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Mitochondrial DNA diversity and
genetic structure of striped
dolphin Stenella coeruleoalba
in the Northern Ionian Sea

Rachele Antonacci1†, Giovanna Linguiti 1†, Federica Paradiso1,
Chiara Scalone2, Carmelo Fanizza3, Elena Ciani1, Giulia Cipriano1,
Salvatrice Ciccarese1 and Roberto Carlucci1*

1Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy,
2Department of Biological and Environmental Science and Technologies, University of Salento,
Lecce, Italy, 3Jonian Dolphin Conservation, Taranto, Italy
In the framework of global and EU policies focused on stopping the loss of

biodiversity process, deepening the genetic variability, especially of populations

species identified as threatened, is crucial for defining conservation units and

developing appropriate conservation strategies. This is more urgent for cetacean

species in the Mediterranean because they assume a key ecological role in the

marine food web and are severely affected by numerous and different

anthropogenic pressures. This study aims to increase information on the genetic

variability of striped dolphin in the Northern Ionian Sea by investigating the

population structure, phylogenetic relationships and phylogeographic patterns

using two mtDNA markers. From October 2020 to August 2021, a total of 88

skin tissue samples were collected from free-ranging dolphins in the Gulf of

Taranto by applying the non-invasive technique of skin swabbing. An acceptable

amount of DNA was extracted from 86 samples and used for subsequent genetic

analysis conducted on the partial sequences of 421 and 704 bp in length of the cytb

gene and D-loop control region, respectively. In addition, the sequences of the

two mtDNA markers were joined together to compose a mtDNA concatenated

sequence of 1125 bp for each sampled dolphin in order to investigate the genetic

variability of the species population in the study area. Genetic analysis highlighted a

low nucleotide diversity and high haplotypic diversity of the striped dolphin of the

Gulf of Taranto, suggesting a population in rapid expansion after a period of

reduction in size and diversity of the initial population. The phylogenetic analyses

revealed the presence of at least two different lineages of Stenella coeruleoalba in

the Mediterranean Sea, one specific to the Northern Ionian Sea and one shared

with the Mediterranean population, confirming results already obtained for the

local unit in the Gulf of Taranto. The results point out a potential problem of

hybridization between striped and common dolphins which needs to be further

investigated. Therefore, increasing the analysis of several markers may increase

understanding of the genetic diversity of the population in the Ionian Sea and

represent a useful tool to support the implementation of future effective

conservation measures.
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1 Introduction

Biological diversity and richness are decreasing globally

because of the massive impact of anthropogenic activities

responsible for habitat destruction and fragmentation, pollution,

exotic invasions, and climate change (Féral, 2002; Duffy and

Stachowicz, 2006; Storch et al., 2022). This trend, if not quickly

stopped or slowed down, will continue to negatively affect

biodiversity which is strongly linked to human well-being as

highlighted by the New Global Framework for Managing Nature

Through 2030 from the Convention on Biological Diversity (CBD)

(https : / /www.cbd. int/art ic le/draf t-1-global-biodivers i ty-

framework), the Intergovernmental Science-Policy Platform on

Biodiversity and Ecosystem Services (IPBES) with the Global

assessment report on biodiversity and ecosystem services (IPBES,

2019) and the United Nations Sustainable Development Goals

(Stange et al., 2021). Therefore, a quantitative evaluation of the

status and trends of intraspecific and interspecific genetic diversity

and that at the community level is necessary to point out possible

adaptations to environmental changes in ecosystem services,

resilience capacity and stability of functions (Prieto et al., 2015;

Hunter et al., 2018; Hoban et al., 2020). This type of investigation

can be carried out thanks to novel molecular and advanced

genomic tools developed within conservation genetics, a

discipline that helps us to resolve taxonomic uncertainties, to

define evolutionarily diverged units such as subpopulations

within the same species (de los Angeles Bayas-Rea et al., 2018)

and to obtain information important for species conservation (sex,

population structure, gene flow, inbreeding and outbreeding rates).

It also allows us to integrate genetics with demographic and

environmental variables to predict extinction risks and find

proper conservation measures in order to slow biodiversity

erosion (Allendorf et al., 2007; Frankham, 2010; Coker, 2017).

More specifically, analyzing genetic variation over time [genetic

diversity, differentiation, and distance (Taylor et al., 2010)],

differentiations in specific local populations with a defined

population genetic structure could be revealed as a result of low

gene flow due, for example, to a recent geographic isolation or a

divergence (Gaspari et al., 2019). This phenomenon is highly

challenging for biodiversity conservation and mostly for that of

highly mobile species such as cetaceans assuming a key ecological

role in the marine food web (Roman and McCarthy, 2010; Ricci

et al., 2019; Carlucci et al., 2021a) even as sentinel species for

human and ecosystem health (Bossart, 2011) and a broad

geographic range of distribution. Moreover, cetacean species in

the Mediterranean Sea are subject to multiple stressors such as

habitat fragmentation and loss, alterations to distribution and

availability of resources, climate change, chemical and noise

pollution as well as several other threats (Coll et al., 2012; Pace

et al., 2015; Notarbartolo di Sciara, 2016).

Although genetic variability in some cetacean species has

already been investigated, such as for the killer whale in the

Northern Pacific Ocean (Barrett-Lennard and Ellis, 2001), the

blue whale in southern Australian waters (Attard et al., 2015),

the common bottlenose dolphin in the southern Pacific Ocean (de

los Angeles Bayas-Rea et al., 2018), the striped dolphin (Bourret
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et al., 2007; Gkafas et al., 2017; Ciccarese et al., 2019; Gaspari et al.,

2019) and the short-backed common dolphin in different areas of

the Mediterranean Sea (Santostasi et al., 2021), increasing these

studies in the Mediterranean Sea is very urgent given that genetic

diversity generally underpins population resil ience and

persistence, thus determining the success and long term survival

rate of a species in threatened and changing environments (Pace

et al., 2015). Indeed, in-depth investigations on genetic variability

of cetacean species might help recognize subpopulations or

metapopulations, clarify possible connectivity between putative

populations and prevent the decline of a species due to

environmental and genetic threats such as inbreeding or

hybridization as demonstrated for the striped dolphin and

common dolphin in the Greek seas (Antoniou et al., 2018;

Johnson et al., 2022). Moreover, further studies on this theme

could provide more reliable information for the assessment of the

extinction risk of species listed in the IUCN Red List even if,

genetic information is currently used indirectly to assess the

conservation status of species according to different criteria

considered (IUCN, 2012; Garner et al., 2020).

