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Planktic foraminifera test iodine to calcium ratios represent an emerging proxy

method to assess subsurface seawater oxygenation states. Several core-top

studies show lower planktic foraminifera I/Ca in locations with oxygen depleted

subsurface waters compared to well oxygenated environments. The reasoning

behind this trend is that only the oxidized species of iodine, iodate, is incorporated

in foraminiferal calcite. The I/Ca of foraminiferal calcite is thought to reflect iodate

contents in seawater. To test this hypothesis, we compare planktic foraminifera I/

Ca ratios, obtained from plankton tows, with published and new seawater iodate

concentrations from 1) the Eastern North Pacific with extensive oxygen depletion,

2) the Benguela Current System with moderately depleted oxygen concentrations,

and 3) the well oxygenated North and South Atlantic. We find the lowest I/Ca ratios

(0.07 µmol/mol) in planktic foraminifera retrieved from the Eastern North Pacific,

and higher values for samples (up to 0.72 µmol/mol) obtained from the Benguela

Current System and North and South Atlantic. The I/Ca ratios of plankton tow

foraminifera from environments with well oxygenated subsurface waters,

however, are an order of magnitude lower compared to core-tops from similarly

well-oxygenated regions. This would suggest that planktic foraminifera gain iodine

post-mortem, either when sinking through the water column, or during burial.
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Introduction

Ocean deoxygenation caused by global warming poses a major

threat to the sustainability of fisheries and marine ecosystems, as well

as key global biogeochemical cycles (Breitburg et al., 2018). Oxygen

minimum zones (OMZs) are predicted to expand dramatically by

2100 (Oschlies et al., 2008). Being able to trace the existence of past

OMZs, using sedimentary proxies, is crucial to understand OMZ

dynamics and improve future predictions.

The chemical speciation of redox active elements such as iodine

often reflects seawater oxygen levels – iodine in the oceans exists

predominantly as iodide (I−) and iodate (IO3−), with the former being

dominant in anoxic environments (Wong and Brewer, 1977; Wong

et al., 1985; Rue et al., 1997; Truesdale and Bailey, 2000). Planktic

foraminifera are ubiquitous microorganisms that incorporate iodate

into their calcite shells (Lu et al., 2016b). Due to the broad

dependency of iodine speciation on seawater oxygen levels, iodine

to calcium ratios (I/Ca) in planktic foraminifera may be a promising

tool to assess the oxygenation state of the seawater that they calcified

in. Use of I/Ca in carbonates as a paleo tracer for ocean oxygen levels

primarily depends on the iodate concentration in seawater; abiotic

calcite synthesis experiments suggest that iodate is the preferred

iodine species taken up into calcite, and that the amount

incorporated reflects concentrations in seawater (Lu et al., 2010;

Zhang et al., 2013). Synchrotron X-ray absorption spectroscopy and

first-principles calculations confirm that iodate ions substitute for
Frontiers in Marine Science 02
carbonate ions in the calcite crystal lattice (Podder et al., 2017; Feng

and Redfern, 2018). However, this needs to be further tested in the

natural marine environment on living foraminifera.

Limited observations from oxygen-depleted environments such as

the Eastern Tropical South Pacific or Gulf of Mexico do not show a

clear trend when comparing surface water iodate concentrations from

areas with suboxia (O2 <10 μmol/kg) to those from similar latitudes

lacking suboxia (Figure 1). Planktic foraminifera from sediment core-

tops (< 5,000 years) from areas with extensive suboxia have very low

I/Ca ratios (<1 μmol/mol), compared with those from well-

oxygenated regions (I/Ca ratios > 4 μmol/mol) (Lu et al., 2016a),

which is thought to coincide with lower seawater iodate

concentrations. Recent applications of proxy I/Ca ratios have shed

new light on glacial subsurface water oxygen concentrations,

suggesting that the Pacific sector of the Southern Ocean was oxygen

depleted during glacial times (Lu et al., 2016a), with tandem

downward expansion of the Eastern Tropical North Pacific (ETNP)

OMZ (Hoogakker et al., 2018). Currently the planktic foraminifera I/

Ca proxy can only be applied qualitatively, as we do not have a clear

mechanistic understanding of iodine incorporation into the calcite.

