
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Peter Goethals,
Ghent University, Belgium

REVIEWED BY

Ruobin Gao,
Nanyang Technological
University, Singapore
Feng Hong,
Ocean University of China, China
Maria Tenningen,
Norwegian Institute of Marine Research
(IMR), Norway

*CORRESPONDENCE

Shengmao Zhang

zhangsm@ecsf.ac.cn

SPECIALTY SECTION

This article was submitted to
Marine Fisheries, Aquaculture and
Living Resources,
a section of the journal
Frontiers in Marine Science

RECEIVED 31 October 2022
ACCEPTED 17 January 2023

PUBLISHED 02 February 2023

CITATION

Wang S, Zhang S, Tang F, Shi Y, Sui Y, Fan X
and Chen J (2023) Developing machine
learning methods for automatic
recognition of fishing vessel behaviour in
the Scomber japonicus fisheries.
Front. Mar. Sci. 10:1085342.
doi: 10.3389/fmars.2023.1085342

COPYRIGHT

© 2023 Wang, Zhang, Tang, Shi, Sui, Fan and
Chen. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 02 February 2023

DOI 10.3389/fmars.2023.1085342
Developing machine learning
methods for automatic
recognition of fishing vessel
behaviour in the Scomber
japonicus fisheries

Shuxian Wang1,2, Shengmao Zhang1,2*, Fenghua Tang1,
Yongchuang Shi1, Yanming Sui3, Xiumei Fan1 and Junlin Chen1,2

1Key Laboratory of Fisheries Remote Sensing Ministry of Agriculture and Rural Affairs, East China Sea
Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China, 2School of
Navigation and Naval Architecture, Dalian Ocean University, Dalian, China, 3School of Marine and
Biological Engineering, Yancheng Institute of Technology, Yancheng, China
Introduction: With a higher degree of automation, fishing vessels have gradually

begun adopting a fishing monitoring method that combines human and electronic

observers. However, the objective data of electronic monitoring systems (EMS) has

not yet been fully applied in various fishing boat scenarios such as ship behavior

recognition.

Methods: In order to make full use of EMS data and improve the accuracy of

behaviors recognition of fishing vessels, the present study proposes applying

popular deep learning technologies such as convolutional neural network, long

short-term memory, and attention mechanism to Chub mackerel (Scomber

japonicus) fishing vessel behaviors recognition. The operation process of Chub

mackerel fishing vessels was divided into nine kinds of behaviors, such as “pulling

nets”, “putting nets”, “fish pick”, “reprint”, etc. According to the characteristics of

their fishing work, four networks with different convolutional layers were designed

in the pre-experiment. And the feasibility of each network in behavior recognition

of the fishing vessels was observed. The pre-experiment is optimized from the

perspective of the data set and the network. From the standpoint of the data set,

the size of the optimized data set is significantly reduced, and the original data

characteristics are preserved as much as possible. From the perspective of the

network, different combinations of pooling, long short-term memory(LSTM)

network, and attention(including CBAM and SE) are added to the network, and

their effects on training time and recognition effect are compared.

Results: The experimental results reveal that the deep learning methods have

outstanding performance in behaviors recognition of fishing vessels. The LSTM and

SE module combination produced the most apparent optimization effect on the

network, and the optimizedmodel can achieve an F1 score of 97.12% in the test set,

surpassing the classic ResNet, VGGNet, and AlexNet.
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Discussion: This research is of great significance to the management of intelligent

fishery vessels and can promote the development of electronic monitoring

systems for ships.
KEYWORDS

vessel behaviors recognition, Scomber japonicus, attention mechanism, long short-term
memory, deep learning in fisheries
1 Introduction

Behaviors recognition of vessels is a very active topic in intelligent

maritime navigation, which is of great significance for identifying

potential risks of vessels and improving maritime traffic efficiency

(Chen et al., 2020). Vessels behavior recognition algorithms have been

widely used in marine traffic (Arguedas et al., 2017) and other aspects.

However, due to the relatively low degree of informatization offishing

vessels, the current fishing vessel’s behavior recognition is still in its

infancy. There are relatively few applications related to fishing vessels’

behavior recognition. In addition to its contribution to optimizing

maritime traffic, the recognition of fishing vessel behavior is of unique

significance (relative to commercial) for regulating fishing operations,

reducing the cost of fisheries management, etc. Most applications in

previous years were based on vessel position data, such as VMS

(Vessel Monitoring System), to identify and predict vessel behavior.

With the rapid development of electronic monitoring systems in

recent years, more and more ships have installed electronic

monitoring systems (Gilman et al., 2019). These electronic

monitoring systems have become a powerful supplement or even a

substitute for human observers as electronic observers. And the rich

EMS data provides more robust data support for ship behavior

recognition. Therefore, vessel behavior recognition can be divided

into ship position-based and video-based from the data source.

Many positions and trajectory information has accumulated with

satellite positioning technology’s wide application in ships. Faced with

these massive amounts of information, scientific researchers and

fishery production personnel hope to obtain practical knowledge.

The rich positioning information reflects the position change process

of the ship, which can reflect the operation characteristics of the ship

in a period to a certain extent. Therefore, many studies on ship

behavior recognition based on position data have sprung up in

academia. Fishing vessel behavior identification is significant to

safety production and fishery ecology. Therefore, studies on ship

behavior recognition based on ship position data have emerged in an

endless stream in recent years. Feng et al (Feng et al., 2019). used VMS

data and BP neural network method to identify the fishing behavior of

fishing boats. Variation trends of fishing boat angle and speed were

selected as input parameters, and the accuracy of identifying fishing

behavior reached 79%. Patroumpas K et al (Patroumpas et al., 2017).

proposed a system for online monitoring of maritime activities based

on AIS data and embedded a complex behavior recognition module.

The behavior recognition module is mainly used to identify potential

risks at sea. Sun et al (Sun et al., 2018). mine various motion patterns

based on ship position data, which can be applied to ship behavior
02
recognition. Although there are many studies on ship behavior based

on ship position information, most of these studies focus on

distinguishing whether a ship is fishing. In working, fishing boats

may have many behaviors, and even different fishing methods will

have different fishing behaviors. Simply dividing all fishing vessel

activities into “fishing” and “other” is not enough to reflect the

complete working process of fishing vessels.

In recent years, vessel behavior detection based on video data has

been an emerging ship behavior recognition method. Video data

mainly includes surveillance video data installed on the hull and

public surveillance data nestled on the shore. Solano-Carrillo et al.

