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The Internet of Underwater Things (IoUT) is a typical energy-limited and

bandwidth-limited system where the technical bottleneck is the asymmetry

between the massive demand for information access and the limited

communication bandwidth. Therefore, storing and transmitting high-quality

underwater images is a challenging task. The data measured by cameras need to

be effectively compressed before transmission to reduce storage and reconstruc-

ted with minor errors, which is the best solution. Compressed sensing (CS) theory

breaks through the Nyquist sampling theorem and has been widely used to

reconstruct sparse signals accurately. For adaptive sampling underwater images

and improving the reconstruction performance, we propose the ESPC-BCS-Net

by combining the advantages of CS and Deep Learning. The ESPC-BCS-Net

consists of three parts: Sampling-Net, ESPC-Net, and BCS-Net. The parameters

(e.g. sampling matrix, sparse transforms, shrinkage thresholds, etc.) in ESPC-BCS-

Net are learned end-to-end rather than hand-crafted. The Sampling-Net achieves

adaptive sampling by replacing the sampling matrix with a convolutional layer. The

ESPC-Net implements image upsampling, while the BCS-Net is used to image

reconstruction. The efficient sub-pixel layer of ESPC-Net effectively avoids

blocking artifacts. The visual and quantitative evaluation of the experimental

results shows that the underwater image reconstruction still performs well when

the CS ratio is 0.1 and the PSNR of the reconstructed underwater images is

above 29.

KEYWORDS

internet of underwater things, underwater image, compressed sensing, deep learning,
convolutional neural networks
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1 Introduction

The internet of underwater things (IoUT) is an emerging

communication ecosystem to facilitate an integrated, reliable, and

coordinated communication network (Jahanbakht et al., 2021) that

connects different underwater devices in water bodies (rivers, lakes, and

oceans) and underwater environments. The underwater devices include

underwater vehicles (sea-bots, remotely operated vehicles, underwater

trackers) and underwater sensors (Bello and Zeadally, 2022). By

connecting more and more devices to the IoUT, the ecosystem

generates a huge amount of data, known as Big Data. However, due

to the large size of the captured images and the low memory of low-

power embedded devices, communication of underwater images

becomes very difficult. Furthermore, the traditional big data

processing methods (Cao et al., 2018) that rely on statistical

properties lack generalization ability. JPEG and other traditional

compression algorithms have limitations regarding reconstruction

quality, data rate, and compression performance, making them

unsuitable for resource-constrained IoUT (Monika et al., 2022b).

Compressed sensing (CS) theory has several names: compressive

sampling, compressed sensing, and compressive sensing. CS theory

breaks through Nyquist’s theorem, and it is a pre-processing

technique that exploits the signal’s sparsity for sampling the data

(Zhang et al., 2022). CS is more hardware-friendly, especially with

simultaneous sampling and compression. Some CS-based methods

have been proposed to solve underwater data processing. The SPIHT

compression algorithm for underwater images was proposed based on

embedded coding compression and CS (Cai et al., 2019). Zhang et al.

(2021) used CS to overcome underwater image distortions. The CS

multiscale entropy feature extraction method to process target

radiation noise is efficient and accurate (Lei et al., 2022).

Nevertheless, these traditional CS-based methods face the

drawbacks of requiring manual parameter adjustment for the

signal, time-consuming calculations, and poor generalization.

With the development of CS and Deep Learning, the network-

based CS methods have been applied to magnetic resonance imaging

(Kilinc et al., 2022), acoustic transmission (Atanackovic et al., 2020),

and synthetic aperture radar imaging (Cheng et al., 2022). The

network-based CS method allows the reconstruction of images

quickly once the network has been trained. Yuan et al. (2020)

proposed SARA-GAN based on Generative Adversarial Networks

with the Self-Attention mechanism for CS-MRI reconstruction. In

addition, a method called LightAMC based on CS and a convolutional

neural network was proposed for a non-cooperative communication

system (Wang Y et al., 2020). The parameters of these network-based

CS methods are trained end-to-end rather than manually tuned, with

the advantage of higher generalization and faster reconstruction.

To improve the CS performance of underwater image

reconstruction, we propose ESPC-BCS-Net. The following are the

particular contributions of the proposed ESPC-BCS-Net:
Fron
1. It is a novel network-based CS method where parameters

(excluding hyperparameters) are trained end-to-end rather

than through manual adjustment (including the sampling

matrix and sparse matrix).
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2. The ESPC-BCS-Net can be trained in unison, while the

Sampling-Net can be used separately for underwater image

sampling.