Until now I/Ca calibration studies have focused on recent (< 5000

years) sediment core-tops, but not on fresh foraminifera from

plankton nets . We do not know what seawater iodate

concentrations core-top foraminifera calcified in. This leaves

uncertainties as to what extent shell I/Ca is directly proportionate

to seawater iodate. Core-top measurements from areas with an
A

B

FIGURE 1

Station map for plankton tows (black, see Table 1) and iodate profiles (grey circles) from Moriyasu et al. (2020) in the Pacific, Bluhm et al. (2011) in the
Southern Ocean, Waite et al. (2006) in the North Atlantic and from this study in the Benguela Upwelling System. (A) Average oxygen concentration at
300 m from the World Ocean Atlas 2018 (Garcia et al., 2019). (B) Iodate concentration at the surface (< 15 m) from the compilation described in Chance
et al. (2014), plus Cutter et al. (2018) and Moriyasu et al. (2020) (dataset available: https://www.bco-dmo.org/dataset/776552). Plotted using Ocean Data
View (Schlitzer, 2022).
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extensive OMZ show consistently low I/Ca <2.5 μmol/mol for both

mixed layer species and deeper dwellers (Lu et al., 2016a; Hoogakker

et al., 2018; Lu et al., 2020). Observations show that the well-

oxygenated mixed layer above the OMZ contains iodate, whilst the

deeper anoxic waters generally do not (Rue et al., 1997; Cutter et al.,

2018; Moriyasu et al., 2020). This leaves the conundrum of why in

certain locations mixed layer planktic foraminifera species show low

I/Ca ratios as do the deeper dwelling species.

To assess the extent to which seawater iodate is incorporated in

planktic foraminifera shells we present I/Ca measured from the shells

of foraminifera caught in plankton tows. This includes samples from

the tropical Northeast Pacific, with an intense OMZ, samples from the

Benguela area, with a weakly developed OMZ, and samples from the

North and South Atlantic with a well-oxygenated water column. We

compare these planktic foraminifera I/Ca ratios with published

(Pacific, North and South Atlantic) and novel (Benguela) water

column iodate and dissolved oxygen measurements.

Locations

Eastern Tropical North Pacific OMZ

The Eastern Tropical North Pacific has one of the worlds’ largest

OMZs, and contains very depleted O2 levels (minimum between 2
Frontiers in Marine Science 03
and 10 μmol/kg at ~430 m water depth; Wishner et al., 2018). Coastal

upwelling causes high productivity and high sinking fluxes of organic

matter to depth. Accumulation of nitrite in subsurface waters is

indicative of nitrate reduction (Garfield et al., 1983; Buchwald et al.,

2015; Medina Faull et al., 2020). The sample area is located offshore,

away from the upwelling and high productivity, though nevertheless

it is characterized by low oxygen as a result of low oxygen waters

moving away from the coast and poorly ventilated intermediate

waters in the ETNP (Table 1). Within the core of the OMZ, oxygen

levels reach 2 μmol/kg. The depth of the upper boundary of the OMZ

in the area varies between ~ 100 and 130 m. Like its South Pacific

counterpart, it is thought that there is lateral input of excess iodide-

iodine from the sedimentary margins (Cutter et al., 2018; Moriyasu

et al., 2020).
Benguela current

The Benguela Current is an eastern boundary current, which

flows north along the coast of South Africa and Namibia until it meets

warm southward flowing equatorial surface currents between 15.5° S

and 17° S (Veitch et al., 2006). The location of the Angola-Benguela

front that separates northward and southward flowing waters changes

seasonally. Upwelling along the coast introduces nutrients to the
TABLE 1 Sample details, locations and I/Ca values of plankton net samples.

Location Name/Event Latitude Longitude Species Water depth (m) I/Ca (µmol/mol)

Eastern North Pacific OMZ SKQ2017_721_6+7+8+9 21.55°N 117.80°W T. sacculifer 125 to surface *

Eastern North Pacific OMZ SKQ2017_726_4+7 21.55°N 117.80°W T. sacculifer ~ 430 ± 5 0.09

Eastern North Pacific OMZ SKQ2017_726_6 21.55°N 117.80°W O. universa ~ 430 ± 5 0.07

Eastern North Pacific OMZ SKQ2017_726_6+8 21.55°N 117.80°W Globigerinella siphonifera ~ 430 ± 5 0.17

Eastern North Pacific OMZ SKQ2017_726_7 21.55°N 117.80°W O. universa ~ 430 ± 5 0.07

Eastern North Pacific OMZ SKQ2017_726_8 21.55°N 117.80°W O. universa ~ 430 ± 5 0.07

Benguela Current SB
DY090 #07/

E96
21.56°S 9.47°E G. menardii 120 to surface 0.33

Benguela Current NB
DY090 #13/

E189
18.02°S 11.01°E G. menardii 120 to surface 0.33

Benguela Current NB
DY090 #14/

E190
18.02°S 11.01°E G. inflata 750 to 500 0.53

Benguela Current NB
DY090 #17/

E190
18.02°S 11.01°E G. inflata 120 to surface 0.72

Benguela Current NB
DY090 #17/

E190
18.02°S 11.01°E G. inflata 120 to surface 0.48

Benguela Current NB
DY090 #18/

E214
18.03°S 11.01°E G. inflata 120 to surface 0.55

North Atlantic JR271 B5 60°N 18.67°W G. bulloides 200 to surface 0.34

North Atlantic JR271 B6 65.98°N 10.72°W N. pachyderma 200 to surface 0.38

S Atlantic JR274 B1 56.47°S 57.43°W G. bulloides 200 to surface 0.65

S Atlantic JR274 B1 56.47°S 57.43°W G. bulloides 200 to surface 0.19

S Atlantic JR274 B3 58.37°S 56.25°W N. pachyderma 200 to surface 0.3
*Below detection limit.
SB, South Benguela; NB, North Benguela.
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photic zone, causing high primary productivity. Decomposition of

this organic material results in modest depletion of sub-surface

oxygen levels.