The amount of information included in the video data is obviously far

greater than that of the position data. The popularity of EMS helps to

monitor the fishing process comprehensively and limit illegal fishing.

However, the development of EMS is still in its infancy, and there is a

lack of complete examples in the industry. A considerable part of EMS

is still set for research (Solano-Carrillo et al., 2021). used marine

surveillance camera data to detect anomalous behavior of ships using

generative adversarial networks. Wang et al. (2022) proposed a 3D

convolutional neural network method to detect the behavior of Acetes

chinensis fishing boats and achieved an accuracy of 97.09% with EMS

data. Cao et al. (2020) proposed a method of extracting ship features

by combining a convolutional neural network and Zemike aiming at

the problem of ship recognition in video images and the recognition

accuracy rate for three types of ships reached 87%. The amount of

information in the video data is more significant, and the recognition

results are also more verifiable.

The EMS on fishing vessels has not yet formed a mature

installation system, and the installation positions of cameras on

different ships are also different. Therefore, exploratory research on

vessel behavior identification based on EMS data can only be found

on some specific fishing vessels. Chub mackerel Scomber japonicus

(Hunter and Kimbrell, 1980) is a near-coastal pelagic migratory fish

with phototaxis and vertical movement phenomenon. It is distributed

in the Korean Peninsula, Japan, the Atlantic, and Mediterranean

coasts, the southern coast of the Indian Ocean and Africa, the western

coast of the Pacific Ocean from the Philippines to the Russian Far

East, and the most northerly to the Gulf of Alaska in North America.

In China, S. japonicus is found in the Yellow Sea, East China Sea, and

South China Sea. Because of its good taste, Chub mackerel’ firm meat

is sold fresh, pickled, canned, and refined into artificial butter. In

addition, its liver is rich in vitamin A and can be used to make cod

liver oil. Therefore, it has a high economic value. Chinese fishing

vessels mainly fish for Chub mackerel resources utilizing light purse

seine and light lift net. And the fishing vessel used in this research
frontiersin.org
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used the light lift net method. China’s Chub mackerel fishing vessel

electronic monitoring system is gradually covered, but the use of its

electronic monitoring system data is more petite.

The popularization of EMS is one of the important development

directions of fishery monitoring in the future, so it is of great

significance to identify ship behavior based on EMS data. In video

and image recognition, the current common processing schemes

include traditional computer vision processing schemes, support

vector machine classification schemes (Hamdan, 2021), and

convolutional neural network processing schemes (Rani et al.,

2021). The convolutional neural network has the most excellent

performance in video recognition tasks in various fields.

Therefore, this research transplants convolutional neural

networks and popular deep learning methods into Chub mackerel

EMS data processing, trying to provide an effective solution for EMS

data processing. And the specific task of this research is to complete

the behavior identification of a specific fishing vessel through the

electronic monitoring data of the fishing vessel. The results of

behavior recognition are used for further fishing vessel monitoring.

The conclusions of this research can provide technical support for

improving the standardization of fishing.
2 Data and methods

2.1 Data

All data used in the present study come from the EMS of the Chub

mackerel fishing vessels of Zhoushan Xinhai Fishery Company in

China(starting now referred to as Xinhai vessels). We collected

9000GB of EMS data from 10 of the above fishing vessels. EMS

with specific specifications is equipped in Xinhai’s Chub mackerel

fishing vessels. And each set of EMS includes seven cameras

(Hikvision’s DS-2CE16F5P-IT3 camera). Seven sets of cameras are

installed on the bow, stern, cabin, and other positions of Xinhai
Frontiers in Marine Science 03
vessels to record different types of video data. The installation position

of each camera on the hull is shown in Figure 1.

The present study aims to recognize the behavior of Chub

mackerel fishing vessels, so only three sets of cameras numbered 2,

6, and 7 are mainly used. Camera 2 can be used to extract the winch

behavior (pulling and putting nets) and the overall behavior of the

vessels(sailing and waiting). Camera 6 was used to extract fish-related

behaviors (“Waiting for fish”, “Fish in” and “Fish pick”). Camera 7

was also installed inside the cabin and had a particular overlapping

area with camera 6, which can verify each other. In addition, camera 7

can also extract catch preparation behaviors, such as “Organize fish

box”, “Reprint”, and the like. Therefore, nine behaviors such as

“Sailing”, “Putting nets”, “Waiting”, “Pulling nets”, “Waiting for

fish”, “Organize fish box”, “Fish in”, “Fish pick” and “reprint” can

be extracted from the EMS data of Xinhai’s Chub mackerel fishing

vessels. And the nine behaviors are reflected in the EMS data, as

shown in Figure 2.

Figure 2 shows that the above nine ship behaviors have their

characteristics, but some of the behaviors have high similarities.

Specifically, under the behavior of “sailing”, the lower end of the

net is fixed on the hook, and the ship sails to find a suitable place for

putting the nets. Under the behavior of “putting nets”, the winch

rotates in the direction that the net is lowered into the sea. Under the

behavior of “waiting”, there is no net (or only a tiny amount of net)

wound on the winch. Under the behavior of “pulling nets”, the winch

rotates in the direction of the net recovery. Under the behavior of

“waiting for fish”, there is no catch in the fish entry room in the cabin.

Under the “organize fish box” behavior, the crew stood in the fish

entry room to organize the fish box and prepare to load the catch.

Under the “fish in” behavior, the fish suction pump sucks the catch

into the fish entry room. Under the “fish pick” behavior, the crew put

the catch into the prepared fish box for processing. Under the

behavior of “reprint”, the crew members put the loaded fish into

the conveyor net, lift them out of the cabin and transport them to the

transshipment vessel.
FIGURE 1

The position of the cameras in Xinhai vessels.
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Among the nine vessel behaviors, “putting nets” and “pulling

nets” have relatively high similarities, and it is difficult to distinguish

them quickly with the naked eye. However, it is much easier for the

naked eye to distinguish between these two vessel behaviors based on

consecutive seconds of EMS video. To verify whether the neural

network will encounter the same difficulty in extracting features of

various vessel behaviors, we made two datasets of single-frame

samples and multi-frame samples. The single-frame sample dataset

is similar to that of most neural network classification tasks. Each

sample included an EMS image as the data and a marked vessel

behavior as the label. However, the dataset of multi-frame samples
Frontiers in Marine Science 04
preserved specific temporal characteristics between EMS images. In

the dataset of multi-frame samples, 100 consecutive EMS images were

connected horizontally. The connected image was used as data, and

each data was marked with a vessel behavior as the label. The

structures of the above two datasets are shown in Figure 3.