3. The Sampling-Net achieves adaptive sampling by replacing

the fixed sampling matrix with a learnable convolutional

layer.

4. The ESPC-Net avoids blocking artifacts and improves

reconstruction quality.
2 Related works

This section will present related works and briefly introduce CS

and CS-based reconstruction methods.
2.1 CS overview

Mathematically, CS reconstruction is to infer the objective signal

x ∈ R N from its randomized CS measurements:

y =  FY s = Qs = Fx                                                                       (1)

whereF ∈RM×N is the sampling matrix, Q is the sensing matrix, Y
is the sparse matrix, s is the sparse coefficient. CS ratio is defined as M

N ,M

≪N. In block compressed sensing (BCS), blocks of images are processed

simultaneously rather than the entire image, which reduces the

processing time. The image is divided into small blocks of size B×B.

The vector yi can be expressed as:

yi =  FBi xi                                                                                     (2)

where xi presents the vector form of the ith image block and Fbi is

the ith measurement matrix of size B×B. BCS solves the problem of

high decoding computational complexity by independently

measuring and recovering non-overlapping blocks, but the images

can lead to blocking artifacts (Li et al., 2017).
2.2 CS reconstruction methods

We classify the existing CS into three categories: iteration-based

method, optimization-based CS method, and network-based CS

method. The general iteration-based method for CS reconstruction is:

min
x

 
1
2
jjFx−yjj22 +lR(x)                                   (3)

where the first term 1
2 ‖Fx − y ‖22   is the data fitting term, l > 0 is

the weighting parameter, R(·) is the regularization term that requires

reconstructed data satisfies the priori information. The optimization-

based method for CS reconstruction is to solve the following

optimization problem:

min
x

 
1
2
jjFx−yjj22 +ljjYxjj1                                  (4)
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where the sparsity of the vector Yx encouraged by the l1 norm

(Qin, 2020). In addition, the common idea of network-based CS

method is to replace the operators in traditional CS methods with

neural networks (Liu et al., 2021).
3 Proposed ESPC-BCS-Net

This section will briefly introduce the proposed method and then

explain the novel ESPC-BCS-Net. As shown in Figure 1, the proposed

ESPC-BCS-Net contains Sampling-Net, ESPC-Net, and BCS-Net. We

will describe the design of these three networks in the following

sub-sections.
3.1 Problem formulation

We divided CS reconstruction into two steps:

                    r(k)=xi
(k−1)−r*∇

1
2
jjFxi

(k−1)−yjj22                             (5)

  x(k)=arg min
xi

 
1
2
jjFxi− r

(k)jj22 +ljjF(xi)jj1                        (6)

Where r is the step length of the gradient, ∇ express gradient

operations, l is the regularization parameter, F(·) is the transform

function to sparse images, xi is the image block. Inspired by a data-

driven adaptively learned matrix (Hong and Zhu, 2018), we improve

Equation (6) to learn sampling matrix F follow Equation (7):
Frontiers in Marine Science 03
  x(k)=arg m in
xi ,F,F

 
1
2
jjFxi−r

(k)jj22 +ljjF(xi)jj1                        (7)
3.2 Architecture of ESPC-BCS-Net

3.2.1 Sampling-Net
The traditional sampling matrix, such as the random Gaussian

matrix, is computationally complex and takes up a lot of memory, so

we design a learnable sampling matrix. Sampling-Net implements

adaptive sampling, which is a learnable convolutional layer used to

replace a fixed random matrix F ∈ RM×N. The convolutional layer

uses M filters of size
ffiffiffiffi

N
p � ffiffiffiffi

N
p

to sample the image block xi of size
ffiffiffiffi

N
p � ffiffiffiffi

N
p

. After the sampling network, we get the result yi=FBixi
with size 1 × 1 × M which easily compresses the underwater image.

After the ESPC-BCS-Net network has been trained in unison,

Sampling-Net can be used as a compression network. Compared to

traditional compression algorithms, Sampling-Net is more suitable

for low-power embedded devices as it compresses data through a

simple convolution layer.

