15 modes. R2 increases

from 0.81 up to 0.87 and RMSE decreases from 0.32 down to 0.27

from one to four modes (Figure 4, see Table S2 for details). For both

metrics, a plateau is reached from the fourth mode for R2 and the

eighth mode for RMSE. Overall, the CNNMM8 model seems to be

the best trade-off between performance and computational

complexity. Thus, the CNNMM8 is investigated hereafter and

compared to CNN1 to further discuss the advantages of the

multi-modality.

Time averaged satellite ChlOC-CCI over the [2012-2015] test

period compares reasonably well with that reconstructed from

CNNMM8 (Figures 5A vs. 5B). The CNNMM8 correctly represents

the main spatial patterns with, for instance, higher Chl at high

latitudes and along the equatorial and eastern boundary upwelling,

as well as in the Arabian Sea. The CNNMM8 also captures low Chl in

the subtropical gyres delimited by the 0.07 mg.m-3 mean Chl

isocontour. The correlation map computed between ChlOC-CCI and

CNNMM8 shows values higher than 0.8 over large parts of the global

ocean and especially in the subtropical areas (Figure 5C). Conversely,

low correlation values, associated in most cases to high NRMSE

(Figure 5D), can be observed at higher latitudes than 40° and in the

eastern and tropical part of the Pacific Ocean oligotrophic gyres. This

can be due to several factors. In some places, the spatio-temporal

resolution (i.e., monthly on a 1° grid) used in the present study may

be too coarse to capture the overall Chl variability. In particular, this

would mainly explain the lack of correlation observed in the tropical

southeastern and northwestern Pacific where the dominating
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timescales of Chl variability have been very recently reported to be

below 30 days (Jönsson et al., 2023; see their Figure 7B). This may also

explain part of the Chl underestimation observed in highly energetic

areas with mesoscale and sub-mesoscale eddies (<100 km scales) that

may impact phytoplankton along dynamical fronts (Lévy et al., 2018).

This component of the ocean dynamics might not be sufficiently

resolved here, as along the Gulf Stream, the Kuroshio and Agulhas

currents and in subantarctic waters along the Antarctic Circumpolar

Current (Frenger et al., 2018). In addition, the list of predictors that

we used is not exhaustive and variables representative of some

biogeochemical and physical mechanisms may be missing. For
FIGURE 3

Scatterplots of reconstructed log(Chl) from the MLP (upper row) and CNN1 (lower row) vs. satellite ChlOC-CCI, when explicit geographic predictors
(i.e., sin(lat), cos(lon), sin(lon)) are removed from the training phase. Columns correspond to different oceanic basins (left: Indian Ocean, middle:
Pacific Ocean, right: Atlantic Ocean). The log of ChlOC-CCI vs. reconstructed log of Chl regression lines are plotted in black and the 1:1 regression
lines are plotted in red. Plots are color-coded according to the density of observations.
FIGURE 4

Performance evolution according to the number of modes of the
CNNMMi models. Metrics are computed over the [1998-2001]
validation period during which model parameters are assessed.
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instance, terrigenous inputs at the mouths of large rivers (driven by

precipitations) supply nutrient rich waters which are not considered

in our predictors. In addition, ocean color observations in these

regions may rather reflect suspended particles and colored dissolved

organic matter (respectively SPM and CDOM) rather than Chl. This

could explain the high NRMSE values observed along the Amazon,

the Congo and Kunene rivers. More generally, the predictors we used

in this study cannot account for some ocean color sources of

uncertainties (e.g., atmospheric conditions, solar zenith angle,

properties of the sensors, etc), so potentially biased Chl values

cannot be fully reproduced by the networks. Moreover, biological

effects such as zooplankton grazing (the so-called top-down control),

which are not directly accounted for by any of our predictors, may

also regionally inhibit the signature of phytoplankton growth on

satellite observations, especially at high latitudes. Proxy of iron supply

in the open ocean from other external sources, such as dust

deposition or hydrothermal vents, are also missing among our

predictors. This can limit the ability of our network to distinguish

areas of different nutrient (co-)limitations (Moore et al., 2013) and to

account for phytoplankton responses driven by the dynamics of these

sources, especially in iron-limited High Nutrient Low Chlorophyll

(HNLC) regions. As such, one part of the low correlations observed in

the eastern tropical Pacific could come from the role played by dust

deposition in altering the timing and amplitude of ENSO-related

phytoplankton response (Lim et al., 2022a). This could also partly

explain low correlations values observed in the northwestern Pacific

(Meng et al., 2022), or high NRMSE values observed in the northern

Arabian Sea where dust deposition would play a key role in

controlling phytoplankton bloom amplitude (Guieu et al., 2019).

Mean difference maps between CNNMM8 and CNN1 in terms of

correlation and NRMSE with ChlOC-CCI illustrate that the CNNMM8

improves correlations over most of the global ocean (in red in
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Figure 5E). Differences higher than 0.3, and that can exceed 0.6,

appear in the tropical zone between 20°S and 20°N (Figure 5E)

where Chl are not well reconstructed with the CNN1 (Figure S4).

Subtropical areas that already show high correlations with the

CNN1 model led to lower differences (yet show no degradation)

in the correlation scores. The analysis is a bit more contrasted for

the NRMSE metrics. NRMSE values are also improved by the

CNNMM8 over most of the global ocean (in red in Figure 5F).

However, the NRMSE is deteriorated (in blue) in several regions of

the ocean, reaching values up to 0.5 around the Amazon River

plume, and up to 0.3 at the mouths of the Congo and Kunene rivers

off the coast of Angola, although correlations are improved when

multi-modality is introduced. The use of a multi-mode CNN, whose

learning is expected to be more regionally focused than a CNN1,

might increase the NRMSE in these regions, where Chl variability

might rather reflect SPM and CDOM variability whose related

predictors are missing.