No matter which data set is used, the size of the data set is exactly

the same. Specifically, 23932 sets of data are divided into a training set

(19146 sets of data), a validation set (2393 sets of data), and a test set

(2393 sets of data) according to the ratio of 8:1:1. The training set is

used to train the trainable parameters of the model, the validation set

is used to adjust the hyper-parameters, and the test set is used to test
A B

D E F

G IH

C

FIGURE 2

Nine kinds of ship behavior reflected in EMS.
FIGURE 3

The structure of two types of datasets of single-frame samples and multi-frame samples.
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the recognition effect of the models. These samples were obtained

through the program and manual screening. First, write a script to

extract 10s of images every five minutes from each video data.

Subsequently, 23,932 data samples were manually screened out,

including different sea areas and weather.
2.2 Pre-experimental method

The number of convolutional layers plays a crucial role in

convolutional neural networks in general. However, some studies

have shown that the number of convolutional layers is not strictly

positively related to the effect of neural networks. An increase in the

number of convolutional layers will inevitably lead to a significant

increase in model sizes. Therefore, we first designed multiple

convolutional neural networks with different numbers of

convolutional layers purpose to roughly compare the effect of the

number of convolutional layers on vessel behavior extraction and

choose the most suitable one for extracting vessel behavior. In

addition, the recognition of vessel behaviors may be applied to the

real-time scene of EMS in the future. Real-time-related parameters

such as model size and detection efficiency are essential reference

factors for model selection. The present study designed four groups of

parallel experiments with 3, 6, 9, and 12 convolutional layers,

respectively. The convolution parameters of each convolutional

layer had not been fine-tuned. The reason is that we want to

roughly explore the impact of the number of convolutional layers

on the recognition effect. The parameter values of each group of

comparative experiments are shown in Table 1.

As mentioned in Section 2.1, apart from the network structure,

the data set also significantly impacts the recognition performance.

And two datasets in different formats had been created based on

single-frame and multi-frame samples in the data processing stage.

Therefore, we also need to compare the effects of the two different

datasets on recognizing various fishing vessel behaviors in the

pre-experimen.
2.3 Optimization methods

The various methods described in the pre-experiment section

only roughly verified the feasibility of applying deep learning methods

to recognize Chub mackerel fishing vessel behaviors and compared

the number of convolutional layers and datasets on the recognition

effect. The above procedures must be further improved if the

behavioral recognition effect of Japanese mackerel fishing vessels is

to reach an industrially usable level of operation. We designed

multiple sets of experiments from the perspectives of the dataset

and network structure to find out the most suitable method to be

applied to the behavior recognition of Chub mackerel fishing vessels.

2.3.1 Data set optimization
The two designed datasets have their advantages and

disadvantages. The dataset based on single-frame samples has a fast

data loading speed and contains most of the data features. However,

some fishing vessel behaviors have prominent characteristics of the

time dimension. For example, the change of winches and nets at a
Frontiers in Marine Science 05
particular time is the most apparent feature of the vessel behavior of

“pulling nets”. But the dataset based on single-frame samples

completely abandons these characters of the temporal dimension.

The dataset based on multi-frame samples makes up for the defect of

data loss in the time dimension of single-frame samples. Still, the

sample size of 100 consecutive frames is too large, which may bring

great difficulties to data loading and training and lead to some

problems, such as long training time and low recognition efficiency.

The FPS value of EMS video data is 25, which means that each multi-

frame sample (100 data frames) includes 4 seconds of video data, so

the data difference between two consecutive frames is minimal.

Splicing 100 consecutive frames of data as a dataset sample is a

waste of resources to a certain extent.

We proposed a new dataset creation method based on the above

two datasets, which is a compromise method of the two datasets.

Unlike the multi-frame sample dataset splicing 100 consecutive

frames of consecutive images, the new dataset construction method

skips the subsequent 19 frames after splicing one frame and splices

the 20th frame of the image until each data sample contains five

images. The construction method of the new dataset and the structure

of the new data are shown in Figure 4. As shown in Figure 4, this new

dataset sample is a subset of the multi-frame sample dataset, which

preserves the most prominent temporal features of the samples in a

skip-sampling manner. Compared with the multi-frame sample

dataset, the new dataset discards the similar space features among

similar frames but keeps the temporal features. It adds some of the

most significant features in the temporal dimension relative to the

single-frame sample dataset. Therefore, the data loading speed of the

new dataset is better than that of the single-frame sample dataset in

terms of feature extraction integrity due to the multi-frame sample

dataset. The optimized 5-frame dataset still maintains the same size as

the previously described dataset. And the comparison between

different networks in the following is based on this optimized data set.

2.3.2 Network structure optimization
The input vector of traditional artificial neural networks (ANN)

such as multilayer perceptron (MLP) needs to be manually designed

and calculated (Taud and Mas, 2018). However, previous studies have

shown that feature vectors obtained by humans often cannot truly

reflect the characteristics of the data, which is manifested in the fact

that the classification application effect of artificial neural networks is

lower than that of classifiers such as support vector machines. If the

entire data of the whole image is used as a feature vector, it is a

tremendous challenge for training the machine. And in the current

situation, it is almost impossible and unnecessary. Therefore,

Convolutional Neural Networks came into being. Since the advent

of convolutional neural networks, the status of neural networks in

image object detection and classification tasks has been dramatically

improved. In recent years, neural networks have gradually become the

preferred solution for image detection and object classification. In the

fishery field, with a relatively low degree of informatization, neural

networks have also been applied to a certain extent (Sarr et al., 2021;

Selvaraj et al., 2022).

The convolutional layer is one of the most critical layers in the

convolutional neural network. It consists of multiple convolutional

units, and the back-propagation algorithm optimizes the parameters

of each convolutional unit. Convolutional layers are used to extract
frontiersin.org
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TABLE 1 Parameters of each group of the comparison experiments.
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Input

channel

Conv1 3 6 (3,3) (2,2) (1,1) 3

Conv2 6 60 (3,3) (100,2) (1,1) 6

Conv3 60 1000 (3,3) (128,64) (1,1) 60

Conv4 300
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Conv6 900

Conv7

Conv8

Conv9

Conv10

Conv11

Conv12

https://doi.org/10.3389/fmars.2023.1085342
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2023.1085342
features from input samples. Multiple convolutional layers are often

used to extract different features in convolutional neural networks.

