
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Shengqi Zhou,
South China Sea Institute of Oceanology
(CAS), China

REVIEWED BY

Chenyue Xie,
Hong Kong University of Science and
Technology, Hong Kong SAR, China
William Young,
University of California, San Diego,
United States

*CORRESPONDENCE

Jin-Han Xie

jinhanxie@pku.edu.cn

SPECIALTY SECTION

This article was submitted to
Physical Oceanography,
a section of the journal
Frontiers in Marine Science

RECEIVED 31 October 2022

ACCEPTED 12 January 2023
PUBLISHED 27 January 2023

CITATION

Zhang F and Xie J-H (2023) Scale
dependence of near-inertial wave’s
concentration in anticyclones.
Front. Mar. Sci. 10:1085679.
doi: 10.3389/fmars.2023.1085679

COPYRIGHT

© 2023 Zhang and Xie. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 27 January 2023

DOI 10.3389/fmars.2023.1085679
Scale dependence of near-
inertial wave’s concentration
in anticyclones

Furu Zhang1 and Jin-Han Xie1,2*

1Department of Mechanics and Engineering Science at College of Engineering and State Key Laboratory
for Turbulence and Complex Systems, Peking University, Beijing, China, 2Joint Laboratory of Marine
Hydrodynamics and Ocean Engineering, Pilot National Laboratory for Marine Science and Technology
(Qingdao), Shandong, China
Near-inertial waves (NIWs), pervasive and dominating the mixing process in the

upper ocean, are observed to concentrate in anticyclones. Based on the NIW

amplitude equation derived by Young & Ben Jelloul, which captures dispersion and

effects of vortical flow’s advection and refraction, this work analytically and

numerically studies the influence of scale on the concentration of NIWs. For a

sinusoidal background shear flow, the exact solutions expressed as periodic

Mathieu functions are approximated by a Gaussian envelope with Hermite

polynomial oscillations to determine the distance to the anticyclones. Two

dimensionless parameters control NIW’s dynamics: (i) h/Y, where h is a constant

capturing the strength of wave dispersion and Y is the magnitude of the

background streamfunction capturing the ratio of dispersion to refraction; (ii)

LY/LM, the ratio between the spatial scales of background flow and NIWs, where LY
and LM, respectively, captures the relative strength between advection and

refraction. The refraction by the background flow leads to the concentration in

the regions with negative vorticity, dispersion controls the variance of the wave

packet, and the advection shifts the center of NIWs away from the peak of negative

vorticity, which is scale-dependent. When the refraction effect dominates, i. e.,

small LY/LM, NIWs concentrate in anticyclones, and this concentration becomes

stronger as h/Y decreases; when the advection effect dominates, i.e., large LY/LM,

the NIW’s concentration is less obvious. Numerical simulations with backgrounds

of sinusoidal shear, vortex quadrupoles and random vortices confirm these results.

Considering the similarity between the NIW amplitude equation and the

Schrödinger equation, we propose a new perspective that the combined effect

of uncertainty relation and energy conservation leads to large-scale NIW’s

concentration in anticyclones.
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1 Introduction

Near-inertial waves (NIWs) with frequency in the vicinity of the

inertial frequency [Ferrari and Wunsch (2009); Alford et al. (2016)]

are the energy-dominant high-frequency fluctuations in ocean waves

with spatial scales up to 1000km. They lead to strong mixing in the

upper ocean by inducing large vertical shear, and therefore contribute

to the large-scale exchange of materials and energy [Alford (2001);

Rimac et al. (2013)] and influence biological activities and climate

processes in relevant regions [Granata et al. (1995); Jochum et al.

(2013)]. NIWs are also believed to play an essential role in the energy

transfer of mesoscale eddies and resolve the energy puzzle [Xie and

Vanneste (2015); Rocha et al. (2018); Xie (2020)].

During propagation, NIWs change scales due to the influence of

the large-scale planetary vorticities (the b-effect) and the mesoscale

vorticities [van Meurs (1998)]. Evidence from ocean storm

experiments suggests that the b-effect provides a global impact on

the evolution of NIWs [D’Asaro et al. (1995)], resulting in a

significant propagation perpendicular to the meridian. The local

behavior of NIWs is more determined by the impact of relative

vorticities [Weller (1982)], undergoing a scale decrease when

encountering the background flows. An interesting phenomenon is

that NIWs concentrate in anticyclones, which is justified by both

numerical simulations [Lee and Niiler (1998); Zhai et al. (2005);

Danioux et al. (2008)] and observations [Kunze and Sanford (1984);

D’Asaro et al. (1995); Elipot et al. (2010); Joyce et al. (2013)].