To illustrate the ability of the CNNMM8 to better capture

regional processes than CNN1, the improvement in reconstructed

Chl for specific regions when the CNN1 is trained regionally vs. the

CNN1 and CNNMM8 trained at global scale is investigated. The

CNN1 trained regionally is expected to better learn regional

processes than the CNN1 trained over the global ocean (Fourrier

et al., 2020). Table 3 shows the performance metrics obtained for

two different BGCPs, a productive vs. an oligotrophic region: the

Ninõ 3.4 region [5°N–5°S; 120°W–170°W] and the ultra-

oligotrophic part of the South Pacific Subtropical Gyre (SPSG,

[20°S–30°S; 95°W–145°W]). They present contrasting responses

to the regional learning process. The Niño 3.4 region displays a

significant potential for performance improvement as shown by the

improvement between the globally and locally learnt CNN1, which

means that the relationships learnt at global scale are different than
A B

D

E F

C

FIGURE 5

Time averaged (A) ChlOC-CCI and (B) CNNMM8 (in mg.m-3) over [2012-2015]. Oligotrophic gyre boundaries are delimited by the 0.07 mg.m-3 mean
Chl isocontour superposed in white. (C) Correlation and (D) NRMSE of ChlOC-CCI vs. CNNMM8 over the same time-period. (E) Correlation and (F)
NRMSE differences between CNNMM8 and ChlCNN1 over the same time period. NB: the colorbar is reversed for the NRMSE difference when
compared to the correlation difference to highlight in red where the Chl reconstruction with CNNMM8 is improved.
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those learnt at regional scale. Here, the CNNMM8 reaches those

performances and even outperforms the regional CNN1, confirming

the hypothesis of a better ability of the multi-mode CNN to

reconstruct regional Chl. Contrastingly, in the SPSG region the

reconstruction of Chl is already well performed by the globally and

locally learnt CNN1 with R2 = 0.85 vs. 0.92, respectively, leaving

little room for improvement by the CNNMM8. However, the

CNNMM8 allows reduction of the NRMSE. Thus, in both regions,

the CNNMM8 outperforms the regionally trained CNN1 due to its

ability to switch between different modes while it is less prone

to overfitting.

Using the proposed EOF-based analysis, the ability of the

CNNMM8 to retrieve the satellite-derived Chl spatio-temporal

variability is investigated. The first EOF modes calculated on the

seasonal and interannual ChlOC-CCI signal over [2012-2015] are

presented in Figure 6 (upper and lower row, respectively). They

respectively account for 33.2% and 13.2% of the total variance.

Regarding the seasonal variability, the observed spatial patterns

depict a clear contrast between the two hemispheres (Figure 6A),

reflecting their opposite seasonal cycles. Consistently, the associated

PC time-series depicts a sinusoidal signal with a one-year period

(black line in Figure 6B). This seasonal variability is well reproduced

by both the CNN1 and CNNMM8 models, with correlations of their

projected PCs with those of ChlOC-CCI of 0.99 and 1.00, respectively

(Figure 6B). Even though the amplitude of the ChlOC-CCI PC was

already very well captured by the monomode model, the multi-

mode one still allows the correction of the slight underestimation

that was observed otherwise.

Regarding the interannual variability, the first ChlOC-CCI EOF

mode illustrates the strong spatio-temporal signature of ENSO

events observed in the Pacific Ocean (Figure 6C), with opposite

Chl responses to ENSO-related physical anomalies observed in the

eastern Pacific compared to the western Pacific (Chavez et al.,

1999). The temporal evolution of this first interannual ChlOC-CCI
PC is highly related to the MEI (r=0.75, p<0.001) which reaches its

maximum during the strong 2015/2016 El Niño event (Figure 6D).

Here again, the interannual signal is well represented by CNN1 and

CNNMM8 with high correlation coefficients of their PCs with those

of ChlOC-CCI (0.95 and 0.96, respectively), although the amplitudes

are underestimated. These results stress the ability of the learning-

based schemes to inform about the seasonal and interannual

variability while it is not explicitly constrained during the training

phase. Indeed, neither the training loss nor the architecture exploits
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time-related information. The underestimation of the interannual

signal may be related to processes not considered, either related to

the predictors (e.g. rivers inputs of nutrients, dust, land wildfire …)

or to unresolved spatio-temporal scales. For instance, some

discrepancies in the patterns of respective interannual EOF modes

1 can be observed in the Indian ocean and in the north Atlantic

ocean (Figures S5B, D, F) where atmospheric dust inputs are most

important (Jickells et al., 2005). Other sources of error can arise

from differences between the training and the test periods chosen

for this study. Beyond differences in the amplitude of ENSO events

observed during those periods, different types of ENSO [Eastern

Pacific (EP) versus Central Pacific (CP)] have also been reported.

Thus, our training period [2003-2011] mainly hosts CP events,

whereas the strong 2015/2016 El Niño event is usually classified as

an EP event, with different processes and related impact on primary

production (Radenac et al., 2012; Racault et al., 2017). Finally,

delayed effects of climate modes have been very recently shown to

influenced Chl in large parts of the ocean (see Figure 6 of Lim et al.,

2022b), and especially in the eastern tropical Pacific one, whereas

time-lags are not considered into our model.
3.3 Emergence of coherent spatio-
temporal distribution of modes

The main advantage of the multi-mode CNN is the ability of its

different sub-models to regionally specialize during the training

phase. The training of the network benefits from all the sub-models

that activate differently in various parts of the ocean. Maps of the

percentage of variance explained by each mode of the CNNMM8 are

computed over [2012-2015] (Figures 7A–H). This resulting

regionalization, even if presenting some slight modifications of

their spatial imprints, are quite consistent from one run to another.