In the Mediterranean Sea, studies on genetic variability of

cetacean species have demonstrated, for all species regularly

occurring in the basin, that the Mediterranean populations are

differentiated from the Atlantic ones (ACCOBAMS, 2021). Within

the Mediterranean, there is currently only evidence of genetic

differences between groups living in the same area for the striped

dolphin, Stenella coeruleoalba . In the Ligurian Sea, little

differentiation is detected between offshore and inshore groups

probably linked to different environmental factors and/or prey

resources that reflect on group behaviour (Gaspari et al., 2007). In

the Gulf of Taranto, the existence of an independent lineage was

suggested by studies carried out on genetic variability of the cytb

gene sequence (Ciccarese et al., 2019; Linguiti et al., 2021). However,

a recent study comparing genetic information from both nuclear

and mitochondrial samples from Gibraltar to Israel has revealed

that the population of striped dolphins in the Mediterranean is

structured with low levels of gene flow across the region (Gaspari

et al., 2019).

This state of knowledge and the recent change in the conservation

status of the species from Vulnerable to Least Concern (ACCOBAMS,

2021; Lauriano, 2021) in any case do not solve the question about the

possible occurrence of subpopulations, as recently identified for the Gulf

of Corinth (Bearzi et al., 2022), or metapopulations across the

Mediterranean regions. Thus, further genetic investigations are

necessary. Therefore, this study aimed to deepen understanding of the

genetic variability of individuals of striped dolphin in the Gulf of Taranto

through investigations of mtDNA sequences of two markers, the

cytochrome b (cytb) gene and the D-loop control region (CR).

The cytb gene was chosen as a coding marker of the mtDNA to

compare the results with those of a previous study conducted in the

same study area (Ciccarese et al., 2019). Moreover, improvements in the

sampling activity and in laboratory protocols allowed us to analyze also

the D-loop as mtDNA not coding region. This choice was also guided by

the large number of cytb and D-loop sequences, both of the striped

dolphin and of other Delphinidae species, available in the

GenBank database.
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2 Materials and methods

2.1 Study area

The Gulf of Taranto is in the northernmost part of the Northern

Ionian Sea (Central Mediterranean Sea) encompassing an area of

about 14000 km2 from Santa Maria di Leuca to Punta Alice (Figure 1).

It is characterized by a narrow continental shelf with a steep slope and

several channels in the western sector and by descending terraces

toward the submarine canyon known as the “Taranto Valley” in the

eastern one. The complex morphology of the area together with the

circulation of water masses involve the occurrence of seasonal and

decadal upwelling currents (Civitarese et al., 2010; Matarrese et al.,

2011; Carlucci et al., 2014; Pinardi et al., 2016) playing a significant

role in sustaining productivity (Capezzuto et al., 2010; Maiorano et al.,

2010; Carlucci et al., 2018; Ricci et al., 2019) and favouring the

occurrence of valuable habitats from the conservation perspective

such as the Santa Maria di Leuca cold-water coral province (D’Onghia

et al., 2016; Vassallo et al., 2017) and those inhabited by several

species of cetaceans (Bellomo et al., 2019; 2020c; Carlucci et al., 2018b;

Carlucci et al., 2018c; Carlucci et al., 2020a; Carlucci et al., 2020b;

2021a; Santacesaria et al., 2019; Cipriano et al., 2022). Unfortunately,

the basin is potentially affected by several human pressures or threats

resulting in possible direct and indirect impacts on cetaceans

(Carlucci et al., 2021; Ricci et al., 2021).
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2.2 Sample collection

Skin tissue samples were collected during standardized vessel-

based surveys carried out while investigating an area of 960 km2 in the

northernmost portion of the Northern Ionian Sea from October 2020

to August 2021. Surveys were carried out only in favourable sea-

weather conditions (Douglas scale ≤ 3 and Beaufort scale ≤ 4)

applying an effort of approximately 5 h per day along 35 nautical

miles and adopting a zig-zag line transect sampling (Buckland et al.,

2004; Thomas et al., 2010). Genetic sampling was carried out under

authorizations provided by Ministry of the Environment and the

Protection of the Territory and Sea, under Authorization 367-REG-

1570798753503, Prot. n. 28525, applying the non-invasive technique

of skin swabbing (Harlin et al., 1999; Cosentino et al., 2015; Ciccarese

et al., 2019; Linguiti et al., 2021). This method consists of applying

moderate friction using a 4 x 4 cm synthetic fibre scrub pad on the

dorsal-lateral region of an individual to collect the superficial layer of

the skin, taking advantage of the moment at which, it approaches the

boat during sightings and then came to the surface to breath. The

scrub pad was attached with plastic fasteners to the tip of a 130 cm

long telescopic aluminium stick covered with a soft sponge-like tissue

to prevent hurting the animals. Although striped dolphins can react to

the skin swab by swimming, jumping, or diving sometimes they came

back close to the boat confirming that the sampling method did not

cause any damage or irreversible stress. Individuals sampled are
FIGURE 1

Map of the study area with indication of sightings of striped dolphin from which genetic samples were collected.
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always recognizable by the light skin scratches caused by the scrub

pad, preventing unwanted resampling of the same dolphin.

The skin tissue samples collected were then immediately removed

with sterilized forceps from the scrub pad and transferred to a flask

containing a 70% alcohol solution, labelled, and preserved at 4°C. At

the same time as the genetic samples were taken, information about

sighting date, geographic coordinates, depth (m), group size (number

of individuals) and predominant activity state was collected. In

particular, the collection of data concerning the predominant

activity states of groups of striped dolphins encountered was carried

out applying the focal-group protocol with instantaneous scan

sampling (Mann, 1999; Neumann, 2001).

The sampling activities were performed with complete respect for

the animals, respecting their space and trying not to interfere with

their natural behaviour or their activities (also taking into account

their attitude towards the research boats and the researchers

on board).

Together with the skin tissue samples collected from live

individuals, two samples were collected from two stranded striped

dolphins found on 2nd March 2021 (on the Marina di Ginosa coast,

west of Taranto) and on 27th April 2021 (on the Leporano Marina

coast, east off Taranto), respectively. Sampling was carried out by

directly taking the skin from the bodies using a sterile dermal biopsy

punch curette and preserving the samples at 4°C in labelled flasks

containing 70% alcohol (ACCOBAMS-MOP7/2019/Doc 33, 2019).
2.3 DNA extraction

Total genomic DNA from skin samples was extracted using a

Chelex-100 (Sigma) resin suspension in Tris-EDTA (10 mM Tris

HCl, 1 mM EDTA, pH 8.0). Chelex solution (500mL at 15%) was

added to each tube containing the sloughed skin sample previously

preserved at 4°C. Due to the fast sedimentation of the Chelex solution,

it was crucial for it to be frequently stirred prior to pipetting and

putting it in the tube. The tubes were vortexed and incubated at 100˚C

for 20 minutes, and then placed on ice for 2 minutes. The skin

samples were then centrifuged at 13000 rpm for 5 minutes, and the

supernatant was transferred to new tubes. The DNA was purified

using the standard phenol/chloroform method, quantified, and the

quality was checked with a Nanodrop 1000 spectrophotometer from

Thermo Scientific.
2.4 Sex determination

A protocol for sex determination was applied as an additional

tool, to photography of sampled individuals, to ensure the uniqueness

of the samples from individuals sharing the same haplotype within

the same sampling group.