Early studies on this phenomenon identified two regimes: the

“trapping” regime and the “strong dispersion” regime [Kunze (1985);

Wang (1991); Klein and Tréguier (1995); van Meurs (1998)],

determined by the relative order of magnitude of the refraction and

dispersion effects. In the “trapping” regime where the refraction

dominants, using the Wentzel-Kramers-Brillouin (WKB) method,

Kunze (1985) derived that the NIWs tend to move away from positive

vorticities and towards negative ones. Here, the NIW frequency is

modified by the background vorticity with a z/2 shift where z is the

relative vorticity, which is the so-called Kunze’s effect. On the other

hand, in the “strong dispersion” regime, NIWs are rapidly dispersed

and less affected by the vorticity [Klein and Tréguier (1995)].

Subsequently, many new insights were proposed benefiting from

the NIW model proposed by Young and Jelloul (1997), hereafter YBJ,

which captures the effects of wave dispersion, vortical flow’s advection

and refraction. A crucial advantage of the YBJ model is that it does not

rely on the assumption of horizontal scale separation between waves

and background flows which is required by the WKB method.

However, this scale separation is usually not valid for NIWs.

Balmforth et al. (1998) explored the time scale and spatial

modulation of decaying inertial oscillations influenced by the

geostrophic flow. The demarcation line between the “trapping”

regime and the “strong dispersion” regime in the YBJ model is

determined by Y=f0R
2
n, where Y is the magnitude of the

background streamfunction, f0 is the inertial frequency, Rn is the

deformation radius of the nth vertical mode [Young and Jelloul

(1997); Balmforth et al. (1998)]. As to a reduced-gravity shallow-

water system, this parameter is reduced to Y/h where h = g’H/f0 with

g’ and H the reduced gravity and horizontally averaged depth of the
Frontiers in Marine Science 02
top layer. When Y/h >>1, the “trapping” dominants; in the opposite

case, dispersion dominates. With a large-scale initial condition where

the advection can be ignored compared with the refraction term,

Klein and Smith (2001) investigated the spatial structure of inertial

energy and suggested that the large-scale components contribute to

the trapping regime in anticyclones. Introducing an extra short-time

assumption, the temporal evolution of NIW energy is found to be

proportional to the Laplacian of the vorticity field, i.e. Dz [Klein et al.

(2004)]. So the inertial energy is concentrated in the structure where

Dz is positive. Danioux et al. (2015) argued that the conservations in

the YBJ equation lead to the concentration of NIWs in the

anticyclone. With homogeneous initial conditions, they observed

the long-time saturation scale of waves: in the “trapping” regime,

the wave scale is much smaller than the vorticity scale, while in the

“strong dispersion” regime, the wave scale is much larger than the

vorticity scale. Nevertheless, this does not mean smaller-scale NIWs

are easier concentrate in anticyclones for a given background flow. In

this paper, we will show that for a fixed vorticity field, the larger the

scale of the waves, the more favorable the concentration. However,

then the concentration is suppressed by the increasing number of

newly generated small-scale waves, eventually reaching saturation

with an average scale shown by Danioux et al. (2015).

In this paper, we systematically study the scale dependence of

NIW’s concentration in anticyclones and interpret the reason behind

the concentration from a perspective of uncertainty principle

borrowed from quantum mechanics. The paper is structured as

follows. In section 3, we discuss the dynamics and scaling

characteristics of the YBJ equation. In section 4, we provide exact

and approximate solutions for a sinusoidal background shear flow

and indicate the scale effect of NIWs concentration in anticyclones. In

sections 5-6, numerical simulations are performed to confirm the

scale effect with vortex patches and random vortexes. Section 7 shows

that the combined effect of uncertainty relation and energy

conservation leads to the NIW’s concentration in anticyclones. It is

a new understanding of the concentration mechanism drawing on the

basic concepts of quantum mechanics. Finally, we summarize and

discuss our results in section 7.
2 The YBJ model

We study the evolution of NIWs in a background vorticity field by

the shallow-water YBJ model (Young and Jelloul, 1997; Danioux et al.,

2015):

∂t M + J y ,Mð Þ − i
h
2
DM + i

Dy
2

M = 0, (1)

whereM(x, y, t) is a complex amplitude of the horizontal velocity (u, v),

u+iv=Me−if0t , describing the slow spatial and long-time modulation of

the NIW field. f0 is the local Coriolis frequency and h=g′H/f0 is a

dispersion parameter with g′ andH the reduced gravity and horizontally

averaged depth. y and Dy are the barotropic geostrophic flow’s

streamfunction and vorticity field. For simplicity, we only focus on

the barotropic case. The operator J is the horizontal Jacobian. In this

paper, we are concerned with the long-time [more than 30 days, e.g.
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Klein and Smith (2001); Danioux et al. (2015)] evolutionary nature of

NIWs and assume that the background flow is steady.

The YBJ equation captures the advection, dispersion and

refraction effects. The refraction term controls the capture of NIWs

by the vorticity field, while the dispersion term promotes the escape of

waves [Kunze (1985); Rocha et al. (2018)]. The relative strength of the

dispersion and refraction can be measured by the dimensionless

parameter h/Y (Young and Jelloul, 1997; Balmforth et al., 1998).