These percentages can regionally exceed 30% of the total variance for

somemodes in specific regions, such as in the three oligotrophic gyres

of the southern hemisphere (mode 1), and, to a lesser extent, in those

of the northern one (modes 2 and 3). These high variances which

predominate for specific modes correspond to low values of entropy

(the lower the entropy is, the more a specific mode dominates the

signal: purple areas in Figure 7I). The percentages of variance of the

remaining oceanic regions are distributed in a more balanced way

between a larger number of modes (higher entropy, Figure 7I), but

still present some regional variations.
TABLE 3 Performance metrics obtained between spatially averaged reconstructed Chl and ChlOC-CCI over two contrasted BGCPs: the Ninõ 3.4 region
([5°N–5°S, 120°W–170°W]) and the South Pacific Subtropical Gyre (SPSG, [20°S–30°S; 95°W–145°W]), when the CNN1 is either trained at global scale
or regionally, and the CNNMM8 is trained globally.

Model
Ninõ 3.4 SPSG

R2 NRMSE R2 NRMSE

Globally learned CNN1 0.28 0.17 0.85 0.14

Regionally learned CNN1 0.48 0.12 0.92 0.17

Globally learned CNNMM8 0.68 0.11 0.90 0.14
fron
Best performances are highlighted in bold.
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The eight sub-models thus depict some clear, coherent and non-

random spatial patterns. Figure 7J synthetizes areas over which the

different modes dominate, depicting for each pixel the mode that

presents the maximum of explained variance. At first glance, there

is a zonal spatial distribution of the modes in agreement with the

original BGCPs distribution from Longhurst (1995). It partly results

from latitudinal variations in physical forcing and leads to

distinguishing what is called the “westerly winds domain” from

the “trade wind domain” in the open ocean, whose seasonal changes

in MLD are driven by different processes. The first one is reported

to extend from the equator to ~30° of latitude, whereas the second

one corresponds to mid-latitude areas. From the trained CNNMM8,

mode 7 mostly activates at higher latitudes than ~30°N/°S (in blue

in Figure 7J), whereas mode 6 mainly activates at low-latitude. The

first mode highly matches the three southern hemisphere

oligotrophic gyres whereas the second and third modes coincide

with the two gyres of the northern hemisphere. The spatial

distribution of the three remaining modes (i.e., 4, 5 and 8) fits

regions with specific oceanographic dynamics. Indeed, mode 4 (in

red in Figure 7J) principally corresponds to areas of wind-induced

coastal upwellings, as the Peru, Canary and Benguela areas and to a

lesser extent to the California one, as well as to the Pacific and

Atlantic equatorial upwelling. Mode 5 (in orange, Figure 7J) seems

to stand for the mid-latitude highly dynamical parts of the ocean,

that is to say the Gulf Stream and the Kuroshio currents. Finally,

mode 8 (in yellow, Figure 7J) potentially highlights the Pacific

frontal areas such as the Transition Zone Chlorophyll Front

(Polovina et al., 2001) or the boundary between the equatorial

Pacific high nutrient low chlorophyll (HNLC) area and the

subtropical gyres.

Another feature of the multi-mode CNN is the ability of the sub-

models to be variably activated over time. When considering two

BGCPs with contrasting entropy such as the eastern North Atlantic

Subtropical Gyre (NAST-E, [35°N–42°N; 15°W–30°W]) and the

already mentioned SPSG (delimited on Figure 7J) it appears that the
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percentages of variance explained by each mode, spatially averaged

over their respective areas, present contrasted temporal patterns

(Figure 8). For instance, clear seasonal patterns emerge in the NAST-

E (Figure 8A). The activation of the 7th mode (in light blue) occurs

seasonally (with some inter-annual variability) with a maximum in

November/December and a smaller secondary peak in April before

starting to decrease. Then, the percentage of variance explained by

modes 3 and 6 (in garnet and gray, respectively) increases in turn,

followed by mode 2 (in green). The strong seasonal cycle observed here

is consistent with the seasonal phytoplankton blooms reported in the

North Atlantic. Contrastingly, in the SPSG one mode totally prevails

over the others and does not display a clear seasonal cycle (purple line

in Figure 8B). This strong dominance is also highlighted in Figures 7A,

J and in the entropy map (Figure 7I). These results show that the

learned modes vary in space but also in time and that they can be

variably activated according to the variations of the physical predictors.
3.4 Predictors’ relative importance in Chl
reconstruction according to the modes

Using the perturbation-based method described in the last

paragraph of Section 2.5, here we provide an insight in the

relative importance of the physical predictors to reconstruct

satellite-derived Chl. Histograms in Figure 9 show the normalized

distribution along with the relative importance of each predictor in

areas characterized by one dominant mode (i.e. the areas reaching

the 90th percentile of variance, delimited by the green lines in

Figures 7A–H), over the [2012-2015] test period. Those histograms

illustrate that the different modes specialize by learning specific

relationships between Chl and the physical predictors, implying

possible different physical-biogeochemical interactions and

dominant mechanisms. This is especially obvious with regards to

the SST for which the eight histograms display various

distributions. Those appear to be in general agreement with
A B

DC

FIGURE 6

(A) Spatial pattern and (B) associated principal component (PC, as the black line) of the EOF first mode calculated on seasonal ChlOC-CCI over
[2012-2015]. ChlCNN1 and ChlCNN-MM8 PCs obtained from the projection on ChlOC-CCI EOF spatial pattern are reported as the green and
orange lines, respectively. (C, D) same as (A, B) but for the interannual signal. In (D), the MEI is reported as the grey shaded area.
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known physical-biogeochemical processes, but also highlight some

unexpected while plausible relationships.