The sex of free-ranging and stranded dolphins was identified with

a duplex PCR amplification of the striped dolphin ZFX/ZFY and SRY

gene fragments.

A set of three oligonucleotide primers for multiplex PCR

amplification of the ZFX and ZFY partial sequences was designed: a

forward-orientated oligonucleotide primer designed to anneal to

the ZFY, as well as the ZFX sequence (ZFYX0582F, 5 ’-
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ATAGGTCTGCAGACTCTTCTA-3’), and two reverse-orientated

oligonucleotide primers placed within a polymorphic position

between the ZFX (ZFX0923R 5’-AGAATATGGCGACTTAGAA

CG-3’) and ZFY sequences (ZFY00767R 5’-TTTGTGTGAACT

GAAATTACA-3’). PCR amplification reactions were carried out in

a 25ml reaction mixture containing 500 ng of sample DNA, 5X PCR

buffer (with 15 mMMgCl2 and 5 mM dNTPs), 10 mM of each primer,

and 1 U of Taq enzyme – yourSIALc HiFi Polymerase (S.I.A.L.). PCR

thermo-cycling conditions consisted of an initial denaturation step at

94°C for 2 min, followed by 35 cycles of denaturation at 94°C for 60 s,

annealing at 56°C for 30 s, and extension at 72°C for 30 s with a final

extension step at 72°C for 5 min.

Gender was determined by the banding pattern on a 2% agarose

gel, stained with 0.5 mg/ml ethidium bromide, and visualized under

ultraviolet light. The expected product size was a 382 bp single band,

as determined by electrophoresis, for females and two bands (382 bp

and 226 bp long) for males.

To verify the male gender, another primer set (SRYF 5’-

GAGAATCCCCAAATGCAAAACTCAGA-3 ’ , SRYR 5 ’ -

GGAATTGAGTTGCAAATGGCAGCAA-3’) was used to amplify a

418 bp fragment of the SRY gene. The PCR conditions were those

described above.
2.5 mtDNA amplification and sequencing

2-mtDNA regions were amplified for all samples: the cytochrome

b (cytb) gene and the mtDNA CR (D-loop), designed based on the

striped dolphin mitochondrial genome.

A fragment of the cytb gene was amplified by a PCR reaction, in a

volume of 50 ml, using Taq polymerase - Platinum (Life Technology).

The primer set (F1cytb 5’-TAACAGTCATGGCCACTGCATT-3’ and

R2cytb 5’-TGGTTTGATGTGTGCAGGGGTG-3’) was used under

the following conditions: 500 ng of each DNA sample, 10 mM

dNTP, 50 mM MgCl2, 1 U Taq, 10 mM of each primer, and 10X

PCR buffer. PCR thermo-cycling conditions consisted of an initial

denaturation step at 94°C for 4 min, followed by 35 cycles of

denaturation at 94°C for 15 s, annealing at 60°C for 30 s, and

extension at 72°C for 30 s, with a final extension step at 72°C

for 5 min.

The PCR products were purified and fully-sequenced, in both

directions, by a sequencing commercial service, using another

forward primer (F2cytb 5’-CCAACCTCTTATCAGCAATC-3’)

along with another reverse primer (R1cytb 5’-AGGGTGGAATGG

AATTATGTCT-3’). The forward primer (F2cytb) and the reverse one

(R1cytb) were drawn respectively downstream of the forward and

reverse primers used in the PCR reaction. The sequences acquired

were used to assemble and edit the sequence of 421 bp of the cytb

fragment for each sample.

A different primer set was used to amplify a fragment of the mtDNA

CR (D-loop). A forward primer dLp1.5L (5’-CACCCAAAGCTGRA

RTTCTA-3’) and a reverse primer dLp8scR (5’-TAGGGACGAAGC

ACTGTAGG-3’) were used under the same PCR conditions as above.

The PCR program consisted of an initial denaturation step at 94°C for

2 min, followed by 35 cycles of denaturation at 94°C for 30 s, annealing at

60°C for 60 s, and extension at 72°C for 60 s with a final extension step at

72°C for 10min. The PCR products were purified and fully-sequenced, in
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both directions, using a forward primer (dLpF2 5’-CAACATCAC

AGTACTACGTC-3’) along with another reverse primer (dLp5H 5’-

CCATCGWGATGTCTTATTTAAGRGGAA-3’), designed downstream

of the primers used in the PCR reaction. The sequences acquired were

used to assemble and edit the sequence of 704 bp of the mtDNA CR (D-

loop) fragment for each sample.

All cytb and D-loop haplotype sequences of individuals of striped

dolphin sampled are available from GenBank database (Accession

numbers ON959814 - ON959831).
2.6 Genetic, phylogenetic and
phylogeographic analyses

The cytb and D-loop mtDNA sequences obtained from striped

dolphins sampled in the Gulf of Taranto were aligned using Clustal

Omega software (EBI). The genetic analysis was conducted on the

partial sequences of 421 and 704 bp in length of the cytb gene and D-

loop, respectively. The number of haplotypes and polymorphic sites as

well as the type (single variable and parsimony information sites;

transitions and transversions; synonymous and replacement changes,

only for cytb coding sequence) of single nucleotide polymorphisms

were assessed using Arlequin v. 3.5.2.2 (Excoffier and Lischer, 2010).

Moreover, considering all samples from the Gulf of Taranto as

incorporated into a single unit, the sample genetic diversity was

estimated by calculating the haplotype diversity (h) and nucleotide

diversity (p) with the same software package.

The Fu’s FS (Fu, 1996) and Tajima’s D neutrality (Tajima, 1989)

tests, implemented in the program Arlequin v. 3.5.2.2 (Excoffier and

Lischer, 2010), was performed in order to test past population

expansion. A negative value of FS and Tajima’s D is considered

evidence for excess of rare haplotypes over what would be expected

under neutrality, as it would be expected from a recent population

expansion or from genetic hitchhiking.

Pair-wise FST values among the considered taxonomic groups

were also calculated.

The evolutionary relationships was investigated by building up

phylogenetic trees based on the cytb and D-loop nucleotide sequences

including samples of striped dolphin from the Gulf of Taranto

(obtained in this work plus those reported in Ciccarese et al., 2019)

and samples, retrieved from GenBank, of the same species from other

geographic areas and of other phylogenetically comparable species

such as Stenella clymene, S. longirostris, S. frontalis, S. attenuata,

Delphinus delphis, Tursiops truncatus and T. aduncus. The

corresponding cytb (GenBank ID: LC630882) and D-loop (GenBank

ID: NC_012062) sequences from Grampus griseus were used as

outgroup. Multiple alignments were carried out with the MUSCLE

program (Edgar, 2004) both for the cytb and D-loop sequences. The

evolutionary distances were computed using the p-distance method

(Nei and Kumar, 2000), and the units are in the number of base

differences per site. Phylogenetic trees were built using the neighbor-

joining (NJ) (Saitou and Nei, 1987) method implemented in MEGA X

(Kumar et al., 2018; Stecher et al., 2020) and the grouping in the tree

was supported by high bootstrap probability values. To support the

phylogenetic inference additional phylogenetic analyses such as

maximum likelihood (ML) and Bayesian Inference (BI) based on

JModelTest (Posada, 2008) were carried out.
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Phylogeographic networks were constructed using the sequences

of cytb and D-loop of S. coeruleoalba. Networks were constructed

adopting the median-joining algorithm implemented in the package

Network 10.2.0.0 (Copyright 2004-2022 Fluxus Technology Ltd.).