3.2.2 ESPC-Net
Inspired by the image super-resolution network (Shi et al., 2016),

we designed the ESPC-Net (efficient sub-pixel convolutional neural

network) for underwater image upsampling and reconstruction. The

convolutional layer uses N filters of size 1 × 1 to replace the (FBi)
Tyi=

(FBi)
TFBixi. After the convolutional layer, we get the result (FBi)

Tyi
with size 1 × 1 × N. Furthermore, the efficient sub-pixel operation is

depicted in Figure 1. In the end, we obtained image blocks of the size
ffiffiffiffi

N
p � ffiffiffiffi

N
p

and used them as input to the BCS-Net.
FIGURE 1

The schematic diagram of the proposed ESPC-BCS-Net consists of Sampling-Net, ESPC-Net, and BCS-Net.
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3.2.3 BCS-Net
The BCS-Net (block compressed sensing network) is used for

underwater image reconstruction and consists of Nr layers network,

each containing a gradient module and a proximal module. In

particular, the BCS-Net can be trained and used independently as a

network for underwater image reconstruction.

Gradient module: corresponds to Equation (5), which is used to

generate the r(k). In Equation (8), we omit the calculation process for

this ∇ 1
2 ‖Fx(k−1) − y ‖22   = FT (Fx(k−1) − y). FT is the transpose

matrix of F.

  r(k) = x(k−1) − r(k)
*F

T (Fx(k−1) − y) (8)

Proximal module: corresponds to Equation (7), which is used to

generate the reconstruction result x(k). The soft thresholding

function Soft(·,q(k) ) is used to reduce image noise.

F(k)(x(k)) = Soft(F(k)(r(k)), q(k)) (9)

We design the BCS-Net as a residual network structure and x(k) is

calculated by Equation (10). F(k) and ~F(k) have same structures, with an

efficient channel attention (ECA) block (Wang Q et al., 2020) in each unit.

              x(k) = r(k) +   ~F(k)(F(k)(x(k)))                                                           (10)
3.3 Loss function

The loss function consists of three components, Lconstraint, Lsparse,

and Lorth. The Lconstraint is for network accuracy and the Lsparse is for

signal sparsity. The Lorth is an orthogonal constraint for the sampling

matrixF. The end-to-end loss function for ESPC-BCS-Net as follows:

                       Ltotal= Lconstraint+ l1 Lsparse+ l2 Lorth                   (11)

with:

               Lconstraint=
1

NbNx
 o
Nx

i=1
 o
Nr

k=1

 jj~F(k)( F(k)(xi))−xijj22                (12)

 Lsparse =
              

 o
Nr

k=1

 jjF(k)(r(k))jj1                           (13)

 Lorth =
              

1
M2 jjFTF−Ijj22                             (14)

where the fixed hyperparameters l1 = 0.01, l2 = 0.01, theNr is the total

number of the BCS-Net phase,Nx is the total number of training blocks,Nb

is the size of each block xk, M is the size of F, I is the identity matrix.
4 Experiment results and discussion

4.1 Experiment setting

To fairly show the advantages of the ESPC-BCS-Net, we used the

same training set (91 images) as ReconNet+ (Lohit et al., 2018) rather

than thousands of images. All networks are trained on a workstation
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with Intel Core i9-10900KF CPU and NVIDIA RTX3060 GPU by

PyTorch, taking about 22 hours for each CS ratio (0.5, 0.25, 0.1, 0.04,

and 0.01). ESPC-BCS-Net parameters Nr = 10, Nx =88912, Nb =1089,

and used Adam optimization with a learning rate of 0.0001. In

training, the image block size
ffiffiffiffi

N
p � ffiffiffiffi

N
p

is 33×33. We used the

ESPC-BCS-Net for our underwater image reconstruction

experiments, and all the underwater images used were accessible

through Monika et al. (2022a).
4.2 The results of underwater images

We select different underwater images to sample and reconstruct,

including fish, turtles, corals, and underwater scenes. The visual

quality comparison of the reconstructed underwater images at

different CS ratios is shown in Figure 2. The original images

contain three high-resolution images and three noisy images. PSNR

(Peak Signal-to-Noise Ratio) and SSIM (structural similarity)

evaluated the reconstruction quality. ESPC-BCS-Net has provided a

relatively lower CS ratio with convincing visual reconstruction

quality. When the CS ratio is 0.1, the PSNR is above 29. At a CS

ratio below 0.1, underwater image reconstruction is challenging. As

shown in Figure 2E, underwater images reconstructed by ESPC-BCS-

Net are still distinguishable when the CS ratio is 0.04.
4.3 Compared with BCS-Net