As expected and already noted in a previous machine learning

based study (Martinez et al., 2020b), SST has the strongest relative

importance when compared to other physical predictors in all

mode-associated regions (NB: the scale on the x-axis in Figure 9

differs for SST when compared to the other predictors). However,

this relative importance is particularly striking in the subtropical

gyres of the northern (modes 2 and 3) and southern (mode 1)

hemispheres, and in some of the equatorial areas (mode 6) where

most of the pixels reach a relative value higher than 0.5. Yet, a

maximum/peak of occurrence around 0.7 is reached only for modes

2, 3 and 6. In those latter regions representing (i) the northern

subtropical gyres and (ii) the equatorward boundaries of the
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northern and southern boundaries subtropical gyres, the strong

dominance of SST as a predictor is consistent with the SST-Chl

inverse relationship reported at global scale in literature (e.g.,

Behrenfeld et al., 2006; Martinez et al., 2009). Indeed, in the

permanently stratified ocean which is nutrient-limited, SST

variability is a proxy of vertical mixing variability and thus of the

potential uplift of nutrients within the euphotic zone (Signorini

et al., 2015).

Interestingly, this statement slightly differs for the southern

oligotrophic gyres (mode 1) where the SST importance is weaker

(but still dominant) than in the northern gyres (modes 2 & 3). On

the contrary, other predictors such as SLA and surface currents (U,

V) seem to have a greater relative importance in the southern gyres

than in the northern ones. Counterintuitively, it suggests that some
A B

D

E F

G

I

H

J

C

FIGURE 7

(A–H) Percentages of variance explained by each of the 8 modes of CNNMM8. Isolines of percentile-90 of the values are superposed in green.
(I) Entropy characteristics computed from the above percentage of variance. Oligotrophic areas (with mean Chl < 0.07 mg.m-3 calculated over
[2012-2015]) are delineated as white isocontours. (J) Spatial distribution of the modes explaining the highest percentage of variance.
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of the mechanisms that are at play in the oligotrophic gyres would

be different between the two hemispheres. One hypothetic

explanation may come from the possible stronger iron limitation

in the southern hemisphere (Moore et al., 2001), resulting in a

decoupling between the vertical inputs of macro-nutrients (e.g.

NO3, PO4) and the phytoplankton local growth, thus minimizing

the imprint of the SST-Chl inverse relationship characteristic of the

northern hemisphere gyres. Considering the lack of vertical inputs

of the limiting nutrients, lateral transport of tracers (nutrients and

phytoplankton) near transition zones surrounding the gyres may

thus be of greater relative importance in the southern hemisphere,

which is consistent with the greater importance of the SLA and

currents. The double peak SST distribution in mode 1 could then be

interpreted as one characteristic of the gyres [related to the vertical

input of nutrients and common to the southern and northern gyres

(Signorini et al., 2015)] and one related to the lateral transport of

tracers mostly at play in the southern gyres. Consistently, for both

mode 1 and mode 3, the smaller relative importance of SST occurs

where the relative importance of surface currents (U, V) is larger

(not shown), the first peak of low SST importance observed for

mode 3 corresponding to the Arabian Sea area.

For the other modes (4, 5, 7 and 8) which correspond to more

productive regions (e.g. mode 4 highlights equatorial and coastal

upwelling regions) SST, while still dominating, appears to be of

weaker relative importance than in the gyres. In addition, the other

predictors’ relative weights are more uniformly distributed. This

suggests that a significant part of the Chl variability is not explained

by processes affecting the SST but is rather related to a complex

interaction of processes whose signatures are embedded in other

predictors (e.g. lateral currents, light, winds).

Overall, Figure 9 shows that the multi-mode CNN approach

may give mechanistic insights on the functioning of specific ocean
Frontiers in Marine Science 13
provinces. Hypothesis drawn from such analysis may therefore be

further tested using for example mechanistic numerical models.
4 Discussion and perspectives

CNNs have been widely used these last years in geosciences to

leverage the spatial dimension of datasets, and their ability to

capture spatial patterns have been largely demonstrated

(Makantasis et al., 2015; Shen, 2018; Brodrick et al., 2019;

Kattenborn et al., 2021). Consistently, our results confirm their

relevance to reconstruct phytoplankton spatio-temporal

distribution from physical predictors without using any explicit

geographical predictors (i.e., latitude and longitude). Compared to

previous studies based on CNNs, our study goes further and

provides a more efficient method to manage spatio-temporal

heterogeneities. This is one of the main limitations of CNNs, and

deep learning models in general, when dealing with environmental

variables (Bai et al. 2016; Reichstein et al., 2019; Yuan et al., 2020),

especially in a highly dynamical environment such as the ocean.

Introducing a multi-mode CNN, we showed that the network can

identify different areas over which the learning phase can be

regionally optimized. The sub-models have been shown to

specialize on physically-consistent regions and thus to better

capture regional processes. Such kind of neural network

architectures have been previously proposed to tackle the merging

of data from various sensors and/or spatio-temporal resolutions

(Martıńez and Yannakakis, 2014; Yang et al., 2016; Melotti et al.,

2018; Ienco et al., 2019; Joze et al., 2020; Zhang et al., 2022).

However, to our knowledge, no studies have been done to apply

them to regionalization issues. This approach focusing on regional

mechanisms converges to recent deep learning architecture built on
A

B

FIGURE 8

Temporal evolution of the percentages of variance explained by the 8 modes of the CNNMM8 in two BGCPs with contrasting entropy: (A) in the
eastern North Atlantic Subtropical Gyre (NAST-E, [35°N–42°N; 15°W–30°W]) and (B) in the SPSG ([20°S–30°S; 95°W–145°W]). The colors correspond
to the modes as in Figure 6J.
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FIGURE 9

Normalized distribution (y-axis) of the relative importance of each predictor (x-axis) computed over the percen
SST.
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self-attention processes such as Transformers (Dosovitskiy et al.,

2020), but are cheaper in terms of computing cost.