Both sampling locations (Table 1) are in the northern half of the

Benguela system, but south of the Angola-Benguela Front. The mixed

layer depth during the sampling (MLD) at the offshore site South

Benguela (SB) was 50 m with a surface water temperature of 20.6°C

(Figure 1). The surface water at the site North Benguela (NB) was 2.8°C

colder with a variable MLD between 15 m and 45 m during the

sampling period. Oxygen values were slightly lower at NB than SB

with a minimum of 25 μmol/kg at 300 m (compared to 41 μmol kg-1

at SB at 420 m). The main difference between sites was the much

shallower onset of oxygen-depleted waters just below the surface

mixed layer at NB, as opposed to at a depth of ~120 m in SB. South

Benguela displayed a typical low-nutrient tropical open ocean

chlorophyll-a profile with a subsurface maximum of 0.4 mg/m3 at

70 m depth. In contrast, NB had a surface chlorophyll-a maximum

with an average of 1 mg/m3.
North and South Atlantic Ocean

The North and South Atlantic samples represent well-oxygenated

water masses which do not have dissolved oxygen concentrations

below 235 μmol/kg in the upper 1000 m. The North Atlantic samples

came from two sites to the south and to the east of Iceland with

average SST of ca. 9°C (Table 1). Deep-water production in the

Greenland and Norwegian seas causes a particularly well-ventilated

water column with oxygen concentrations of 265–330 μmol/kg

(WOA18, Boyer et al., 2018).

The South Atlantic samples were from the Drake Passage through

which the Antarctic Circumpolar Current flows along with its strong

associated fronts (Orsi et al., 1995). The two samples are two degrees

of latitude apart from each other (see Table 1 for coordinates) with

SSTs of 1.7°C and 5.4°C and high oxygen concentrations in the water

column of 260–330 μmol/kg (WOA18, Boyer et al., 2018). These

waters are well ventilated with Antarctic intermediate waters due to

Southern Ocean overturning circulation.
Methods

Collection of samples during the cruises

Planktic foraminifera samples for the ETNP were collected using

a horizontally towed 1 m² MOCNESS (Multiple Opening/Closing Net

and Environmental Sensing System, 222 μm mesh size) at ~425 m for

station 726 and a vertical haul from 125 m to the surface for station

721 during R/V Sikuliaq cruise SKQ201701S in Jan-Feb 2017

(Wishner et al., 2018). At sea, the samples were stored in sodium-

borate-buffered seawater and formalin. Several months later they were

picked and stored in dry slides.

Planktic foraminifera samples from the Benguela Current were

collected during research cruise DY090 aboard the RRS Discovery in

May to June 2018 using vertical hauls of Bongo nets and a MultiNet®

Mammoth with 100 μm mesh size. Most nets sampled the upper 120

m of the water column, but one sample was from a depth of 750 m to
Frontiers in Marine Science 04
500 m. Samples were washed from the net into a bucket with surface

seawater. Following gravitational settling, planktic foraminifera were

collected from the bottom of the bucket using a hand pipette.

Foraminifera were washed over a 100 μm mesh with pH-adjusted

Milli-Q (ammonia solution, pH > 8), and oven dried (40 to 50°C, 8–

12 h) before storage.

Samples from two stations in the well-oxygenated high latitude

North Atlantic (Greenland and Norwegian Seas) and two stations in

the South Atlantic (Drake Passage) were collected during two

research cruises (JR271 in 2012 and JR274 in 2013) as part of the

UK Ocean Acidification Research Program (www.oceanacidification.

org.uk). Plankton samples from vertical Bongo net hauls (200 m to

surface, 100 μm mesh size) were collected, rinsed, dried, and stored in

the same way as the samples from the Benguela Current.
Seawater: oxygen concentrations

For the Pacific cruise SKQ2017, oxygen data was derived from

two sources: a Sea-Bird SB911 plus CTD including a SBE43 dissolved

oxygen sensor attached to the MOCNESS, and a CTD with an

Aanderaa 4831F oxygen sensor was attached to a Wire Flyer (towed

deep oscillating profiler) (Wishner et al., 2018). The Wire Flyer and

MOCNESS oxygen sensors were cross-calibrated during the cruise

and by post-cruise analyses. For the Benguela cruise DY090, in situ

oxygen data came from a Sea-Bird SBE43 dissolved oxygen sensor

attached to a SBE 9plus CDT calibrated against discrete Winkler

titrations using a Metrohm 716 DMS Titrino (cruise report: https://

www.bodc.ac.uk/resources/inventories/cruise_inventory/reports/

dy090.pdf).
Seawater iodate

During the Benguela cruise DY090 seawater samples for iodine

analyses were taken from the upper 1000 m (except two CTD casts to

>3500 m depth), at the same depths as discrete oxygen samples.