Haplotype frequency distribution in the considered major geographic

areas were visualized through pie charts using different color codes.

For better visualization of the network topology, branch lengths were

not maintained proportional to the number of mutations.

Finally, to deepen knowledge of the genetic structure of the

population of striped dolphin in the Gulf of Taranto the sequences

of the two mitochondrial DNA-fragments, cytb and D-loop, were

joined together to compose a mtDNA concatenated sequence of 1125

bp for each sampled dolphin. This allowed identification of the

haplotypes and investigation of their variability.
3 Results

3.1 Sampling and sex determination

During the sampling period from October 2020 to August 2021,

the number of individuals sampled during each survey varied between

1 and 9 for a total of 88 striped dolphins sampled. An acceptable

amount of DNA for subsequent analysis, ranging from 18 to 120 mg,
was only extracted from 86 samples from free-ranging individuals

(Supplementary Table 1). Sex was determined for 56 individuals,

showing a sampling bias in favor of males (42) over females (14) (sex

ratio 3:1).
3.2 Genetic diversity and
phylogenetic analysis

3.2.1 mtDNA cytb gene
The mtDNA cytb gene fragment of 421 bp was successfully

amplified and sequenced in 85 out of the 86 samples extracted

(99%) (Table 1). The sequences aligned were compared with those

obtained in the previous work of Ciccarese et al. (2019) to verifying

the possible match with haplotypes already identified. New

haplotypes have been labelled with the abbreviation “Hap” and a

progressive number. From this study, six cytb haplotypes were

obtained (Table 1). Hap10 was identified in 80 of the 85 striped

dolphin individuals (94%), confirming it to be the most common in

the Gulf of Taranto as assessed in the previous work (Ciccarese et al.,

2019). Haplotypes Hap-3, Hap-14, Hap-29, Hap-31 and Hap-32 were

found in single individuals. While the Hap-3 had already been found

in the Gulf of Taranto (Ciccarese et al., 2019), the other haplotypes

were new findings in the area. In addition, Hap-31 and Hap-32 are

new haplotypes also at the global level as they are not present in

any database.

The haplotype analysis indicated 23 polymorphic loci, including 6

single variable sites (34, 280, 286, 295, 388 397 bp) and 17 parsimony

information sites (91, 94, 109, 130, 178, 181, 184, 217, 244, 250, 259,

304, 310, 329, 341, 350, 394 bp) (Tables 2, 3). Within the observed

substitutions, 11 are transition changes and only one is a transversion

(ratio 11:1) (Tables 2, 3). The ratio between transition and

transversion is in line with ratios observed in mammalian mtDNA
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TABLE 1 Sampling code and haplotypes of cytb, D-loop and concatenated identified from individuals of S. coeruleoalba sampled in the Gulf of Taranto.

ID Sampling code Cytb haplotype D-loop
haplotype

Concatenated
haplotype

1 1-SS18/10 Hap10 Hap 1 Hap A

2 2-SS24/10 Hap10 Hap 2 Hap B

3a 3-SS1 Hap10 Hap 2 Hap B

3b SS2
SS3

Hap10
Hap10

Hap 3
Hap 3

Hap C
Hap C

4a SS1 grp1
SS3 grp1

Hap10
Hap10

Hap 3
Hap 3

Hap C
Hap C

4b 8-SS2 grp2
9-SS4 grp2
10-SS5 grp2

Hap10
Hap10
Hap29

Hap 3
Hap 3
Hap 3

Hap C
Hap C
Hap D

5a 11-SS1 grp1
12-SS2 grp1
13-SS3 grp1
14-SS4 grp1
15-SS5 grp1
16-SS6 grp1

Hap10
Hap10
Hap10
Hap10
Hap10
Hap10

Hap 3
Hap 3
Hap 3
Hap 3
Hap 3
Hap 4

Hap C
Hap C
Hap C
Hap C
Hap C
Hap E

5b 17-SS7 grp2
18-SS8 grp2
19-SS9 grp2

Hap10
Hap10
Hap31
Hap14

Hap 5
Hap 6
Hap 3
Hap 3

Hap F
Hap G
Hap H
Hap I

SS10 grp2
SS11 grp2
SS12 grp2

Hap10
Hap10

Hap 3
Hap 3

Hap C
Hap C

6 23-SS1 Hap10 Hap 7 Hap L

7 24-SS4 Hap10 Hap 8 Hap M

8 SS1
SS2
SS3
SS4

Hap10
Hap10
Hap10
Hap10

Hap 2
Hap 2
Hap 2
Hap 8

Hap B
Hap B
Hap B
Hap M

9 SS1
SS2
SS3
SS4
SS5

Hap10
Hap10
Hap10
Hap10
Hap10

Hap 2
Hap 2
Hap 2
Hap 2
Hap 2

Hap B
Hap B
Hap B
Hap B
Hap B

10 SS1
SS2

Hap10
Hap10

Hap 2
Hap 2

Hap B
Hap B

11 37-SS1 Hap10 Hap 2 Hap B

12 SS1
SS2

Hap10
Hap10

Hap 9
Hap 2

Hap N
Hap B

13 40-SS1 Hap10 Hap 2 Hap B

14 SS1
SS2

Hap10
Hap10

Hap 3
Hap 2

Hap C
Hap B

15 43-SS1 Hap10 Hap 2 Hap B

16 44-SS1 Hap10 Hap 8 Hap M

17 SS1
SS2
SS3
SS4

Hap10
Hap10
Hap10
Hap10

Hap 2
Hap 2
Hap 2
Hap 2

Hap B
Hap B
Hap B
Hap B

18 49-SS1 Hap10 Hap 7 Hap L

19a SC2
SC3

Hap10
nd

Hap 9
nd

Hap N
nd

(Continued)
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ranging from 10:1 to 20:1 (or more) (Irvine et al., 1981) and with

previous data on the same species (Ciccarese et al., 2019).