For example, the first convolutional layer is used to extract image edge

features, and deeper convolutional layers are used to extract color

features. To further improve the comprehensive performance of

convolutional neural networks, many scholars have made different

improvements to the structure of neural networks. The more

influential designs include pooling layers, long short-term memory

modules, etc. In recent years, with the publication of the paper

“Attention is all you need” (Vaswani et al., 2017), more and more

scholars have chosen to use Transformer to achieve their various

classification tasks. The attention mechanism has gradually been

recognized. Therefore, in the current study, we mainly use the

optimization method of adding a pooling layer, Long Short-Term

Memory (LSTM) module, and attention mechanisms (including SE

module and Convolutional Block Attention Module (CBAM)) to the

convolutional neural network to compare the optimization effect of

the network.

2.3.2.1 Pooling

The pooling method is actually a down-sampling method, and it

was first seen in LeCun Y’s paper (LeCun et al., 1998), which the
Frontiers in Marine Science 07
authors simply called “Subsample”. In 2012, AlexNet (Krizhevsky

et al., 2012) was proposed, and this method was officially named

“Pooling”. Standard pooling methods include max pooling, average

pooling, random pooling, and combined pooling. The most common

and currently used methods are max pooling and average pooling.

The specific process of these two pooling methods is shown in

Figure 5. The filters and stride parameters control the size of each

pooling window and the jumping stride after each pooling.

In the current study, we try to reduce the magnitude of the

network model by randomly adding max pooling and average pooling

layers in the convolutional layers. Pooling layers are widely used to

reduce model complexity while preserving as many data features

as possible.

2.3.2.2 LSTM

Long short-term memory (Hochreiter and Schmidhuber, 1997) is

a particular recurrent neural network (RNN), first proposed by

Hochreiter and Schmidhuber in 1997, which can be used to learn

time-dependent features. After the improvement and promotion of

Alex Graves (Graves and Schmidhuber, 2005) and others, LSTM has

been widely used in many fields now. Traditional recurrent neural

networks pass forward with a single state, and gradient explosion or
FIGURE 5

Demonstration of max pooling and average pooling.
FIGURE 4

Datasets’ optimization method and optimized datasets’ structure.
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disappearance problems are prone to occur during long-sequence

training. Compared with the traditional recurrent neural network, the

most significant feature of LSTM is that it adds a new transfer state,

that is, the cell state. The structure of a classic LSTM is shown in

Figure 6. LSTM mainly includes three processing units: Forget Gate,

Input Gate, and Output Gate. The forget gate is primarily responsible

for the selective forgetting of the pre-node cell state. The input gate is

responsible for selective memory of the current node input. The

output gate is responsible for determining the output of the

current node.

Both the 100-frame sample data set in the pre-experiment and the

optimized 5-frame sample data set have long-sequence features to a

certain extent. Therefore, adding an LSTM to a convolutional

network might be able to enhance the feature extraction capability

of the network, especially for the temporal dimension.
2.3.2.3 Attention mechanism

In a traditional convolution operation, all channels and regions of

each channel have the same weight, which is significantly different

from how humans observe things. The attention mechanism aims to

distribute the weights of the input more reasonably. The attention

mechanism and pooling have certain similarities from an algorithmic

point of view, and it can even be said that pooling is a unique

(average-weighted) attention mechanism. Or the attention

mechanism is a generalized pooling that redistributes the input

weights. Attention models such as SE and CBAM are commonly

used in the current convolutional neural networks.

SENet won the classification task of the 2017 ImageNet

competition. Compared with the previous convolutional neural
Frontiers in Marine Science 08
networks, its most significant feature and contribution are the

proposed Squeeze-and-Excitation (SE) module. The SE module

expects the machine to learn the importance of different channels

automatically. As the name suggests, the SE module is mainly

composed of two essential operations, Squeeze and Excitation.

What Squeeze does is a global average pooling operation. The

attention mechanism hopes to obtain the feature relationship

between channels. Still, the convolution operation is always

performed in a specific part, and it is difficult for any convolution

layer to receive the complete information in a channel. This feature is

more evident in the convolutional layers located at the front. The

receptive field of the convolutional layer at the front of the network is

relatively small, reflecting a small proportion of information in a

channel. Therefore, the Squeeze operation in SE encodes the spatial

features on the entire channel as a global feature. This encoding

process is implemented by global average pooling, as shown in

Equation 1.

zc = Fsq(uc) =
1

H �Wo
H

i=1
o
W

j=1
uc(i, j), z ∈ RC (1)

In Formula 1, Fsq(uc) represents the Squeeze operation performed

by SENet on the input matrix uc, and zc is the output of this operation.

H and W represent the height and weight of uc, respectively. uc(i, j)

represents the value of the input matrix uc at row i, column j. zc has all

the receptive fields in the channel with the squeeze operation. After

getting the description of the global features of an entire channel, the

attention mechanism also needs to find the relationship between each

channel. The relationship between the individual channels is non-

linear and cannot be one-hot. Therefore, the Excitation operation in
FIGURE 6

The structure of the LSTM module and the position of the LSTM module in the network.
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the SE module uses the gating mechanism of sigmoid functions to

capture the relationship between channels. And this gating

mechanism is shown in Equation 2.

s = Fex(z,W) = s (g(z,W)) = s (W2 Re LU(W1, z)) (2)

In Formula 2, Fex(z, W) represents the Excitation operation

performed by SENet, z is the input of the operation, and s is the

output of the operation. ReLU represents the activation function of

ReLU and s represents the activation function of sigmoid.W1 andW2

are two fully connected layers, which are used to train the weight

values of different channels. After learning the sigmoid activation

values for each channel, multiply the activation values by the original

feature values. The structure of SENet is shown in Figure 7. Therefore,

the purpose of the entire SE module is to learn the weight of each

channel so that the model can learn more pertinently for each

channel. To prove the potent portability of the SE module, SENet

also did experiments to embed SE module into classical ResNet and

VGG and achieved a lower error rate (top-5 err) and parameter

amount (GFLOPs).