Typical observation data from the North Atlantic imply that h/Ymay

range in (0.2, 8) (Danioux et al., 2015).

When the advection term is omitted, the YBJ equation is similar

to the Schrödinger equation describing the motion of a single particle.

In this analogy, M(x,y) corresponds to the particle’s complex

wavefunction, h corresponds to the reduced Planck constant ℏ , and

hDy/2 corresponds to the potential field subjected by the particle. The
particle prefers the lower potential region; accordingly, NIWs

concentrate in negative relative vorticities. This concentration in

anticyclone should still be valid when the advection term is non-

zero but much smaller than the refraction. The ratio between the

advection and refraction is only related to the spatial scales. So we can

define Ly/LM , where Ly and LM are the spatial scale of the

background streamfunction and wave amplitude, respectively, to

capture this relative importance. However, the interpretation of the

energy concentration via analogy to the Schrödinger equation fails

when Ly/LM≫1 . In this paper, we will show that the advection

prevents the NIW’s concentration, which is weak for large-scale

waves (small Ly/LM ).

By introducing the amplitude and phase of M , M=M0e
iQ where

M0 and Q are both real numbers, we define the local wavenumber

klocal = ∇Q, (2)

or equivalently

klocal = Im ∇ ln  Mð Þ = Im
∇M
M

� �
, (3)

which we practically use in analyzing our numerical results.

We further define an averaged local wave-vector kave

kave tð Þ =

Z ​ Z ​ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x,local + k2y,local

q
jM x, y, tð Þj2dxdyZ ​ Z ​

jM x, y, tð Þj2dxdy
, (4)

with corresponding NIW’s mean spatial scale LM=2p/kave .
3 Analytical solutions for a sinusoidal
background shear flow

To reveal the scale dependence of NIW’s concentration, we first

study a simple case with a sinusoidal background shear flow, which

can be solved analytically. Setting the core of negative vorticity as y=0 ,

the stream function of the background shear flow reads y =

(z0=k20) cos  k0y, where z0>0 is the intensity of local relative

vorticity, and the amplitude Y of y is defined as its root-mean-

square that Y = z0=
ffiffiffi
2

p
k20. Because of the translational symmetry in

the x -direction, we seek solutions with an ansatz that
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M x, y, tð Þ = M yð Þei kxx−wtð Þ : (5)

Substituting it into the YBJ (1) [Young and Jelloul (1997)] we

obtain

h
2
∂2y M yð Þ + w −

h
2
k2x −

z0kx
k0

sin  k0y +
z0
2
cos  k0y

� �
M yð Þ = 0: (6)

Defining A =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(z0kx=k0)2 + (z0=2)2

p
and j=arctan 2kx/k0 , we

obtain

h
2
∂2y M yð Þ + w −

h
2
k2x + A cos   k0y + jð Þ

� �
M yð Þ = 0, (7)

which is the typical Mathieu equation, and the solutions are

Mathieu functions of the first kind ([3]):

M yð Þ = C1  MC w 0, x, y0
� �

+ C2  MS w 0, x, y0
� �

, (8)

where w 0 = 8(w − hk2x=2)=hk
2
0, x = −4A=hk20, y

′=(k0y+j)/2 . MC

and MS are even and odd functions of y′ , respectively. C1 and C2 are

arbitrary constants. The period of background shear flow is 2p/k0 ,
then the period of y′ in Mathieu functions is p , which determines the

value of the eigenvalues w′ . For the even functions MC(w′,x,y′) , the
eigenvalues w′ satisfy the relation in continued fractions that

w 0 = −
2x2

22 − w 0 − x2

42−w 0− x2

62−w0−⋯

: (9)

For the odd functions MS(w′,x,y′) , the eigenvalues w′ satisfy

w 0 − 4 = −
x2

42 − w 0 − x2

62−w 0− x2

82−w0−⋯

: (10)

Interestingly, the centers of the waves, for both the eigenfunctions

MC(w′,x,y′) and MS(w′,x,y′) , are

yc
Ly

= −
arctan   (2kx=k0)

2p
, (11)

which is only scale-dependent and independent of the kinetic

parameter h/Y . For the even functions MC , yc locates at the wave

peaks, while for the odd functionsMS , yc is the position of the nodes.

Distributions of the first few modes of MC and MS are plotted in

Figures 1–4. NIWs concentrate in the negative vorticity when Ly/LM
is small where Ly=2p/k0 and LM=2p/kx . With the increase of Ly/LM ,

the center of the waves gradually deviates from the core of the

negative vorticity. For a large enough Ly/LM , the waves tend to be

localized at the boundary (y/Ly=−sgn(kx)/4 ) between positive and

negative vorticities.