Substitutions are observed chiefly at third codon positions except

for the transitions at the first codon position of 329, 341 and 350

polymorphic sites. All changes represent silent substitutions

(Table 2). The analysis aimed to identify the genetic diversity of the

Gulf of Taranto dolphin population showed a mean value of

nucleotide diversity (p) equal to 0.000885 ± 0.000946 and a mean

value of haplotype diversity (h) equal to 0.1148 ± 0.0475, which are

both lower than the values observed in the previous study (Ciccarese

et al., 2019). The combined group, i.e. haplotypes found in this (group

1) plus those identified in the previous study by Ciccarese et al. (2019),

(group 2), containing all the samples of S. coeruleoalba from the Gulf

of Taranto still gives low levels of both nucleotide and haplotype

diversity (Table 3).
Frontiers in Marine Science 07
The evolutionary relationship of the cytb haplotypes was

investigated by comparing the sequences of S. coeruleoalba from

the Gulf of Taranto with sequences, retrieved from the GenBank

dataset, of the same species from other geographic areas, and of other

phylogenetically comparable species, i.e. S. clymene, S. longirostris, S.

frontalis, S. attenuata, D. delphis, T. truncatus and T. aduncus

(Supplementary Table 2). The corresponding cytb sequence from G.

griseus was used as an outgroup. In particular, the following selection

criterion was adopted. Only one gene sequence for each haplotype of

each species was included in the analysis. All sequences were

combined in the same alignment to build a phylogenetic tree using

the NJ method (Figure 2). Since the different methods applied gave

overlapping results (data not shown for ML and BI), the NJ tree has

been preferred in order to be in line with previous evolutionary

analysis performed by Ciccarese et al. (2019), of which this represents
TABLE 1 Continued

ID Sampling code Cytb haplotype D-loop
haplotype

Concatenated
haplotype

SC4
SC5

Hap10
Hap10

Hap 2
Hap 2

Hap B
Hap B

19b SS1
SS2
SS3

Hap10
Hap10
Hap10

Hap 2
Hap 2
Hap 2

Hap B
Hap B
Hap B

20 57-SC2 Hap10 Hap 2 Hap B

21 SS1
SS2
SS3

61-SS4(1)

Hap3
Hap10
Hap10
Hap10

Hap 12
Hap 2
Hap 8
Hap 2

Hap R
Hap B
Hap M
Hap B

22 SC1
SC2

Hap10
Hap10

Hap 2
Hap 3

Hap B
Hap C

23 SC1
SC2
SC3

Hap10
Hap10
Hap10

Hap 2
Hap 2
Hap 2

Hap B
Hap B
Hap B

SC4
SC5
SC6
SC7
SC8
SC9

Hap10
Hap10
Hap10
Hap10
Hap10
Hap10

Hap 4
nd

Hap 12
Hap 2
Hap 2
Hap 2

Hap E
nd

Hap Q
Hap B
Hap B
Hap B

24 74-SS1 Hap10 Hap 3 Hap C

25 75-SS1 Hap10 Hap 2 Hap B

26 SS1
SS2

Hap10
Hap10

Hap 3
Hap 5

Hap C
Hap F

27 SS1
SS2
SS3
SS4
SS5
SS6
SS7

Hap10
Hap10
Hap10
Hap10
Hap10
Hap10
Hap10

Hap 10
Hap 3
Hap 2
Hap 3
Hap 3
Hap 3
Hap 2

Hap O
Hap C
Hap B
Hap C
Hap C
Hap C
Hap B

28 SS1
SS2
SS3
SS4

Hap32
Hap10
Hap10
Hap10

Hap 11
Hap 3
Hap 2
Hap 3

Hap P
Hap C
Hap B
Hap C
Nd, not detectable.
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TABLE 2 Haplotypes identified in the 421bp mitochondrial cytb gene sequences, along with sample size.

250 259 280 286 295 304 310 329 341 350 388 394 397 No. of
sequences

CC- AT- AT- TT- TA- AT- GA- -TA -TA -TA GA- TA- AC-

P I I F Y I D L L L D Y T

C C C C T C C T T T T C C 1*

- - - - - - - - - - - T - 1*

A T - - - T T C C C - T - 1 + 1*

- - - - - - - - - - - - - 2*

- - - - - - - - - - - - - 4*

- - - - - - - - - - - - - 1*

- - - - - - - - - - - - - 1*

- - - - - - - - - C - T - 1*

- - - - - - - - - C - T T 1*

A T - - - T T C - C - T - 80 + 11*

- T T T C - T C C C C T - 1*

- - - - - - T C C - - T T 1

A T - - - T T C C C - T - 1

A T - - - T T C C C - T T 1

A T - - - T T C - C - T - 1

within codons and the encoded ammino acids are also reported. The haplotypes described by Ciccarese et al. (2019) are also inserted and the sample size
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0
8

Substitution
sites

34 91 94 109 130 178 181 184 217 244

GG- TA- AT- GT- TT- AT- CT- CC- CT- AA-

aa G Y I V F I L P L N

Hap1 A C C C T T T A A C

Hap2 - - - A - - - - G -

Hap3 G T T - C C C G G T

Hap4 - T - - - - - - - -

Hap5 - T - A - - - - - -

Hap6 - - - A - - - - - -

Hap7 - T - - - C - - - -

Hap8 - T - - - - - - G -

Hap9 - T - - - C C - G T

Hap10 - T T - C C C G G T

Hap11 - T T - C C C G G T

Hap14 - T T - C C C G G T

Hap29 - T T - C C C G G T

Hap31 - T T - C C C G G T

Hap32 - T T - C C C G G -

The position in the sequence where the substitution occurred is numbered in the header. The position of polymorphic sites
labelled with a “*”.
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an updated version. The grouping in the tree was supported by high

bootstrap probability values. The addition of new haplotype

sequences reinforces without modifying the paraphyletic

distribution of S. coeruleoalba. As a matter of a fact, it is possible to

recognize five different groups (Figures 2A–E) divided into two

principal branches as indicated by an arrow. In the upper branch,

group A is the largest and most represented, with five haplotypes

(Hap-3, Hap-10, Hap-29, Hap-31 and Hap-32) identified in the Gulf

of Taranto intermingled with sequences derived from other
Frontiers in Marine Science 09
geographic areas such as the Mediterranean Sea, Northeast Atlantic,

Pacific Ocean, Indian Ocean, Eastern and Northern Pacific. Among

these, Hap-10 and Hap-29 are the only ones to be shared between the

dolphins of the Gulf of Taranto and those of the other seas. As

previously described (Ciccarese et al., 2019), other haplotypes

exclusive to the Gulf of Taranto, Hap-1, 2, 4, 5, 6, 7, 8, and 9, form

a separate group in the tree (Figure 2E), suggesting the possible

existence of a distinct Ionian (sub)population. Moreover, these

haplotypes are closer to Tursiops truncatus sequences than to other

sequences of congeneric species. Instead, S. coeruleoalba haplotypes

distributed in the other clades are closer to D. delphis haplotypes, with

Hap-12 (Figure 2C) clustering with D. delphis haplotypes, and Hap14

apart (Figure 2B) and tightly related to S. clymene as Hap-11 and

Hap-13 are (Figure 2D). Moreover, the results of the analysis show the

expected species-specific clustering of the cytb gene sequences of S.

longirostris, S. frontalis, S. attenuata, D. delphis, T. aduncus and T.

truncatus, together with the polyphyletic distribution of the S.

clymene, already described (Amaral et al., 2014). S. clymene seems

to be the result of an ancient speciation by a natural hybridization

between two other species of dolphin closely related to each other, S.

coeruleoalba and S. longirostris. This conclusion is in line with our

findings. In fact, the sequences of the haplotypes of S. clymene in the

tree form monophyletic groups, with the corresponding sequences of

S. coeruleoalba and S. longirostris.

The cytb haplotypes were further investigated to evaluate the

genetic distances between the two paraphyletic groups of S.

coeruleoalba, one exclusive of the Gulf of Taranto (Figure 2E), and

one shared with other marine sites. Pair-wise FST comparisons

confirmed significant differences between the two groups of S.

coeruleoalba individuals. The observed FST value (0.67,

Supplementary Table 3) was lower than most of the interspecific

comparisons, while being higher than the pair-wise FST distances

observed between T. aduncus and S. attenuata, S. frontalis and S.

attenuata, as well as between T. aduncus and S. frontalis.