The multi-mode CNN not only allows a better simulation of the

chlorophyll concentration spatio-temporal variations, but it also

improves the network interpretability, which is of particular interest

in the Earth science field as it can allow one to find new unexpected

relationships among data. Some post-hoc explanation methods [i.e.,

once the model is already trained (Fan et al., 2021; Xie et al., 2020)]

specifically designed for CNNs, and which are still heavily under-

exploited in Earth sciences, may have been considered to go further

in the network interpretability (Ras et al., 2022). For instance, Ham

et al. (2019) computed heatmaps or Class Activation Maps (CAM,

Zhou et al., 2016) from a CNN to analyze which parts of the global

ocean contribute the most to the prediction of El Niño events. Zeiler

and Fergus (2014) also proposed a way to access and visualize how

much information from input data is processed according to the

different network layers of CNNs. However, these latter methods do

not allow one to optimize the regional learning nor to provide some

interpretability from the model outputs, which are both specificities

of our multi-mode CNN. Optimizing, during training, specifically

designed explanations is what the so-called intrinsic methods aim to

do. This is one of the advantages of the proposed multi-mode CNN

compared to the mono-mode.

Here, we took advantage of both the intrinsic explainable

methods and post-hoc diagnostics to increase the interpretability.

Indeed, in the present study, the intrinsic multi-modality shows

some consistency in the learning of the eight modes with the spatio-

temporal variations of the ocean dynamics, which is somehow

expected to be reflected in the variations of the phytoplankton

biomass. Applying a basic post-hoc perturbation-based method to

the CNNMM8 allowed us investigating the relative importance of the

predictors (as illustrated in Figure 9). Other post-hoc methods

shedding light on features that drive the model’s decision would

deserve to be investigated and compared with one another. For

instance, the Shapley Additive exPlanations (SHAP) method

(Lundberg and Lee, 2017), which can be applied to any kind of

neural networks, measures the effects of an input perturbation on

the network’s output to retrieve the relative importance of each

predictors (Padarian et al., 2020; Betancourt et al., 2022; Pauthenet

et al., 2022). This method would allow consideration of

interdependencies between variables, whereas removing them one

by one, as did in our study, may not be optimum.

Multi-mode CNN results are promising even if some strategies

could further improve the performance of the Chl reconstruction.

From the architecture point of view, the addition of pooling layers,

especially for the W attention module (see Figure 1), may allow a

better consideration of large-scale spatial structures and thus of the

regionalization of the different modes. Coupling the CNN sub-

models with Recurrent Neural Networks (RNNs) should help

accounting for temporal dynamics/time history with a more

sophisticated way than if adding time-lags as predictors

within our current architecture. Indeed, while instantaneous

environmental fluctuations are thought to explain much of the

observed phytoplankton temporal variability, time-lag responses of
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weeks to a few months would also be expected (Ji et al., 2010; Feng

et al., 2015; Schollaert Uz et al., 2017; Lim et al., 2022b). This would

arise from biological processes mainly, such as dormancy and

reproduction (Ji et al., 2010), or ecological interactions as species

competition or grazing pressure (Feng et al., 2015). Assessing their

own impact on the Chl reconstruction using models that take into

account temporal dependencies is certainly worth doing and would

deserve a dedicated study but was beyond the scope of this paper.

Moreover, while the current network learns different sub-models on

specific areas (spatial attention), sub-models could also learn

according to different temporal periods (temporal attention). In

addition, the current architecture could be easily adapted to learn

from predictors with different higher spatio-temporal resolutions.

This may improve the Chl reconstruction performance by

considering processes currently not resolved with the actual

monthly dataset averaged on a 1° grid, such as the mesoscale

ocean dynamics or high frequency wind events. This would also

enable a better assessment of the impact of finer scale dynamics on

Chl low-frequency variability at global scale.

New predictors should also be considered in upcoming studies

to stand for a wider range of processes, as mentioned in Section

3.2. Aerosol Optical Depth (AOD) observations could help to

account for the sporadic supply of nutrients into the ocean from

atmospheric deposition, such as dust-derived iron that can play a

significant role on interannual phytoplankton dynamics in some

regions (Letelier et al., 2019; Lim et al., 2022a; Meng et al., 2022).

Precipitations could help to distinguish wet from dry dust

deposition, known to present different iron solubility (Fan et al.,

2006), a proxy of iron bioavailability (Schulz et al., 2012). In situ

water column data provided from Argo floats could also be

considered to better represent the MLD variability rather than

using surface proxy only. However, one drawback to fix is that it

would reduce the length of available time series of more than 10

years (a sufficient data coverage is not expected before the 2010’s).

Chl is a proxy of phytoplankton biomass, and other underlying

processes can be reflected on Chl changes. For instance, in

response to changes in light conditions, phytoplankton cells can

adjust their intracellular Chl so that Chl changes may be rather

related to photoadaptation than to biomass. Thus, reconstructing

the ratio between Chl and particulate backscattering coefficient

[bbp, related to the size particles, Loisel et al., 2002] would deserve

to be investigated in future studies. Here we used SW as a proxy of

PAR, whereas SW spatiotemporal changes may not always reflect

PAR variability due to strong absorption by water vapor, ozone,

and clouds outside the PAR spectral range (Chou and Suarez,

1999). Yet, not considering the spectral form of incident radiation

can lead to large errors in modeling oceanic primary production

(Sathyendranath et al., 1989; Frouin et al., 2018). Sensitivity tests

concerning the use of SW as a proxy of PAR should be carried out

in the future, for example by comparing the results obtained here

with those obtained using PAR products from radiometric

observations or reanalysis data (e.g., MERRA-2). Finally,

considering uncertainties of the different products used (either

for the physical predictors or for the reference satellite-derived
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Chl) would deserve to be investigated. When available, using

pixel-by-pixel estimates of uncertainties as inputs of the

network may, for example, allow to give less importance on the

learned relationships between predictors and Chl where data

quality is lower. In addition, using metrics of performance that

include ocean color uncertainties would be useful to distinguish

errors that arise in our reconstructions due to such uncertainties

from those due to our network architecture and/or used predictive

input data.