If the original YBJ equation has no advection term, the sine

term in Eq.(6) (or j in Eq.(7)) would be zero, which would result in

yc=0 . Therefore, the scale effect on the deviation from negative

vorticity results from advection. The kinetic parameter h/Y
controls the variance of the wave packet, with smaller h/Y≪1

corresponding to more compact wave packets; as h/Y increases, the

wave packets widen. The oscillatory behavior of the waves grows

when the order number of the eigenmodes increases, which would

be seen visually by the approximate analytical solutions in the

following subsection.
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3.1 Approximate solutions near the core of
vorticity (Ly / LM ≪ 1)

To see the behavior of the solutions more clearly, we consider

approximate solutions near the core of the vorticity where y≈0 , and

therefore sin k0y≈k0y and cos  k0y ≈ 1 − k20y
2=2, then Eq.(6) becomes

h
2
∂2y M yð Þ + w 0 − ay2 + by

� �
M = 0, (12)

Where

w 0 = w −
h
2
k2x +

z0
2
, a =

z0k20
4

, b = −z0kx : (13)

The general solutions with the boundary condition that M

(y!∞)!0 are the Parabolic cylinder functions Dn(y) (the branch

which is divergent at y!∞ is not shown):
Frontiers in Marine Science 04
M yð Þ = C0  Dn k k0y +
2kx
k0

� �� �
, (14)

where C0 is an arbitrary constant, n is a non-negative integer with

n =

ffiffiffi
2

p
b2 + 4aw 0� �
8

ffiffiffiffiffiffiffi
a3h

p −
1
2
, and k = 2

z0
hk20

� �1=4

: (15)

When n is even, Dn(y) is an even function, while when n is odd,

Dn(y) is an odd function. The Parabolic cylinder functions can also be

represented as:

Dn yð Þ = 1

2n=2
e−y

2=4Hn
yffiffiffi
2

p
� �

, (16)

where Hn (y) is the Hermite polynomial of the nth order

(Matsuno, 1966). This form is useful because it consists of a

Gaussian-type envelope and a fast oscillation. The order number n
A B

DC

FIGURE 1

Distribution of the even eigenfunction MC(w′,x,y′) and its approximate solution near the core (y=0) (A, B) or boundary (y/LY=−1/4) (C, D) with the lowest

eigenvalues. Ly/LM=kx/k0=0.01,0.25,1,10, h=Y =
ffiffiffi
2

p
hk20=z0 = 0:2, 1, 5, respectively. Shaded areas indicate negative vorticities.
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of the modes appears only in the oscillation part, and the larger n is,

the more pronounced the oscillation. The expression (16) gives us an

image of the wave’s shape. Since n is a non-negative integer, from

Eq.(15) we get the frequency of M (x, y):

w =
h
2
−
z0
k20

� �
k2x +

ffiffiffiffiffiffiffiffi
hz0
8

r
1 + 2nð Þk0 −

z0
2
: (17)

From Eq.(14) one can see that the distance between the center of

M (y) and the core of negative vorticity, i.e. k0yc=−2kx/k0 , is

proportional to the dimensionless scale factor Ly/LM=|kx|/k0 .

When Ly/LM≪1 , the waves are trapped near the core of negative

vorticities; but for large Ly/LM≫1 , the center of the wave leave the

core of negative vorticity. The approximate behavior near the core of

vorticity is shown in Figures 1–4 (A, B) which fits well with the

exact solutions.
Frontiers in Marine Science 05
3.2 Approximate solutions near the
boundary (for large Ly / LM ≫ 1)

Now we turn to the boundaries between the positive and negative

vorticities, where the stream function of the background shear flow can

be rewritten as y = (z0=k20) sin  k0y0 with y′=y+p/2k0≈0 . Performing a

Taylor expansion on y and Dy near the boundary, we get y≈(z0/k0)y′

−z0k0y'3/6 , yy′≈z0/k0−z0k0y'2/2 and Dy≈−z0k0y′ . Under the ansatz M
(x,y′,t)=M(y′)ei(kxx−wt) , the YBJ equation becomes

h
2
∂2y0 M + w 0 − ay02 + by0

� �
M = 0, (18)

Where

w 0 = w −
h
2
k2x +

z0kx
k0

,   a =
z0k0kx

2
,   b =

z0k0
2

: (19)
A B

DC

FIGURE 2

Distribution of the odd eigenfunction MS(w′,x,y′) and its approximate solution near the core (y=0) (A, B) or boundary (y/LY=−1/4) (C, D) with the lowest

eigenvalues. Ly/LM=kx/k0=0.01,0.25,1,10 , h=Y =
ffiffiffi
2

p
hk20=z0 = 0:2, 1, 5, respectively. Shaded areas indicate anticyclones.
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The general solutions with the boundary condition M(y′!∞)!0

are (the branch which is divergent at y′!∞ is not shown)

M yð Þ = C0  Dn k k0y
0 −

k0
2kx

� �� �
, (20)

Where

n =
8w 0kx + z0k0
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z0hk0kx

p
kx

−
1
2
, and k =

ffiffiffi
2

p z0kx
hk30

� �1=4

: (21)