Convolution Block Attention Module (CBAM) is an attention

module proposed by S Woo et al (Woo et al., 2018). in 2018. CBAM

includes two necessary sub-modules, Channel Attention Module (CAM)

and Spatial Attention Module (SAM), whose structure is shown in

Figure 8. Channel Attention Module is a channel-based attention

mechanism, and its design idea is very similar to the SE module. The

most apparent difference between CAM and SE in structure is that CAM

adopts the parallel method of max pooling and average pooling to extract

channel features. The processing process of CAM after two parallel

pooling is the same as SE, which is to reduce the dimension first and then

increase the dimension. The difference is that CAM adds the operation

results of the two parallel pooling layers before performing sigmoid

activation and multiplying it with the original feature map. Woo’s

experiments show that parallel pooling layers perform better than a

single global average pooling. In addition to focusing on the weights on

individual channels, CBAM also uses SAM to assign different weights to

spatially other regions. The operation of SAM is after CAM (experiments

have shown that this order can get better results). SAM uses the feature

map obtained by the CAMmodule as the input value and then performs

two pooling whose size of the pooling window is the number of column

channels. The feature map obtained by the first pooling is convolved with

the feature map obtained by the second pooling, the purpose is to

compress the channel, and finally, sigmoid is performed. This spatial

attention mechanism makes the machine pay more attention to the
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regions with more target information in the image, which is closer to the

process of human learning tasks. To prove the portability of the CBAM

module, Woo, like the authors of SENet, embedded the CBAM module

in classic networks such as ResNet and MobileNet. The performance

gains on these networks demonstrate the effectiveness of CBAM. In

addition, the visualization results of the weight data on regions and

channels show that the network which has added the CBAM module

pays more attention to the areas with richer target information. This

visualization method also improves the interpretability of the

CBAM module.

In the current study, four groups of experiments were designed in

combination with the above various network optimization methods

to compare the effects of different combinations of these optimization

methods on the network performance. The optimization methods

used in each group of experiments are shown in Table 2.

Described below are the locations of the various modules in the

network. The pooling layers used in the experiments appeared after

each convolutional layer and alternated between max pooling and

average pooling. Attention modules such as SE and CBAM were

designed in the convolutional layer at the front of the network and the

network’s last layer to extract the attention under different receptive

fields. The attention mechanism may play a greater role in the front

and back positions in the network. And in our several sets of

experiments, when the attention module is placed after Conv2, the

performance of the network is better than that after Conv1. The

LSTM module is designed after the last convolutional layer. If there

was an attention module after the final convolutional layer, the LSTM

was created after the attention module. Each network with the LSTM

optimization module includes only one LSTM module. The length of

the time step of each LSTM module is 5, and the number of hidden

layers of is 20. There are two reasons for setting the time step value to

5. The first reason is that after multiple comparison experiments, the

model can exert the greatest performance effect when the time step is

5. The second reason is that we believe that the behavior of fishing

vessels may have a certain correlation with the five consecutive

samples before and after. Taking a 9-layer convolutional network as

an example, Figure 7 shows the location of each module in the

network. It should be noted that the convolutional layers (Conv1,

Conv2, etc.) in Figure 9 actually contain a Convolution layer, a Batch

Normalization layer (Santurkar et al., 2018), and a Rectified Linear

Unit (Xu et al., 2015). Since such combinations are common

collocations in neural network design, they are simply called “Conv

x” in Figure 7.
FIGURE 7

The structure of SENet.
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3 Result

3.1 Results of the pre-experiment

In the pre-experiment, 3-layer, 6-layer, 9-layer, and 12-layer

convolutional networks were designed to find out the relationship

between the number of convolutional layers and the effect of ship

behavior recognition, which purpose is to choose the most suitable

number of layers for the subsequent formal experiments. The F1 score

(Goutte and Gaussier, 2005) is used to represent the recognition effect

of the network model. This is because the F1 score is a comprehensive
Frontiers in Marine Science 10
reflection of the Precision and Recall parameters, which can better

represent the actual effect of the model. It is also one of the most

common evaluation indicators in deep learning tasks. The Loss value

reflects the classification loss value of the model. This research selects

the classic cross-entropy loss (Zhang and Sabuncu, 2018) as the

criterion for judging the classification loss. Low Loss, high

Precision, high Recall, and high F1 score mean better model

classification results. This research is typical applied research. In

addition to the requirement of high accuracy, the ship behavior

recognition model should also pursue lightweight and high

efficiency as much as possible. Therefore, when judging the most

suitable network model for ship behavior recognition, the network

training time and the size of the network model are also considered.

Figure 10 shows the performance of four different network models on

classification parameters (a), model size (b), and training time (c).

The above classification parameters refer to the performance of each

model in the test set.

Figure 10 shows that the number of convolutional layers has a

significant impact on the classification performance of the neural

network, the size of the neural network model, and the training time.

Within a specific range, the increase of the number of convolutional

layers can significantly improve the classification effect of the model.

However, once the improvement effect of this method is saturated, the

classification effect cannot continue to improve with the increase in the

number of convolutional layers. It might even go backward (from a 9-

layer convolutional to a 12-layer convolutional network). With the

increase in the number of convolutional layers, the model’s size and the

training time increase significantly. The increase in the number of
FIGURE 8

The structure of the CBAM module.
TABLE 2 Experimental group information for network structure
optimization.

Pooling LSTM SE CBAM

Group 0 × × × ×

Group 1 √ × × ×

Group 2 × √ × ×

Group 3 × × √ ×

Group 4 × × × √

Group5 × √ √ ×

Group 6 × √ × √

Group 7 √ √ √ ×

Group 8 √ √ × √
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convolutional layers leads to a rise in the number of parameters,

inevitably leading to an increase in model size and training time.

Therefore, this research selects the 9-layer convolutional neural

network with the best classification effect and all-around performance

as the primary condition in the formal experiment.

In addition to studying the impact of the number of convolutional

layers on the network’s overall performance, the pre-experiment also

compared the effect of two different datasets, the single-frame sample

dataset and the multi-frame sample dataset. The single-frame sample and

multi-frame sample data sets were trained for 100 Epochs under the 9-

layer convolutional network, which took 1.98 hours and 30.61 hours,

respectively. Therefore, the single-frame sample data set can significantly

shorten the training time compared to the multi-frame sample data set.

Experimenters infer a single frame of sample data before the experiment

and may confuse the two ship behaviors of “Putting Nets” and “Pulling
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Nets”. To test this conjecture, Figure 11 shows the ability of the model to

distinguish ship behavior under the two datasets using a

confusion matrix.