Here, we have focused on comparing the ability of different deep

learning schemes to simulate phytoplankton variability at seasonal

and interannual timescales, and have shown that the proposed

approach outperforms previous machine learning models

introduced in the literature to achieve this task [namely the MLP,

and indirectly the less-performant SVR approach (Martinez et al.,

2020b)]. In (Martinez et al., 2020a), the SVR approach was

quantitatively compared to a coupled physical-biogeochemical

ocean model simulation (NEMO-DFS5.2-PISCES) and was found

to better reproduce patterns of satellite-derived Chl trends (but less

well captures their amplitudes) as well as its interannual variability.

This suggests that the proposed multi-mode CNN would, by extent,

also better reproduce some aspects of Chl long-term variabilities

than biogeochemical models, appearing as a complementary tool to

retrieve past Chl variability. Further work is expected to investigate

this point, especially regarding multi-decadal changes in global

phytoplankton that were pointed out between the CZCS and

SeaWiFS era (Martinez et al., 2009) using historical consistent

ocean color dataset built by Antoine et al. (2005). Here, we also

suggest that data-driven approaches can be complementary to

classical models’ studies to explore mechanisms driving

phytoplankton variabilities at large scales. For sure, coupled

physical-biogeochemical models, that are built upon explicit

formulation of processes governing phytoplankton distribution,

undoubtedly remain the most robust and straightforward way to

test impacts on primary production of processes that are well

understood and well parameterized. However, some unknown

processes would be missing, or others would be roughly

parameterized so that their impact on primary production would

be hard to assess without bias. As an example, large variations of

parameterized iron solubility in dust are reported among global

ocean biogeochemistry models, and the fixed values used globally

doesn’t allow reproducing all the regionally and temporally

variability of oceanic dust-derived dissolved iron (Tagliabue et al.,

2016). On the contrary, using dust deposition flux as inputs

predictors, data-driven methods could give new regards and

further clues on their regional impact on phytoplankton biomass

without having to explicitly parameterize bio-physical values such

as solubility. As another example, deriving information about

factors driving the phytoplankton ecosystem structure could be

achieved using the proposed multi-mode approach. This could be

done by learning and reconstructing the phytoplankton community

structure [using for example PHYSAT data (Alvain et al., 2008)]

with the actual set of predictors and assessing how their relative

importance vary in time and space. Such information is of great
Frontiers in Marine Science 16
importance as phytoplankton taxonomic and size composition

strongly determines carbon fluxes (Boyd and Newton, 1995;

Guidi et al., 2009).
5 Conclusion

In this study, a new deep learning architecture was proposed to

reconstruct surface Chl from oceanic and atmospheric physical

predictors in the global ocean. Spatial attention mechanisms (i.e.

multi modes) were introduced into a CNN to regionally learn

relationships in a preferential way according to the modes. Its

performance was evaluated over a fully-independent time period

hosting the strong 2015/2016 El Niño event. Both mono and multi-

mode CNNs outperformed the previous state-of-the-art MLP

schemes to reconstruct spatial and temporal satellite-derived Chl

distribution while being computationally more efficient. One other

main interest of CNNs is their ability to not need explicit

geographical information as predictors (e.g. longitude and latitude)

leading to the opportunity to seize BGCPs boundaries evolutions

according to climate oscillations. In addition, the multi-mode

CNNMM8 allowed us to better capture some regional processes

than CNN1 thanks to its modes that can regionally learn specific

phytoplankton responses to the physical forcing. The multi-mode

CNNMM8 also provided insights into where and when the modes

preferentially activate, improving the interpretability of the network.

Those activations appeared to be in general agreement with known

physical-biogeochemical interactions at global scale. However, they

also allowed us to highlight an unexpected difference in the

mechanisms at play between the oligotrophic gyres of both

hemispheres. Overall, while some biases remain between the

reconstructed Chl fields and satellite observations, the proposed

multi-mode model is greatly valuable as it offers an interesting

perspective to reconstruct phytoplankton biomass over a long time-

period and new ways to explore the physical mechanisms at play.
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Radenac, M. H., Léger, F., Singh, A., and Delcroix, T. (2012). Sea Surface chlorophyll
signature in the tropical pacific during eastern and central pacific ENSO events. J.
Geophysical Research: Oceans 117 (C4). doi: 10.1029/2011JC007841

Ras, G., Xie, N., Van Gerven, M., and Doran, D. (2022). Explainable deep learning: A
field guide for the uninitiated. J. Artif. Intell. Res. 73, 329–397. doi: 10.1613/jair.1.13200

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., and Carvalhais, N.
(2019). Deep learning and process understanding for data-driven earth system science.
Nature 566 (7743), 195–204. doi: 10.1038/s41586-019-0912-1

Reygondeau, G., Cheung, W. W., Wabnitz, C. C., Lam, V. W., Frölicher, T., and
Maury, O. (2020). Climate change-induced emergence of novel biogeochemical
provinces. Front. Mar. Sci. 7, 657. doi: 10.3389/fmars.2020.00657

Reygondeau, G., Longhurst, A., Martinez, E., Beaugrand, G., Antoine, D., and
Maury, O. (2013). Dynamic biogeochemical provinces in the global ocean. Global
Biogeochemical Cycles 27 (4), 1046–1058. doi: 10.1002/gbc.20089

Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W. (2002).
An improved in situ and satellite SST analysis for climate. J. Climate 15 (13), 1609–
1625. doi: 10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany,
October 5-9, 2015, Proceedings, Part III 18. 234–241 (Springer International
Publishing). doi: 10.1007/978-3-319-24574-4_28

Roussillon, J., Fablet, R., Gorgues, T., Drumetz, L., Littaye, J., and Martinez, E.
(2022). satellIte phytoplaNkton drivers in the global ocean over 1998-2015 (INDIGO
benchmark dataset). SEANOE. doi: 10.17882/91910

Ryan, M., and Stahl, B. C. (2021). Artificial intelligence ethics guidelines for
developers and users: clarifying their content and normative implications. J.
Information Communication Ethics Soc. 19 (1), 61–86. doi: 10.1108/JICES-12-2019-
0138

Sammartino, M., Buongiorno Nardelli, B., Marullo, S., and Santoleri, R. (2020). An
artificial neural network to infer the Mediterranean 3D chlorophyll-a and temperature
fields from remote sensing observations. Remote Sens. 12 (24), 4123. doi: 10.3390/
rs12244123

Sathyendranath, S., Brewin, R. J. W., Brockmann, C., Brotas, V., Calton, B., Chuprin,
A., et al. (2019). An ocean-colour time series for use in climate studies: the experience of
the ocean-colour climate change initiative (OC-CCI). Sensors 19, 4285. doi: 10.3390/
s19194285

Sathyendranath, S., Platt, T., Caverhill, C. M., Warnock, R. E., and Lewis, M. R.
(1989). Remote sensing of oceanic primary production: computations using a spectral
model. deep Sea research part a. Oceanographic Res. Papers 36 (3), 431–453. doi:
10.1016/0198-0149(89)90046-0

Sauzède, R., Claustre, H., Uitz, J., Jamet, C., Dall'Olmo, G., d'Ortenzio, F., et al.
(2016). A neural network-based method for merging ocean color and argo data to
extend surface bio-optical properties to depth: Retrieval of the particulate
backscattering coefficient. J. Geophysical Research: Oceans 121 (4), 2552–2571. doi:
10.1002/2015JC011408

Schollaert Uz, S., Busalacchi, A. J., Smith, T. M., Evans, M. N., Brown, C. W., and
Hackert, E. C. (2017). Interannual and decadal variability in tropical pacific chlorophyll
from a statistical reconstruction: 1958–2008. J. Climate 30 (18), 7293–7315. doi:
10.1175/JCLID-16-0202.1

Schulz, M., Prospero, J. M., Baker, A. R., Dentener, F., Ickes, L., Liss, P. S., et al.
(2012). Atmospheric transport and deposition of mineral dust to the ocean:
Implications for research needs. Environ. Sci. Technol. 46 (19), 10390–10404. doi:
10.1021/es300073u

Shen, C. (2018). A transdisciplinary review of deep learning research and its
relevance for water resources scientists. Water Resour. Res. 54 (11), 8558–8593. doi:
10.1029/2018WR022643

Signorini, S. R., Franz, B. A., and McClain, C. R. (2015). Chlorophyll variability in
the oligotrophic gyres: mechanisms, seasonality and trends. Front. Mar. Sci. 2, 1. doi:
10.3389/fmars.2015.00001

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting. J. Mach.
Learn. Res. 15 (1), 1929–1958. doi: 10.5555/2627435.2670313

Sun, A. Y., Scanlon, B. R., Zhang, Z., Walling, D., Bhanja, S. N., Mukherjee, A., et al.
(2019). Combining physically based modeling and deep learning for fusing GRACE
satellite data: can we learn from mismatch? Water Resour. Res. 55 (2), 1179–1195. doi:
10.1029/2018WR023333

Szeto, M., Werdell, P. J., Moore, T. S., and Campbell, J. W. (2011). Are the world's
oceans optically different? J. Geophysical Research: Oceans 116 (C7). doi: 10.1029/
2011JC007230
frontiersin.org

https://doi.org/10.1093/plankt/17.6.1245
https://doi.org/10.48550/arXiv.1705.07874
https://doi.org/10.1126/science.1177012
https://doi.org/10.1029/2010JC006836
https://doi.org/10.3390/rs12244156
https://doi.org/10.3389/fmars.2020.00464
https://doi.org/10.1016/j.dsr2.2003.08.002
https://doi.org/10.1029/2021JC017605
https://doi.org/10.1029/2012JC007938
https://doi.org/10.1016/j.scitotenv.2021.152536
https://doi.org/10.1016/S0967-0645(01)00109-6
https://doi.org/10.1038/ngeo1765
https://doi.org/10.1029/2008GL034238
https://doi.org/10.5194/soil-6-389-2020
https://doi.org/10.5194/soil-6-389-2020
https://doi.org/10.1029/2018WR024090
https://doi.org/10.1029/2010JC006785
https://doi.org/10.5194/os-18-1221-2022
https://doi.org/10.1029/2007GL031745
https://doi.org/10.1016/S0079-6611(01)00036-2
https://doi.org/10.1016/j.watres.2021.117483
https://doi.org/10.1016/j.ecolind.2011.07.010
https://doi.org/10.3389/fmars.2017.00133
https://doi.org/10.1029/2011JC007841
https://doi.org/10.1613/jair.1.13200
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.3389/fmars.2020.00657
https://doi.org/10.1002/gbc.20089
https://doi.org/10.1175/1520-0442(2002)015%3C1609:AIISAS%3E2.0.CO;2
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.17882/91910
https://doi.org/10.1108/JICES-12-2019-0138
https://doi.org/10.1108/JICES-12-2019-0138
https://doi.org/10.3390/rs12244123
https://doi.org/10.3390/rs12244123
https://doi.org/10.3390/s19194285
https://doi.org/10.3390/s19194285
https://doi.org/10.1016/0198-0149(89)90046-0
https://doi.org/10.1002/2015JC011408
https://doi.org/10.1175/JCLID-16-0202.1
https://doi.org/10.1021/es300073u
https://doi.org/10.1029/2018WR022643
https://doi.org/10.3389/fmars.2015.00001
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.1029/2018WR023333
https://doi.org/10.1029/2011JC007230
https://doi.org/10.1029/2011JC007230
https://doi.org/10.3389/fmars.2023.1077623
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Roussillon et al. 10.3389/fmars.2023.1077623
Taddeo, M., Tsamados, A., Cowls, J., and Floridi, L. (2021). Artificial intelligence and
the climate emergency: Opportunities, challenges, and recommendations. One Earth 4
(6), 776–779. doi: 10.1016/j.oneear.2021.05.018