3.2.2 mtDNA D-loop

The mtDNA D-loop fragment of 704 bp was successfully

amplified and sequenced in 84 out of the 86 samples extracted

(approximately 98%). The sequence analysis revealed 12 distinct

haplotypes from the study area (Table 1). Hap-2 and Hap-3 were

the most frequent, being represented in 40 (48%) and 26 (31%) of

samples respectively, followed by Hap-8 identified in 4 samples (5%).

Hap-4, Hap-5, Hap-7, Hap-9 and Hap-12 were each found in two

individuals and the remaining four haplotypes (Hap-1, Hap-6, Hap-

10, Hap-11) were found in single individuals.

The haplotype analysis indicated 21 polymorphic loci, including 3

single variable sites (positions 50, 54 and 215) and 18 parsimony

information sites (positions 81, 95, 101, 133, 245, 262, 280, 289, 299,

366, 387, 390, 447, 453, 500, 521, 552 and 600) (Tables 3, 4). The

frequency of substitution sites along the D-loop is lower (21 sites/704

bp, one polymorphism every 33 nucleotides) than the cytb (23 sites/

421 bp, a polymorphism every 18.3 nucleotides) sequence portion.

Within the observed substitutions, 19 are transition changes and three

are transversions.

The overall nucleotide diversity and haplotype diversity were

0.002908 ± 0.001826 and 0.6799 ± 0.0384, respectively, for the 84 D-

loop sequences analyzed.
FIGURE 2

NJ tree inferred from Delphinidae cytb sequences. Evolutionary analyses
were conducted in MEGA X (Kumar et al., 2018). The optimal tree, with
the sum of branch length = 0.52128464 is shown. The tree is drawn to
scale, with branch lengths in the same units as those of the evolutionary
distances used to infer the phylogenetic tree. The evolutionary distances
were computed using the p-distance method (Nei and Kumar, 2000)
and are in the units of the number of base differences per site. This
analysis involved 98 nucleotide sequences. Codon positions included
were 1st+2nd+3rd+Noncoding. All ambiguous positions were removed
for each sequence pair. There was a total of 421 positions in the final
dataset. The colored circles indicate the geographic origin of the
samples of the haplotypes of S. coeruleoalba. Every species is
highlighted with a different colored square to enhance the distribution
on the phylogenetic tree. The arrow indicates the paraphyletic branches
containing the Stenella coeruleoalba haplotypes. Letters from (A–E)
indicate striped dolphin clades.
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The evolutionary relationship of D-loop haplotypes occurring

between samples of striped dolphin collected in the Gulf of

Taranto and those of other geographic areas is shown in the

phylogenetic tree reported in Figure 3. The accession numbers of

all D-loop sequences used for this phylogenetic analysis are listed

in Supplementary Table 4. This dataset was created by querying

the GenBank database. Only one sequence for each haplotype was

included in the analysis. Since most of the sequences available in

the database covered 88% of the D-loop sequence used for the

query, it was decided to shorten all sequences by 78 bp in order to

compare them. It should be emphasized that the 78 nucleotides cut

at 5’ of each sequence did not contain any polymorphic sites and

therefore were not informative for the analysis. Thus, the D-loop

region used in the phylogenetic analysis was 626 bp long instead

of 704.

D-loop haplotype sequences of the Gulf of Taranto dolphins

were distributed in two distinct groupings that separate at node A.

One group contains only Hap-10 and Hap-12, distributed among

haplotypes of striped dolphins sampled in the Mediterranean and

in other seas, such as the Atlantic and Pacific Oceans. This confirms

the high motility and extensive migratory patterns of this species

through different and distant geographical areas between the

Mediterranean, the Atlantic Ocean and the Pacific Ocean up to

the Sea of China, also passing through the Gulf of Taranto. Node B

forms a second monophyletic group containing most of the striped

dolphin sequences sampled in the Gulf of Taranto (from Hap-1 to

Hap-9 and Hap 11) intermingled with sequences of striped

dolphins sampled exclusively in the Mediterranean Sea,

confi rming the idea of the di s t inc t evo lu t ion of the

Mediterranean dolphin population.

A second phylogenetic tree was built to identify evolutionary

relationship between D-loop haplotypes of striped dolphins

occurring in the Gulf of Taranto and those of different species

belonging to the Delphinidae family (Figure 4). The D-loop

sequences used for the phylogenetic tree retrieved from Genbank

are reported in Supplementary Table 5. The phylogenetic

distribution of the D-loop sequences between and within the

different Delphinidae species is broadly in agreement with the

previous cytb evolutionary analysis (Figure 2). The tree shows the

predicted species-specific clustering of S. longirostris, S. attenuata,

and T. truncatus sequences, along with the only two S. clymene

sequences available in the database intermingled between S.

coeruleoalba sequences. The sequences of the haplotypes of T.

aduncus also are distributed in two different clades and they both

form a monophyletic group with the S. coeruleoalba sequences. In

fact, molecular evidence supports T. aduncus as a species indistinct

from but more closely related to S. coeruleoalba than to T. truncatus

(LeDuc et al., 1999; Charlton et al., 2006; Nishida et al., 2007;

Möller et al., 2008; Kingston et al., 2009; Xiong et al., 2009; Vilstrup

et al., 2011). As in the previous tree, the sequences of the haplotypes

of S. coeruleoalba show a paraphyletic grouping that separates

sequences of striped dolphins sampled exclusively in the

Mediterranean Sea from sequences of individuals also sampled in

other sites. In addition, the greater phylogenetic affinity of S.

coeruleoalba with D. delphis than other species indicates the

possible cross-breeding between these two dolphin species as

already reported in Greek seas (Antoniou et al., 2018).
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TABLE 4 Haplotypes identified in the 704bp mitochondrial D-loop sequences, along with sample size.

3 215 245 262 280 289 299 366 387 390 447 453 500 521 552 600

C A A T T G T T C T T T T T A

– – – – C T – – – C C – – C –

– – G C C T – – – C C C – C –

– – G C C T – – – C C C – – –

– – G C C T – – – C – C – – –

– – G C C T – – – – C C – – –

– – G C C T – – – C C C – – –

– – G C C T – – – C C – – C –

– – G – C T – – – C C C – C –

T – G – C T – – – – C C – C –

– G G C – – C C T – – – C – G

– – G – C T – – – C C C – – –

– G – C – – C C T – – – C – G

represents the reference sequence retrieved from the database (Acc. N° NC_012053).