There is a chiral selectivity between the wave number and the

vorticity near the boundaries that kxz0>0 , while the opposite case

kxz0<0 corresponds to a branch which diverges at y′!∞ . The

approximate behavior near the boundary of vorticity is also shown

in Figures 1–4 (C, D) which fits well with the exact solutions. Since n

is a non-negative integer, from Eq.(21) we get the frequency ofM(x,y):

w =
h
2
k2x −

z0
k0

kx +
1 + 2n

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z0hk0kx

p
−
z0k0
8kx

: (22)
Frontiers in Marine Science 06
3.3 Scale effect emerging from the
analytical solutions

In Figure 5, we plot the lowest eigenvalues of M(x,y) from both

the Mathieu functions and their approximations near the core and

boundaries of the negative vorticity. When kx=k0/2 , Eq.(17) and

Eq.(22) provide the same result. The approximation near the core of

vorticity works if Ly/LM=kx/k0≪1/2 , while when Ly/LM=kx/k0≫1/2 ,

the approximation near the boundary is more suitable. Moreover,

when h/Y increases, the variance of the wave packet in Eqs. (14, 20)

increases, and the dispersion term hk2x=2 in Eqs. (17, 22) plays a more

important role, changing the convexity of the spectral curve in

Figure 5. The frequencies obtained from the approximation near

the core of the vorticity are not too accurate because the wave scale is

large when kx!0 , which reduces the localization of the wave.

The difference in the approximate behavior at the vorticity core

and the boundary is also manifested in the distance between the wave

center and the vorticity core, yc , whose dependence on Ly/LM is
A B

DC

FIGURE 3

Distribution of the even eigenfunction MC(w′,x,y′) and its approximate solution near the core (y=0) (A, B) or boundary (y/LY=−1/4) (C, D) with the second

lowest eigenvalues. Ly/LM=kx/k0=0.01,0.25,1,10, h=Y =
ffiffiffi
2

p
hk20=z0 = 0:2, 1, 5, respectively. Shaded areas indicate negative vorticities.
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shown in Figure 6A. Near the core, yc is proportional to Ly/LM , while

near the boundary, (Ly/4−yc) is inversely proportional to Ly/LM .

Thus, a large wave scale benefits the NIW’s concentration.

We define a mean distance yave of the NIWs to the core of the

negative vorticity y=0 as

yave =

Z ​

yj j Mj j2dyZ ​

Mj j2dy
, (23)

with which the dimensionless ratio yave/Ly can be used to measure

the concentration of NIWs, as shown in Figure 6B. yave increases as

Ly/LM increases, which is consistent with the behavior of yc shown in

Figure 6A. However, yave grows as h/Y increases, while the center of

the eigenfunction yc is independent of h/Y.

The scale effect can also be measured by the energy difference of

NIWs between the positive and negative vorticities:
Frontiers in Marine Science 07
s =
eP − eN
eP + eN

, (24)

where eP (eN ) is wave energy in the region with positive (negative)

vorticity:

eP =
Z ​ Z ​

Mj2H △yð Þdxdy and eN =
Z ​ Z ​

				
				Mj2H −△yð Þdxdy :

(25)

Here, H is the Heaviside function. When s<0 (>0) , the NIWs

concentrate in the negative (positive) vorticities. A plot of s is presented

in Figure 6C from the lowest eigenmodes ofMC andMS , exhibiting the

same positive correlation on Ly/LM as in Figures 6 (A, B) Small h/Y and

Ly/LM refer to a “trapping” regime.

As Ly/LM increases, the advection overtakes the refraction,

weakening the capture. When in the “strong dispersion” regime,

where h/Y≫1 , the concentration becomes insignificant. Besides, the

even function MC has a stronger concentration than the odd MS .
A B

DC

FIGURE 4

Distribution of the odd eigenfunction MS(w′,x,y′) and its approximate solution near the core (y=0) (A, B) or boundary (y/LY=−1/4) (C, D) with the second

lowest eigenvalues. Ly/LM=kx/k0=0.01,0.25,1,10 , h=Y =
ffiffiffi
2

p
hk20=z0 = 0:2, 1, 5, respectively. Shaded areas indicate anticyclones.
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4 Scale effect in a vortex quadrupole

With the help of the revelation from the above analytical

solutions, we study the scale effect of NIWs further in a doubly

sinusoidal vortex quadrupole whose streamfunction reads

y = − z0=k
2
0

� �
sin  k0x sin  k0y, (26)

where z0>0 . Thus, the spatial scale is Ly=2p/k0 .
For a given background field, we can obtain the eigenmodes of the

system by a finite difference method, as shown in Figure 7. As can be

seen from the figure, low-order modes concentrate near the core of

anticyclones (Figures 7A, B), while high-order ones can concentrate

near the boundaries or the saddle points (Figures 7C, D). For each

eigenmode, we define the mean radius
Frontiers in Marine Science 08
rave of NIWs concentrated in anticyclones as

rave =

Z 0

−Ly =2

Z Ly =2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x − x0)

2 + (y − y0)
2

q
jMj2dxdyZ 0

−Ly =2

Z Ly =2

0
jMj2dxdy

, (27)

in which the core of the anticyclone (x0,y0) locates at (Ly/4,−Ly/4).