To demonstrate the usefulness of the Sampling-Net and the

ESPC-Net, we conducted a comparative experiment using the BCS-

Net and ESPC-BCS-Net. The Gaussian random matrix is used as the

sampling matrix, and the same training set for ESPC-BCS-Net was

then used to train BCS-Net. As shown in Figure 3, the original

images contain a high-resolution image and a dark light image. As

shown in Figures 3C, I, the image shows very obviously blocking

artifacts with a PSNR below 23. Figures 3D–F, J–L show the results

of the ESPC-BCS-Net reconstruction, all of which are better than

BCS-Net. By comparison with the BCS-Net, the reconstructed

underwater image PSNR and SSIM of the ESPC-BCS-Net are

improved by approximately 3.5 and 0.14, respectively.
4.4 Compared with other CS-based
methods

To compare with other CS-based methods, we choose Set11

(Kulkarni et al., 2016) as the test set. We compare ESPC-BCS-Net

with other CS-based methods, including GSR (Zhang et al., 2014),

ReconNet+ (Lohit et al., 2018), BCS (Adler et al., 2017), CSNet (Shi

et al., 2017), and FISTA-CSNET* (Xin et al., 2022). Note that the

traditional CS-based methods enjoy the advantage of interpretability

and do not require training but suffer from the disadvantage of

manual adjustment of parameters and computational complexity. In

addition, we use the average running time to evaluate these CS-based

methods. The GSR is a traditional CS algorithm, which takes the

longest time, about 4 minutes. Others CS-based methods are
frontiersin.org
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network-based CS methods, and all take less than 0.3 seconds. Table 1

shows each CS ratio’s average PSNR and SSIM for different methods.

We highlight the best results in bold and underline the second-best

results. Some methods were not trained and tested at a certain CS

ratio. For example GSR was not evaluated at a CS ratio of 0.5. It is

observed that the ESPC-BCS-Net outperforms the other CS-based

methods across five different CS ratios. Even at the lowest CS ratio of

0.01, the PSNR of the reconstructed image is higher than 20.

Compared with the BCS, ESPC-BCS-Net performance is superior.

The proposed method still performs better reconstruction than the

state-of-the-art FISTA-CSNet*. These results indicate that the
Frontiers in Marine Science 05
proposed method produces better reconstruction results while

maintaining fast runtime.
5 Conclusion

A novel network-based CS method named ESPC-BCS-Net for

underwater image compression and reconstruction is proposed. All

parameters (e.g. sampling matrix, sparse transforms, shrinkage

thresholds, etc.) of the ESPC-BCS-Net are learned end-to-end,

and its structure consists of Sampling-Net, ESPC-Net, and BCS-
A

B

D

E

F

C

FIGURE 2

Reconstructed underwater images (size of 256×256) by ESPC-BCS-Net at different CS ratios. (A) The original underwater images. (B–F) Reconstructed
underwater images.
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A B

D E F

G
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FIGURE 3

Visual comparison of BCS-Net and ESPC-BCS-Net. We evaluate the reconstructed underwater images by PSNR/SSIM. The size of (A-F) is 1024×678, and the size
of (G-L) is 960×540.
TABLE 1 Average PSNR and SSIM of different CS-based methods on Set11 and average running time (in sec) for reconstruction.

CS ratio Quality
CS-Based Methods

GSR ReconNet+ BCS CSNet FISTA-CSNet* Ours

0.01
PSNR 15.47 16.65 19.15 19.87 20.65 20.03

SSIM 0.368 0.372 0.441 0.497 0.536 0.536

0.04
PSNR 19.76 19.64 23.93 23.93 – 25.52

SSIM 0.574 0.535 0.663 0.734 – 0.789

0.1
PSNR 26.55 23.39 26.04 27.59 28.53 29.79

SSIM 0.812 0.698 0.797 0.857 0.858 0.890

0.25
PSNR 32.26 27.10 29.98 31.70 – 34.81

SSIM 0.924 0.821 0.893 0.927 – 0.952

(Continued)
F
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Net. The Sampling-Net achieves compressed sampling with only

one convolutional layer, which reduces computational costs and is

very suitable for resource-constrained IoUT. ESPC-Net and BCS-

Net are used for underwater image reconstruction. Furthermore, the

ESPC-Net effectively avoids blocking artifacts and improves the

reconstruction performance. The results show that ESPC-BCS-Net

achieves a PSNR of over 29 for underwater image reconstruction at a

CS ratio of 0.1. It can be concluded that ESPC-BCS-Net has

effectively improved underwater image compression and

reconstruction quality while maintaining fast runtime. The ESPC-

BCS-Net mainly focuses on the CS sampling and recovery of

underwater images, which can be easily extended to medical

images and other fields. The future scope is to implement the

proposed method on the hardware platform.
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