Tagliabue, A., Aumont, O., DeAth, R., Dunne, J. P., Dutkiewicz, S., Galbraith, E., et al.
(2016). How well do global ocean biogeochemistry models simulate dissolved iron
distributions? Global Biogeochemical Cycles 30 (2), 149–174. doi: 10.1002/2015GB005289

Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., et al.
(2020). The role of artificial intelligence in achieving the sustainable development goals.
Nat. Commun. 11 (1), 233. doi: 10.1038/s41467-019-14108-y

Weyn, J. A., Durran, D. R., and Caruana, R. (2020). Improving data-driven global
weather prediction using deep convolutional neural networks on a cubed sphere. J. Adv.
Modeling Earth Syst. 12 (9), e2020MS002109. doi: 10.1029/2020MS002109

Wilson, C., and Adamec, D. (2002). A global view of bio-physical coupling from
SeaWiFS and TOPEX satellite data 1997–2001. Geophysical Res. Lett. 29 (8), 98–91. doi:
10.1029/2001GL014063

Wilson, C., and Coles, V. J. (2005). Global climatological relationships between
satellite biological and physical observations and upper ocean properties. J. Geophysical
Research: Oceans 110 (C10). doi: 10.1029/2004JC002724

Winder, M., and Sommer, U. (2012). Phytoplankton response to a changing climate.
Hydrobiologia 698, 5–16. doi: 10.1007/s10750-012-1149-2

Xie, N., Ras, G., van Gerven, M., and Doran, D. (2020). Explainable deep learning: A field
guide for the uninitiated. arXiv preprint arXiv:2004.14545. doi: 10.48550/arXiv.2004.14545
Frontiers in Marine Science 20
Yang, X., Molchanov, P., and Kautz, J. (2016). “Multilayer and multimodal fusion of
deep neural networks for video classification,” in Proceedings of the 24th ACM
international conference on Multimedia. 978–987.

Ye, H., Tang, S., and Yang, C. (2021). Deep learning for chlorophyll-a concentration
retrieval: A case study for the pearl river estuary. Remote Sens. 13 (18), 3717. doi:
10.3390/rs13183717

Yu, B., Xu, L., Peng, J. H., Hu, Z., and Wong, A. (2020). Global chlorophyll-a
concentration estimation from moderate resolution imaging spectroradiometer using
convolutional neural networks. J. Appl. Remote Sens. 14 (3), 034520. doi: 10.1117/
1.JRS.14.034520

Yuan, Q., Shen, H., Li, T., Li, Z., Li, S., Jiang, Y., et al. (2020). Deep learning in
environmental remote sensing: Achievements and challenges. Remote Sens. Environ.
241, 111716. doi: 10.1016/j.rse.2020.111716

Zeiler, M. D., and Fergus, R. (2014). “Visualizing and understanding convolutional
networks,” in European conference on computer vision. 818–833.

Zhang, H., Yao, J., Ni, L., Gao, L., and Huang, M. (2022). Multimodal attention-
aware convolutional neural networks for classification of hyperspectral and LiDAR
data. IEEE J. Selected Topics Appl. Earth Observations Remote Sens. doi: 10.1109/
JSTARS.2022.3187730

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. (2016). “Learning
deep features for discriminative localization,” in Proceedings of the IEEE conference on
computer vision and pattern recognition. 2921–2929.
frontiersin.org

https://doi.org/10.1016/j.oneear.2021.05.018
https://doi.org/10.1002/2015GB005289
https://doi.org/10.1038/s41467-019-14108-y
https://doi.org/10.1029/2020MS002109
https://doi.org/10.1029/2001GL014063
https://doi.org/10.1029/2004JC002724
https://doi.org/10.1007/s10750-012-1149-2
https://doi.org/10.48550/arXiv.2004.14545
https://doi.org/10.3390/rs13183717
https://doi.org/10.1117/1.JRS.14.034520
https://doi.org/10.1117/1.JRS.14.034520
https://doi.org/10.1016/j.rse.2020.111716
https://doi.org/10.1109/JSTARS.2022.3187730
https://doi.org/10.1109/JSTARS.2022.3187730
https://doi.org/10.3389/fmars.2023.1077623
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	A Multi-Mode Convolutional Neural Network to reconstruct satellite-derived chlorophyll-a time series in the global ocean from physical drivers
	1 Introduction
	2 Material and methods
	2.1 Chl observations, physical predictors and climate index
	2.2 Data pre-processing
	2.3 Deep learning schemes
	2.3.1 Baseline MLP
	2.3.2 Baseline CNN
	2.3.3 Multi-mode CNN

	2.4 Learning settings
	2.5 Evaluation framework

	3 Results and discussion
	3.1 Performance of the mono-mode CNN vs. MLP baseline
	3.2 Chl reconstruction improvement from mono-mode CNN1 to multi-mode CNNMM8
	3.3 Emergence of coherent spatio-temporal distribution of modes
	3.4 Predictors’ relative importance in Chl reconstruction according to the modes

	4 Discussion and perspectives
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References