We use the dimensionless ratio rave/Ly to measure the concentration of

NIWs, and it depends on the parameter h/Y and the order number of

the eigenmodes. In Figure 8A we plot rave/Ly of the eigenmodes with

low frequency for different h/Y, and the corresponding spatial scale

Ly/LM is calculated according to Eq.(4). There is a clear positive

correlation between rave/Ly and Ly/LM , consistent with the trend of yc
and yave given by the analytical solutions shown in Figures 6 (A, B).
A B

D E F

C

FIGURE 5

Dispersion relation of the lowest eigenvalues of MC(w′,x,y′) (A–C) and MS(w′,x,y′) (D–F) with h=Y =
ffiffiffi
2

p
hk20=z0 = 0:2, 1, 5, respectively.
A B C

FIGURE 6

(A) The distance yc between the center of the waves and the core of the negative vorticity as a function of Ly/LM , which is caused by the advection
term. (B, C) yave/Ly (B) and s (C) vs Ly/LM from the lowest eigenmodes of MC and MS with different h/Y=0.2,1,5, respectively.
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Hence, a larger LM is associated with a more concentrated NIW in

anticyclone for a fixed background vortex quadrupole. It should be

noted in Figure 8A that for each h/Y, a minimum value of Ly/LM
appears, which is inversely correlated with h/Y and determined by the

most concentrated mode of the system.

Using Eq.(24), we can define the degree of energy concentration s .

Figure 8B also shows that a large wave scale facilitates the

concentration. Moreover, a color map of s as a function of h/Y and

Ly/LM is shown in Figure 9. With small h/Y and Ly/LM, there is a

“trapping” regime with a deep negative s . When h/Y or Ly/LM is

large enough, the concentration of waves in anticyclones

becomes insignificant.

With the initial state of the velocity field set as

M x, y, t = 0ð Þ = 1 + ið Þ cos  (nk0x) cos  (nk0y), (28)

where n is an adjustable parameter, we investigate the long-time

(more than 30 days) behavior of NIWs. We plot the time average

across the second half of the simulation (about 15-30 days) of rave/Ly
and s as a function of Ly/LM in Figure 10. A similar scale effect
Frontiers in Marine Science 09
emerges that the concentration of NIW favors larger wavelength LM
defined from Eq.(4). Typically, a larger initial wavelength gives a

larger LM, resulting in a greater concentration. When Ly/LM is large

enough, the NIWs are no longer concentrated in anticyclones but

tend to the boundary, which leads to a saturation of rave/Ly and s,
which resembles the results shown by the analytical solutions

presented in Figure 6. When h/Y increases, the dispersion is

enhanced, weakening the concentration of the waves in

anticyclones. Note that rave/Ly=0.25 is the vorticity boundary.

Considering the dispersed distribution of M, rave/Ly can hardly

reach the minimum value of 0 or the maximum value of 0.25.
5 Scale effect in random vortexes

To be more realistic, we explore the scale effect of NIWs in the

random vortexes, with Gaussian covariance (cf. Danioux et al., 2015).

The amplitude scale Y of the stream function y is defined as its root-

mean-square. The numerical simulation of the YBJ equation is carried
A B

DC

FIGURE 7

(A–D) Typical eigenmodes in the vortex quadrupole with order number n=1,4,8,9 , respectively. In (A, B), the NIWs concentrate in anticyclones;
in (C) they concentrate near the boundaries; while in (D), they concentrate at the saddle points. h/Y=1 , L=Ly=2p/k0.
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out on a doubly periodic 256×256 grid of a domain size 4p×4p using

the pseudo-spectrummethod. In order to ensure numerical stability, a

weak biharmonic dissipation n=10−10 is introduced. Figures 11 (A, B)
shows the streamfunction and the associated vorticity field.

Because it is not easy to directly get the spatial scale LY of the

random streamfunction, we define the local wavenumber of y as

ky =
∇y
y

: (29)

So an averaged local wavenumber ky is then given as

ky =

Z ​ Z ​

  ky
		 		 yj j2dxdyZ ​ Z ​

yj j2dxdy
, (30)

which corresponds to the spatial scale LY = 2p=ky .
With an initial wave field described by Eq.(28) and illustrated in

Figure 11C, the long-time (more than 30 days) behaviors of NIWs are

plotted in Figures 11 (D–F) for different h/Y . For a larger h/Y , the

long-time evolution yields a larger saturation scale LM on average,

which is consistent with the result in Danioux et al. (2015) for a

homogeneous initial condition M(x,y,t=0)=C where C is a non-zero

constant. When h/Y is fixed, i.e. for a steady background field, one can

find the same positive correlation between the energy concentration s
and the scale factor Ly/LM defined from Eq.(4), as shown in Figure 12.