A
n
to
n
accie

t
al.

10
.3
3
8
9
/fm

ars.2
0
2
3
.10

8
8
5
9
8

Fro
n
tie

rs
in

M
arin

e
Scie

n
ce

fro
n
tie

rsin
.o
rg

11
Haplotype No. of
sequences

50 54 81 95 101 1

Hap-0 – T A G T C

Hap-1 1 – G A C T

Hap-2 40 – – A C T

Hap-3 26 – – A C T

Hap-4 2 – – A C T

Hap-5 2 – – A C T

Hap-6 1 A T A C T

Hap-7 2 – – A C T

Hap-8 4 – – A C T

Hap-9 2 – – A C T

Hap-10 1 – – – – –

Hap-11 1 – – A C T

Hap-12 2 – – – – –

The position in the sequence where the substitution occurred is numbered in the header. Hap-0
3
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–

–

–

–

–

–

–

–

–

A

–

A
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3.2.3 Concatenated haplotype analysis

A total of 84 concatenated sequences were obtained and analyzed

to identify two-marker mtDNA haplotypes. The sequence analysis

revealed 16 distinct haplotypes named with the acronym “Hap”

followed by an alphabetical letter (Table 1 and Supplementary

Table 6). The number of concatenated haplotypes is higher than

that found for both haplotypes that compose it (6 for cytb and 12 for

D-loop), suggesting a remarkable heterogeneity that characterizes the

striped dolphins in the study area. Of these, Hap-B (40/84,

approximately 48%) and Hap-C (23/84, 27%) are the most

represented followed by Hap-M identified in 4 individuals

(approximately 4.8%); Hap-E, Hap-F and Hap-L identified in 2

individuals each; and the remaining haplotypes identified in single

individuals. Analyzing the combinations in detail, the most frequent

cytb haplotype, Hap-10, contributes mainly to the constitution of the

two-marker haplotypes (11/16) and it is in combination with all D-

loop haplotypes except one (Hap-11). On the other hand, the most

represented D-loop haplotype, Hap-2, is always associated with cytb

Hap-10 to form Hap-B, which is the most represented concatenated

haplotype (Table 1 and Supplementary Table 6).

Hap-3 is also a more represented D-loop haplotype and in most

samples (23) it is combined with cytb Hap-10, but it has also been

found in association with unique cytb haplotypes (Hap-14, Hap-29
Frontiers in Marine Science 12
and Hap-31) (Table 1 and Supplementary Table 6). Moreover, the D-

loop Hap-12 besides constituting the concatenated Hap-Q haplotype

in combination with cytb Hap-10, determines the Hap-R haplotype

when associated with cytbHap-3. Finally, Hap-P is the only combined

haplotype determined by the union of two unique haplotypes (cytb

Hap-32 and D-loop Hap11) (Table 1 and Supplementary Table 6).

The analysis of concatenated haplotypes indicated 35

polymorphic loci, including 12 single variable sites and 22

parsimony information sites (Table 3). Within the observed

substitutions, 31 are transition changes and five are transversions.

The nucleotide diversity is 0.002259 ± 0.001359, and the haplotype

diversity is 0.7008 ± 0.0408 (Table 3).
4 Discussion

The need to increase information about the genetic variability of

cetaceans occurring in a semi-closed basin such as the Mediterranean

Sea is a crucial point to implement effective measures for the

conservation of putative populations or local units in this basin.

This study, increasing samples and improving the methodology

applied in a previous work (Ciccarese et al., 2019), has allowed us

to better understand how wide the genetic variability of this species is
FIGURE 3

NJ tree inferred from S. coeruleoalba D-loop sequences. Evolutionary analyses were conducted in MEGA X (Kumar et al., 2020). The optimal tree, with
the sum of branch length = 1.27736443 is shown. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances
used to infer the phylogenetic tree. The evolutionary distances were computed using the p-distance method (Nei and Kumar, 2000) and are in the units
of the number of base differences per site. This analysis involved 281 nucleotide sequences. All ambiguous positions were removed for each sequence
pair (pairwise deletion option). There was a total of 638 positions in the final dataset. The red circles indicated the haplotypes of S. coeruleoalba
identified in the study area. An asterisk indicates haplotypes in the Gulf of Taranto also identified in other geographic areas (Supplementary Table 2).
(A, B) nodes indicate the distribution of the striped dolphin haplotypes from the study area as discussed in the text.
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at the local and Mediterranean scale. Furthermore, it contributes to

broaden the available data source that can be used in the future

evaluation phase of the health status of the Mediterranean

subpopulation, shedding light on the possible presence of at least

two different lineages of S. coeruleoalba in the Mediterranean Sea.

The ability to extract a good quantity (efficiency of extraction of

98%) of high quality of DNA from 88 samples collected during the

study period was achieved thanks to improvements in the skill of the

on-board team and in the DNA extraction protocol. Great attention

was paid to not letting the Chelex solution sediment before being

adequately mixed with the skin sample. To prevent fast

sedimentation, it was enough to frequently stir the Chelex solution

before pipetting and putting it in the sample. Moreover, the time of

incubation of the sample with the Chelex resin was prolonged to 20

minutes, 5 minutes longer than the protocol adopted in Ciccarese

et al. (2019) because a better yield was observed.

The choice of analyzing the nucleotide sequences of the

mitochondrial markers cytb and D-loop was driven by their

different evolutionary mutational rate. Cytb changes its amino acid

sequence more slowly than any other mitochondrial gene (Simmons

&Weller 2001). The protein function limits the nucleotide changes of

the gene, as confirmed by our analysis that showed how all nucleotide
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changes were silent variations. Conversely, D-loop, a non-coding

region, tends to be widely used as a marker due to its higher

variation than the remaining regions of the mitogenome (Cann

et al., 1984; Wang et al., 2019) and thus, has been frequently used

for phylogenetic studies of closely related groups, especially for

determining intra-specific phylogenies. Both these mitochondrial

markers have been widely and successfully used for population

differentiation analysis in different species (Imsiridou et al., 2019) as

well as in different species among different areas (Giantsis et al., 2014;

Turan et al., 2015; Šegvić-Bubić et al., 2016).