Figure 11 shows that the comprehensive performance of single-

frame data samples is significantly worse than that of multi-frame

data samples, especially the ability to distinguish between the two

behaviors of “Putting Nets” and “Pulling Nets”. However, the multi-

frame sample data sets training takes too long, and the practical

application is complex. The above comparison data shows that

increasing the number of frames of data samples can improve the

network’s ability to extract features. Still, it will also have a relatively

significant negative impact on the training time. Therefore, it is

necessary to design a compromise between the two datasets to

ensure that the network can extract enough features while reducing

the training time as much as possible.
FIGURE 9

The position of each optimization module in the 9-layer convolutional network.
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3.2 Results of optimization

The 9-layer convolutional neural network takes 2.72 hours to

train for 100 epochs in the optimized 5-frame sample dataset, which is

much lower than 30.61 hours in the 100-frame sample dataset. And

the F1 score of this model in the test set reached 0.9665, which is close

to the F1 score (0.9797) of 100-frame samples. Therefore, the
Frontiers in Marine Science 12
optimized dataset is more suitable for application in the vessel

behaviors recognition task in the current study.

The addition of the pooling layer, SE, CBAM, LSTM, and other

modules (and their different combinations) impacts the network

model’s training process and recognition effect. During the training

process of 100 epochs, the change process of F1 score in each group of

models in the training set is shown in Figure 12. The impact of adding
A B

C

FIGURE 10

Comprehensive performance of network models with different convolutional layers. Part A is the effect comparison of models with different
convolutional layers, Part B is their Size comparison, and Part C is their training time-consuming comparison.
A B

FIGURE 11

Confusion matrix for two different datasets in test set. Part A is the confusion matrix of a single-frame dataset, and part B is the confusion matrix of a
multi-frame dataset.
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these optimization modules on the F1 score of the models in the

training set is mainly reflected in the first 20 Epochs. The reason is

that, after enough epochs, each parameter gradually reaches a

convergent state, and the F1 score will oscillate slightly around the

saturation state. As a result, the second half of Figure 12A has a

cluttered crossover (although some data points have been removed

from the second half). Therefore, Figure 12B illustrates the enlarged

data for the first 20 Epochs to clearly show the optimization module’s

impact on the training process.

Figure 12 shows that, compared with the control group (Group 0),

the addition of each optimization module does not significantly

accelerate the convergence process. Only the CBAM module

showed a small effect of accelerating the convergence, and the

convergence speed of the other groups was even slightly lower than

that of Group 0. However, the convergence process is not an

important factor in selecting network models in the current study.

Although the convergence rates of these experimental groups were

inconsistent, the gap between them was small. In practical

applications, factors such as recognition rate and model size will

have a more direct impact on economic benefits. In order to verify

whether the addition of different optimization modules will have a

significant impact on the detection accuracy of the model. We

performed Single-factor analysis of variance with different groups as

the independent variable and the detection accuracy as the dependent

variable. The results of the analysis are shown in Table 3.

Table 3 shows that the P-value between groups is 3.39*10-7, which

is far less than 0.01, and the F value between groups is 18.47, which is

greater than F crit(2.51). Therefore, the selection of different

optimization modules has a very significant impact on the

recognition effect of the model. Below I will show the specific

performance of each group in the ablation test in Table 4, purpose

to more clearly show the differences between the groups. The training

time, model size, and parameter performance of the model in the test

set of each experimental group are shown in Table 4. And the P, R, F1,

and L in the Indicators directory in Table 4 represent Precision,

Recall, F1 score, and cross-entropy loss, respectively. Params
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represents the parameter quantity of the model, and FLOPs(floating

point operations) is used to measure the calculation amount of

the model.

Table 4 systematically presents the results of each group of

experiments. In terms of training time, the addition of the single

optimization module increased training time except for the LSTM

module, but the increase is slight (between 0.3% and 3%). The LSTM

module is a particular case. The addition of the LSTM module

shortens the training time of the basic 9-layer convolutional

network (Group 0) and the 9-layer convolutional network with

the SE module (Group 3). Still, it increases that of the 9-layer

convolutional network with CBAM (Group4). However, whether

this situation is an inevitable phenomenon caused by the modules or

an accidental phenomenon caused by the load of the training

machine remains to be further verified. In terms of the model

size, the addition of each optimization module increased the

model size. Compared with the number of convolutional layers,

the addition of the optimization module has little impact on the

model size. In terms of the recognition effect of the test set, the

addition of LSTM, SE, and CBAM modules all have a positive

impact on the F1 score indicator in the test set. The impact of the

pooling layer on the model is more complicated. When the pooling

layer is added to the network without any optimization module, the

recognition effect of the model becomes worse, and the number of

parameters and FLOPs are not significantly reduced. However,

when the pooling layer is added to the network with the attention

mechanism, the FLOPs of the model are significantly reduced, and

the drop even reaches about 45%. The optimization effect of the

pooling layer on the CBAM attention mechanism is particularly

obvious, and the recognition effect is improved a little under the

premise of greatly reducing FLOPs.The combination of LSTM and

SE performed best in each group of experiments, and the

combination of LSTM and CBAM performed the worst in each

group of experiments. Before adding LSTM, SE was very close to

CBAM. To further observe the optimization effect of SE and CBAM

modules on the network, the network’s weights in Group 3 and
A B

FIGURE 12

Changes in F1 score during training. Part A is the parameter change of 100 epochs, and part B is the parameter change of the first 20 epochs.
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Group 4 before entering the LSTM module are recorded and

restored in the receptive field in the form of heat. As shown in

Figure 13, SE and CBAM have significant differences in the

attentional points. Taking the “Waiting” behavior in the figure as

an example, the attention of SE and CBAM modules are obviously

focused on the reeling machine and the nearby sea, but there are

some differences in the specific distribution of their attention. SE’s

attention is focused on the position of the reeling machine in the last

three frames. In comparison, CBAM’s attention is focused on the

middle part of the first three frames. This distribution of attention

also has a logical explanation. Behaviors captured by the same

camera have a relatively high similarity. The “waiting” behavior is

captured by the camera 2. In addition to the “waiting” behavior, the

camera 2 also captures three behaviors of “pulling net”, “putting

net” and “sailing”. Compared with the behaviors of “pulling net”