Danioux et al. (2015) argues that NIWs are most concentrated in

anticyclones when h/Y∼1. However, we point out that this depends on

the wave scale in the initial condition and, therefore, on the saturation

scale of the wave under long-time evolution. When h/Y=5 which

belongs to the “strong dispersion” regime, the geostrophic flow has little

effect on NIWs, and the concentration of NIWs in anticyclones is

reduced. Correspondingly, the scale effect of concentration becomes

less obvious. When h/Y=0.2 , the system enters the “strong advection”
Frontiers in Marine Science 10
regime with a large Ly/LM≈10 and a weak concentration s∈(−0.1,0) ,
which is not presented in the figure.
6 Conservation law and uncertainty
relation of NIWs

By analogy with the Schrödinger equation, the YBJ equation can

be rewritten as

ih ∂t M = ĤM, (31)

where the Hamiltonian-like operator Ĥ reads

Ĥ = cH1 + cH2 + cH3, (32)

with

cH1 = −
h2

2
∇2,  cH2 =

hDy
2

,  cH3 = −ih yx ∇y −yy∇x

� �
: (33)

When Ĥ3 = 0, one obtains the Schrödinger equation that governs

the complex wave functionM(x,y,t) for a single particle with unit mass

and external potential hDy/2 . Similar to the conservation of energy for

particles, i:e:   ∂t

Z ​ Z ​

M*ĤMdxdy = 0, one can prove that the

equation has the following conservation law using properties of the

Jacobian and integrating by parts [Danioux et al. (2015)]:

d
dt

I1 + I2 + I3ð Þ = 0, (34)

Where

I1 =
h2

2

Z Z
∇Mj j2dxdy,   I2 =

h
2

Z Z
Dy Mj j2dxdy,   I3 = ih

Z Z
y J M*,Mð Þdxdy : (35)
A B

FIGURE 8

(A) rave/Ly vs Ly/LM from the eigenmodes with low frequency whose s<0. (B) s vs Ly/LM from the eigenmodes with lower frequency whose s<0 . y =

−(z0=k20) sin  k0x sin  k0y. h/Y=0.2,0.6,1,5 , respectively. The lines are obtained by least-square fitting.
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Here, I1 is non-negative, I2 is the covariance between Dy and |M|2

reflecting the concentration of NIW energy, and I3 is an effect of

the advection.

In analogy to quantum mechanics, we define the position and

momentum operators as

r̂ = x, yð Þ and p̂ = −ih ∇x ,∇y

� �
: (36)

Analogously to the uncertainty relation of matter waves, we

obtain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈 (Dr̂ )2 〉 〈 (Dp̂ )2 〉

q
≥

h
2
, (37)

where Â denotes the weighted average following
Z Z

M*ÂMdxdy,

and Dr̂ and Dp̂ are defined as

Dr̂ ≡ r̂ − 〈 r̂ 〉,  Dp̂ ≡ p̂ − 〈 p̂ 〉 : (38)
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The weighted averages 〈 (Dr̂ )2 〉 and 〈 (Dp̂ )2 〉 are used to

measure the uncertainty in position and momentum, acting like the

variance of a data set. If 〈 (Dr̂ )2〉 ( 〈 (Dp̂ )2〉) gets smaller, we learn that

the waves become more concentrated in position (momentum) space.

The uncertainty relation (37) tells us that the waves cannot be overly

concentrated simultaneously in both position and momentum spaces,

which is a natural consequence of the Fourier transform.

When the background field traps the waves, i.e. , small 〈 p̂ 〉
guaranteeing that the waves do not tend to escape. Then the

uncertainty in momentum becomes

〈 (Dp̂ )2 〉 ≈ 〈 p̂ 2 〉 = 〈 2cH1 〉 = 2I1 : (39)

Supposing the NIWs are initially uniformly distributed, i.e. I2=0 .

Gradually, the waves become concentrated, corresponding to a

decrease in the uncertainty in position 〈 (Dr̂ )2 〉, and then the

uncertainty in momentum 〈 (Dp̂ )2 〉 increases according to Eq.(37).
FIGURE 9

s=(eP−eN)/(eP+eN) from the first 120 eigenmodes as a map of h/Y and Ly/LM.
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Thus, I1 increases according to Eq.(39). When Ly/LM≫1 , one gets

I3≫I2 according to a scaling analysis of Eq.(35). This corresponds to

the “strong advection” regime where the NIW’s concentration is

insignificant. On the contrary, when Ly/LM≪1 , we have I2≫I3 , and

the conservation law implies that an increase in I1 leads to negative I2 .