Although the p value of D-loop sequences is a little higher (just over

three times) than those calculated for the cytb gene sequences of the same

samples, both p values of the 2 markers indicate a low level of nucleotide

diversity (<0.5%, as suggested by Grant and Bowen, 1998) and,

consequently, little genetic divergence of the striped dolphin

population in the Ionian Sea. On the contrary, the h value of D-loop

sequences is to be considered clearly higher (about six times) than those

calculated for the cytb sequences in the same sample group as well as in

the combined group. Moreover, the h value calculated for the D-loop

marker is >0.5, suggesting a large haplotype diversity (Grant and Bowen,

1998). This condition of high h and low p is attributed to a population in

rapid expansion after a period of low effective population size as already
FIGURE 4

NJ tree inferred from Delphinidae D-loop sequences. Evolutionary analyses were conducted in MEGA X (Kumar et al., 2020). The optimal tree, with the
sum of branch length = 0.44828118 is shown. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances
used to infer the phylogenetic tree. The evolutionary distances were computed using the p-distance method (Nei and Kumar, 2000) and are in the units
of the number of base differences per site. This analysis involved 76 nucleotide sequences. All ambiguous positions were removed for each sequence
pair (pairwise deletion option). There was a total of 632 positions in the final dataset. Every species is highlighted with a different colored circle to
enhance the distribution on the phylogenetic tree. S. coeruleoalba of the Gulf of Taranto and of other areas were highlighted with different shape but the
same color. The haplotype sequences identified in the Gulf of Taranto are highlighted with a red circle. Some of them (Hap-2, Hap-3 e Hap-8) are
marked with an asterisk to indicate that their presence has also been documented in other areas.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1088598
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Antonacci et al. 10.3389/fmars.2023.1088598
suggested by Gaspari et al. (2019). The rapid growth of a population, in

fact, enhances the retention of new mutations. The signature of the

striped dolphin population expansion in the Ionian Sea was supported by

the negative and significant (p<0.02) values of the neutrality Fu’s FS test

statistics (Table 3).

The same trend about nucleotide (<0.5%) and haplotypes (>0.5)

diversity values was observed for concatenated haplotypes confirming

the hypothesis that striped dolphins in the Gulf of Taranto represent

an evolving population. In detail, our results provide evidence of an

increase in variability starting from prevalent haplotypes, represented

by Hap-10 for cytb (94%) and Hap-2 for the D-loop (48%), along with

groups of minor haplotypes that often derive from the founder

haplotype after accumulating one or a few mutations.

A phylogeographic analysis reinforced this idea. Two median

joining networks were constructed using, respectively, the 32 different

haplotypes of striped dolphin (Table 2) based on the 421 bp cytb

target region, and the 71 different haplotypes (Supplementary

Table 7) based on the 626 bp D-loop target region.

From the point of view of phylogeographic analysis of the cytb

sequences, Hap-10 and Hap-29 proved to be central haplotypes

closely related to each other as indicated by only one mutational

step that separates them (Figure 5). Hap-10, largely consisting of

samples from the Gulf of Taranto, represents the Mediterranean

haplotype, whereas Hap-29 is shared between individuals from the

Mediterranean and other seas. Due to its co-presence in the Atlantic

Ocean, Mediterranean Sea and Indian Ocean, Hap-29 could represent

a junction point in the evolution between haplotypes of different areas

and, due to the geographic continuity between the North-Eastern

Atlantic and the Mediterranean Sea, it could have entered the

Mediterranean evolving into Hap-10, the most represented

haplotype in this area. The identification of Hap-29 in the Gulf of

Taranto would confirm this hypothesis. The subsequent evolution

of Hap-10 would have generated the grouping of the eight

haplotypes (Hap-1, 2, 4, 5, 6, 7, 8 and 9) only observed in the Gulf

of Taranto and significantly diverging from all the other haplotypes
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(Ciccarese et al., 2019). Pair-wise FST comparisons performed with

mtDNA cytb sequences seems to support this hypothesis by showing a

genetic differentiation between the S. coeruleoalba haplotypes

exclusive from the Northern Ionian Sea and those found also in

other areas, comparable to interspecific and even intergeneric

distances observed in our study.

The unique Hap-32 may also have been generated directly from

Hap-10. In contrast, the other unique haplotype identified in the Gulf

of Taranto, Hap-31, is related to Hap-29, as is the case with Hap-3.

Whatever the evolutionary steps, our results suggest and confirm the

presence of at least two different lineages of S. coeruleoalba in the

Mediterranean Sea.

In line with those reported for the cytb gene, the phylogeographic

analysis of D-loop haplotypes also revealed evidence of a genetic

divergence between the Mediterranean population of striped dolphin

and those occurring in other seas (Figure 6). The network topology

distinguishes two main haplotype groups. The right group consists of

individuals almost exclusively sampled in the Mediterranean Sea,

confirming the existence of a Mediterranean lineage; while, the left

part of the network, typically reticulated, shows the relationships and

connections between different marine sites including the

Mediterranean Sea. All haplotypes of the D-loop gene identified in

the Gulf of Taranto (this study), except for Hap-10 and Hap-12, are

present among Mediterranean haplotypes. Hap-2, which is the most

represented among samples, occupies a central position. Its star-like

appearance suggests the hypothesis of a Mediterranean population

expanding from it, as in the case of Hap-10 of the cytb gene.

Specifically, since Hap-2 is always associated with cytb Hap-10,

resulting in the concatenated haplotype Hap-B, it might represent

the founder of the Mediterranean population as well as of the putative

Ionian metapopulation.

Furthermore, another interesting result is the possibility of

highlighting the presence of hybridization phenomena through

phylogenetic analyzes. In effect, this type of analysis is useful to

highlight phenomena of natural and anthropogenic hybridization
FIGURE 6

Median-joining network of D-loop haplotypes of S. coeruleoalba. The
network was constructed using 71 different sequences (Supplementary
Table 7). Haplotype frequency distribution in the considered
geographic areas is visualized through pie charts using different color
codes. For better visualization of the network topology, branch
lengths were not maintained proportional to the number of mutations.
The latter are indicated by lines parallel to branch lines, each position
line describing a mutated nucleotide position with respect to the first
sequence in the dataset (Hap-1). Red circles indicate missing
intermediate haplotypes.
FIGURE 5

Median-joining network of cytb haplotypes of S. coeruleoalba.
Haplotype frequency distribution in the considered geographic areas is
visualized through pie charts using different color codes (see the
graphic legend). For better visualization of the network topology,
branch lengths were not maintained proportional to the number of
mutations. The latter are indicated by red labels describing the
mutated nucleotide position with respect to the first sequence in the
dataset (Hap-1).
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(driven by anthropogenic disruption of biological genetic patterns)

representing a crucial point for the implementation of effective

conservation measures (Faria et al., 2022). In effect, understanding

anthropogenic hybridization dynamics can help identify effective

and timely management actions for threatened species avoiding

genomic extinction potentially led by the presence of admixed

individuals and by human disturbances that cause hybridization

(Santostasi et al., 2020). In this light, to overcome limits of this study

further future analysis on a wider number of mitochondrial and/or

nuclear genetic markers could help to better understand and

investigate genetic diversity of this species and, consequently, to

assist in delineating conservation strategies of local units or putative

metapopulat ions occurring in different regions of the

Mediterranean Sea. However, it should be kept in mind that to

collect larger amounts of nuclear DNA for genetic analysis it is

necessary to apply other sampling methods such as biopsies which

require specific permits.
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