and “putting net”, the “waiting” behavior has the biggest difference

in that the reeling machine under the “waiting” behavior will not

rotate. Compared with the behavior of “sailing”, the main

characteristic of the behavior of “waiting” is that its sea surface

has no waves. Both SE and CBAM focus on the two key areas of the

reeling machine and the sea surface, but they are distributed on the

left and right sides of the sample. This is also one of the explanations

for the poor performance of CBAM with the LSTM module and the

better performance of SE with the LSTM module. The attention

mechanism mainly optimizes the classification effect of images by

adjusting the weights in different spaces and channels. SE and

CBAM showed a large effect difference in this experiment. Judging

from the effect in Figure 13, there are indeed some differences in the

focus areas of the two attention mechanisms. From a structural
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point of view, in addition to adding a spatial attention mechanism,

the biggest difference between CBAM and SE is that CBAM uses

both maximum pooling and average pooling, while SE only uses

average pooling. The choice of pooling method is also likely to be the

reason why SE is significantly better than CBAM in the experiments

in this paper. In short, The SE attention mechanism mainly adds the

weight of the space, while the CBAM adds the weight of the channel

on the basis of SE. This structural difference leads to different

weights of the two attention mechanisms on different receptive

fields. However, we still don’t have a firm conclusion as to why this

different weighting leads to a large difference in the model results.

The above analysis is only the author’s speculation from the

structure and receptive field, and the verification of this

speculation still needs to be followed up by follow-up research.

How the attention mechanism affects the classification performance

of the model is still an important issue worthy of research.

This research can be considered as a special image classification

problem technically. In the field of image classification, there are

already excellent classic models such as AlexNet, VGGNet, and

ResNet. In the dataset of behavior recognition of Japanese mackerel

fishing boats, the model we designed is more targeted and achieves

better recognition results. The comparison data between the classical

model and our model are shown in Table 5.

In Table 5, Ours refers to the Group 5 with the best performance

in the ablation test. Table 5 shows that among Res Net, VGG Net,

Alex Net, and our model, our model performs best in F1 score,

Params, and FLOPs. The FPS (Frames per second) in the table is the

average detection efficiency of 10 detections on the test set. Although

the FPS value of our model detection efficiency is slightly lower than
TABLE 3 The result of Single-factor analysis of variance with different groups.

Difference source SS df MS F P-value F crit

Between groups 6.36*10-4 8 7.95*10-5 18.47 3.39*10-7 2.51

With-in groups 7.74*10-5 18 4.3*10-6

Total 7.13*10-4 26
TABLE 4 Comparison of test results of each group.

Groups
Modules

Time(h)
Effort Indicators

Size(MB)
Time Indicators(M)

Pooling LSTM SE CBAM P R F1 L Params FLOPs

Group 0 × × × × 2.72 0.9657 0.9673 0.9665 0.1848 148.48 38.91 196.28

Group 1 √ × × × 2.75 0.9575 0.9583 0.9579 0.1961 148.48 38.91 221.73

Group 2 × √ × × 2.70 0.9679 0.9711 0.9695 0.2002 148.53 38.92 196.38

Group 3 × × √ × 2.73 0.9677 0.9655 0.9666 0.1893 148.96 39.03 196.61

Group 4 × × × √ 2.73 0.9645 0.9711 0.9678 0.2101 148.96 39.03 196.94

Group 5 × √ √ × 2.71 0.9681 0.9743 0.9712 0.1603 149.01 39.05 196.71

Group 6 × √ × √ 2.81 0.9546 0.9574 0.9560 0.2246 149.05 39.05 197.04

Group 7 √ √ √ × 2.68 0.9651 0.9715 0.9683 0.1876 149.01 39.05 107.73

Group 8 √ √ × √ 2.73 0.9669 0.9645 0.9657 0.1666 149.05 39.05 108.21
fron
Bold is best.
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that of ResNet, the detection efficiency of 187.58 has exceeded the FPS

of the video (25), so the detection efficiency of our model can meet the

real-time requirements.
4 Discuss

This research mainly studied the feasibility of applying a

convolutional neural network in the behavior recognition of Chub

mackerel fishing vessels by using the data of the vessel’s electronic

monitoring system. The number of convolutional layers, pooling

layers, LSTM module, SE module, CBAM module, and other

factors (and different combinations of each factor) are compared to

the recognition effect of vessel behaviors and the impact of the

model’s size. The experimental results showed that the number of

convolutional layers could significantly impact the recognition effect

and the magnitude of the network. With the increase in the number of

convolutional layers, the volume of the network also increases
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significantly, and within a specific range, the recognition effect is

also considerably improved. However, the improvement of the

recognition effect is not linear. After the recognition effect is

saturated, the increase of the number of convolutional layers can no

longer improve the recognition effect and may even reduce the

recognition effect. The purpose of adding the pooling layer is to

reduce the magnitude of the network. After adding the pooling layer,

the size of the network model is indeed significantly reduced. Still, the

addition of a single pooling layer has a negative impact on the

recognition effect in a certain extent. It is for this reason that

pooling layers have been used less and less in mainstream neural

networks in recent years (Springenberg et al., 2014). In data sets with

time-series features (100-frame sample data set and optimized 5-

frame sample data set), the LSTMmodule has a relatively pronounced

improvement effect. Moreover, the addition of the LSTM module will

only increase the size of the network model by a small margin.

Relative to this slight increase, the positive impact of the LSTM

module on the recognition performance is quite apparent. SE module
TABLE 5 Comparison of accuracy and efficiency of the models.

Models F1 Params(M) FLOPs(M) FPS

Res Net 0.9563 11.17 557.88 192.13 ± 0.74

VGG Net 0.9686 134.30 15466.21 149.06 ± 2.01

Alex Net 0.9666 57.04 710.15 172.69 ± 10.19

Ours 0.9712 39.05 196.71 187.58 ± 5.38
Bold is best.
TABLE 6 Comparison of three methods of ship behavior recognition.

Type of behaviors Accuracy Time costs Reference

Human observer Almost all behaviors Very high Too high Crew experience

Vessel position data “Fishing” and “Other” 79% Low Feng, 2019

Electronic observer Most observable behaviors 97.12% Low Current research
FIGURE 13

Attention of SE and CBAM.
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and CBAM module are two of the most widespread attention

mechanism modules due to their powerful optimization effect and

portability. The addition of these two modules had a particularly

positive impact on the recognition effect.