Thus, when large-scale NIWs are concentrated, the uncertainty

relation guides them to concentration in anticyclones. This scale-

dependent of NIW’s concentration is inconsistent with our analytical

and numerical results presented in Section 4–6.
Frontiers in Marine Science 12
7 Conclusion and discussion

Based on the YBJ equation, we analyze the scale effect of NIW’s

concentration by both analytical derivations and numerical

simulations. We start from the exact and approximate solutions for

a sinusoidal background shear flow and indicate that a larger wave

scale facilitates the concentration. The particular forms of

approximate solutions, consisting of envelopes and order-

dependent oscillations, give us intuitions about the wave shapes and
A B

FIGURE 10

(A) rave/Ly vs Ly/LM from the long-time average of M(x,y,t). (B) s vs Ly/LM from the long-time average of M(x,y,t). y = −(z0=k20) sin  k0x sin  k0y. h/Y=0.2,1,5,
respectively.
A B

D E F

C

FIGURE 11

(A, B) Density plots of the random stream function (A) and associated vorticity field (B) with h/Y=1. (C) The initial condition for the velocity field, as set in
Eq.(28) with n=1. (D–F) The long-time evolutionary behaviors of NIWs with different h/Y=0.2,1,5, respectively. The domain size is L=4p.
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approximate frequency expressions. Numerical simulations with

background vortex quadrupoles and random vortexes confirm the

large scale’s preference in enhancing the NIW’s concentration.

Based on the two dimensionless parameters, h/Y and Ly/LM , in

the YBJ equation, we classify three dynamic regimes: a strong

“dispersion” regime with h/Y≫1 , a “trapping” regime with small

h/Y and Ly/LM, and an “advection” regime with a small h/Y and a

large Ly/LM . Figure 13 illustrates this classification. It is worth noting

that for each h/Y , there exists a minimum value for Ly/LM , which is

determined by the scale of the most concentrated eigenmode of the

system. Moreover, the smaller h/Y is, the larger the minimum will be.

Unlike in Danioux et al. (2015), where with a homogeneous initial

state, they attribute the energy concentration to the effect of only one

parameter h/Y , we consider variable initial conditions and obtain a

phase diagram about h/Y and Ly/LM , which leads to a classification

of “advection” regime.

The scale effect works mainly in the “trapping” regime. When

NIWs concentrate in negative vorticities, their centers do not coincide

precisely with the core of the vorticities, leaving a displacement

originating from the advection. For strong “trapping”, this
Frontiers in Marine Science 13
displacement is proportional to the local wavenumber; However,

when the advection effect becomes stronger, waves approach the

boundaries between positive and negative vorticities, and the

displacement is inversely proportional to the local wavenumber.

Thus, the advection prevents the concentration of NIWs, and NIWs

with large local wavenumbers (small scales) are more likely to appear

at the boundaries. As small-scale structures continue to increase, the

system enters a “strong advection” regime. In contrast to the two

regimes mentioned above, in the “strong dispersion” regime, NIWs

quickly disperse and are slightly influenced by the background

vorticity. Therefore, the concentration of the NIWs is very weak in

the “strong advection” and “strong dispersion” regimes (Llewellyn

Smith, 1999).

Based on the similarity between the YBJ equation to the

Schrödinger equation (Balmforth et al., 1998; Danioux et al., 2015),

we present a new perspective for the NIW’s concentration in the

anticyclone using the uncertainty principle in quantum mechanics.

Ignoring the advection term, these two equations are identical, so

considering the higher probability of the particle being in the lower

potential region, the NIWs prefer to concentrate in negative relative
FIGURE 12

s vs Ly/LM from the long-time average of M(x,y,t) with h/Y=0.5,1,2,5, respectively. The lines are obtained by least square fitting as references.
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vorticities. Considering the advection’s effect, which hinders NIW’s

concentration, this concentration trend could still be true if the

change in the advection-related conservation, I3 in Eq.35, is small

enough. Based on the uncertainty relation, wave concentration means

a decrease in the uncertainty of the wave’s position, which leads to an

increment in the uncertainty of its momentum. This will enhance the

“particle” kinetic-like energy term, defined as I1 in Eq.35. Then, due to

the conservation of energy, it could reduce the vorticity-related energy

term if |DI3|<DI1 , leading the concentration towards negative

vorticities. Thus, a link between the down-scale waves in space and

the distribution of energy in anticyclones is naturally established.

We only consider some modes with low frequencies when

studying eigenmodes in the sinusoidal shear flow and vortex

quadrupole. This is reasonable because they contribute the most to

the mode projection of a realistic initial condition (Balmforth et al.

(1998)). For the low-frequency solutions, corresponding to small

wavenumbers, the center of symmetry of the solutions can be

regarded as the center of the energy distribution. While, for the
Frontiers in Marine Science 14
modes with high frequencies, the Riemann-Lebesgue Lemma implies

that the strong spatial oscillation induces only weak concentration if

there is any. In addition, too high a frequency is already far from the

near-inertial regime, which may make the YBJ equation invalid.
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FIGURE 13
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