The current study further proved the feasibility of applying electronic

monitoring data to recognize vessel behaviors and specifically proposed a

deep learning-based vessel behaviors recognition scheme. Before the

promotion of electronic monitoring, ship behavior often needed to be

recorded manually or extracted based on ship position data. But both

methods have apparent flaws. The manual recording method requires

higher labor costs, and the recorded data is highly subjective. In addition,

due to the impact ofCOVID-19,newchallengeshavearisen in thedispatch

of professional human observers (Sorensen et al., 2020). Vessel behavior

recognition methods based on vessel position data have more substantial

objectivity, and vessel position data are generally obtained through AIS or

VMS.Themainproblemsofvesselbehavior recognitionmethodsbasedon

position data were the limited number of identifiable behaviors, the low

recognition success rate, and the difficulty of verification. For example,

when the VMS data showed that the speed of the fishing vessel was 0, it is

difficult for the vessel behavior identification methods based on the vessel

position data to determine whether the vessel is in the “Stop” behavior or

the “Pulling Net” behavior. The vessel behaviors recognition methods

based on electronic monitoring can avoid the above problems well. The

electronic monitoring system records the most real visible data in vessels.

The amount of information contained and the objectivity of the

information is much higher than those of the other two schemes.

Because of the enormous amount of information in video surveillance

data, we can identify various vessel behaviors of research value from the

data of electronic monitoring systems. Table 6 compared the

characteristics of the above three types of vessel behaviors

recognition methods.

The vessel behaviors recognition method proposed by this

research had strong feasibility. However, due to the influence of

various factors such as time, there is still some room for

improvement. After it had been determined in the pre-experiment

that nine convolutional layers are more suitable for the behavior

recognition of this dataset, the subsequent network model

optimization was carried out in the 9-layer convolutional network.

This experimental scheme defaults to the premise that the addition of

LSTM, SE, CBAM, and other modules will not change the influence of

the number of convolutional layers on the recognition rate of the

network model. Still, this premise has not been fully proved. Although

the increase in the number of convolutional layers will significantly

improve the recognition rate, it will also considerably increase the

model size. Suppose a lighter network such as 6-layer and 3-layer is

optimized, and its optimization effect can exceed that of a 9-layer

convolutional neural network. In that case, it will have greater

economic significance (a lightweight network means lower

computational cost). Since Group 0 of the control group has

achieved a good recognition effect, the optimization space for

Group 0 of Group 1-8 is relatively limited. In the construction of

the data set, the data samples of 5 frames may not be the best

construction method. However, there are many optional frames for

data set construction, and it is difficult to compare all possibilities

through an exhaustive method. In addition, the 5-frame data set has

been able to meet the industrial requirements in terms of detection

effect and detection efficiency. Adjusting the optimal data set frame
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number may be one of the directions for further optimization in the

future. Although this paper compares the designed model with the

classic Res Net, VGG Net and Alex Net, the comparative research is

still insufficient. For example, convLSTM is a common combination

of convolutional neural network and LSTM. Follow-up research can

continue to compare the model of this paper with the models with

convLSTM architecture. In addition, the use of electronic monitoring

data in this study is still insufficient, and there may be more than the

nine types of ship behaviors that can be mined with research value. In

addition, the structures of the fishing vessels participating in the

experiment are similar, and the universality of the network model has

not been fully verified yet. The best model proposed in this paper may

only perform best in a specific fishing boat, and the generality of the

model should be further improved in the future. Expanding the use of

models has important implications for fisheries, but requires data and

industry support. There is still a long way to go for a highly versatile

fishing boat behavior recognition model.

Electronic monitoring systems, known as “electronic observers”,

are considered the next generation ship management system with the

most potential to replace human observers due to their significant

advantages in data recording (Evans and Molony, 2021). However,

the current ship’s electronic monitoring system is still in its infancy.

And there are still many problems, such as the lack of efficient and

feasible methods for the processing of electronic monitoring system

data. The vessel behaviors recognition method proposed in this study

is of great significance to the data processing of electronic monitoring

systems. The future electronic monitoring system is bound to rely less

and less on humans, so in addition to the automation of the data

acquisition part, the data processing part also needs a higher degree of

automation. It is of great significance to study the application of

electronic monitoring systems in vessel behavior recognition for

building a complete intelligent electronic monitoring system. The

current electronic monitoring system has the problem that the data

capacity is too large. An electronic monitoring system needs to be

equipped with a hard disk of dozens of TB, and the storage and

transmission costs are too high. Therefore, we will focus on the fusion

and extraction of various sensor data in electronic systems in future

research. For example, information such as ship behavior, fish species,

and the catch is extracted from camera data, and environmental

factors such as chlorophyll and sea surface temperature are obtained

from other sensors. Use the intelligent analysis system to analyze and

record each data, and store the analyzed fish catch and additional

information in the hard disk. The clever analysis system analyzes and

records each data and stores the analyzed fishing catch and other

information on the hard disk. Older data can be deleted when hard

disk space is low. When urgent data transmission is required, only

the intelligently analyzed data can be transmitted, significantly

reducing the transmission cost. The fusion of various sensor data

will also substantially improve the coupling of the electronic

monitoring system.
5 Conclusions

This research explores the application of convolutional neural

networks in the behavior recognition of Chub mackerel fishing vessels

and in-depth compares the optimization effects of deep learning modules
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such as pooling, LSTM, SE, and CBAM on the above applications.

Experiments have demonstrated that the convolutional neural network

is competent for the task of behavior recognition ofChubmackerelfishing

vessels. These optimizationmodules and their combinations can affect the

neuralnetworkdifferently.ThecombinationofSEandLSTMperforms the

best, with an F1 score of 97.12% in the test set. The electronic monitoring

system of fishing boats is gradually being popularized, which means that

there will be more video data of fishing vessels waiting to be processed in

the future. Data processing is a significant part of a mature, intelligent

electronic monitoring system. Therefore, this research is not only of great

significance to the intelligent recording of Chub mackerel fishing vessel

behaviors but also can promote the development of electronicmonitoring

systems for vessels. It is worth noting that the test set data in the current

study is very similar to the training set data. Still, there is currently no

unified electronic monitoring installation specification for international

ocean-going fishing vessels. Therefore, this research results have a

relatively obvious scope of application. A universal vessel recognition

scheme still needs the joint efforts of electronic monitoring installation

specifications and data processing optimization.
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