Following collection, the samples were filtered (0.2 μm, polycarbonate

Whatman Nucleopore™ filter) under gentle vacuum, and transferred

to 50 mL polypropylene screw cap tubes. Duplicate aliquots were

prepared for each sample, one for iodate and the other for iodide

analysis. Aliquots were frozen at −20°C for transport back to the

University of York for analysis. The majority (65%) of frozen samples

were analyzed within 12 months of collection, and all analyses were

complete within 32 months of collection. Campos (1997) has shown

that inorganic iodine speciation is preserved in filtered frozen samples

(≤−16°C) for at least one year and Schwehr and Santschi (2003) found

no significant change after three years. Iodate was determined using a

spectrophotometer (UV-1800, Shimadzu) after reduction to

iodonium (Truesdale and Spencer, 1974; Jickells et al., 1988), with

calibration using external KIO3 standards. Around half the samples

were analyzed singly, and the other half in triplicate, due to a change

in laboratory protocol. Where samples were analyzed singly, precision

was estimated by propagation of error from the calibration curve.

Where samples were analyzed in triplicate, precision was estimated

from the standard deviation of the replicates. The precision of these

measurements varied, and is shown as individual error bars on each
frontiersin.org
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data point (Figure 2 and Supplementary information). Fifty percent of

samples had a percentage relative standard deviation (%RSD) of less

than or equal to 4%, and 92% had a %RSD below 15%. The limit of

detection was approximately 50 nM. The iodate measurements from

the North and South Atlantic (Waite et al., 2006; Bluhm et al., 2011)

were made using the same iodometric method as our

own measurements.
Planktic foraminifera I/Ca ratios

Towed planktic foraminifera I/Ca ratios were measured using a

magnetic-sector ICP-MS (Thermo Finnigan Element 2 at the

Department of Earth Sciences, University of Oxford) and an

Agilent Technologies 8900 ICP-QQQ (British Geological Survey

Keyworth). On average we used 90 specimens per analysis. As

reference material we used the carbonate standard JCP-1 which is

not certified as an I/Ca standard but is often used in I/Ca studies. It

is a ground coral, which we measured at 4.27 ± 0.10 μmol/mol in

Oxford (n=13) and 4.82 ± 0.06 μmol/mol in Keyworth (n=6).

Previously published I/Ca ratios for the JCP-1 coral are 4.33 ±

0.16 μmol/mol (Chai and Muramatsu, 2007), 4.27 ± 0.06 μmol/mol

(Lu et al., 2010) and 3.82 ± 0.08 μmol/mol (Glock et al., 2014). For

the Pacific samples, only dead (empty) planktic foraminifera

specimens were selected, which contrasts to samples from the

North and South Atlantic and the two stations in the Benguela

Current System where most foraminifera were alive, with their

cytoplasm present.

Prior to all analyses, samples were rinsed with ultra-pure (18.2

MW cm) water and treated to remove organic material. Glock et al.

(2016) showed that organic material in benthic foraminifera could be

a significant source of iodine. We carried out a set of experiments on

core-top samples (ODP Site 1088, 0-1 cm, 41.14°S, 13.56°E, 2082 m
Frontiers in Marine Science 05
below sea level) to assess which method may remove organic

material/iodine contamination most effectively, using A) 1%

buffered H2O2 x 6, following Winkelbauer et al. (2021), B) 50% (v/

v) buffered H2O2 for 30 minutes (Anand et al., 2003), C) soaking in

bleach, and D) combustion at 450 °C. Before measuring I/Ca ratios in

planktic foraminifera each sample was initially rinsed in ultra-pure

de-ionized water. We assume that the cleaning method resulting in

the lowest planktic foraminifera I/Ca ratios, was the most adequate at

removing organic material within and adhered to the foraminifera

tests. Overall, the method of Winkelbauer et al. (2021), using 1% (v/v)

buffered H2O2 acquires the lowest I/Ca result, whereas the method

using bleach showed the highest value (Table 2). We therefore used

the method of Winkelbauer et al. (2021) to remove organic material,

which involved six repetitions of soaking the crushed samples in

buffered 1% (v/v) H2O2 at boiling point for ten minutes. The same

sample from ODP 1088, 0-1 cm was also used to measure planktic

foraminifera with different preservation states, i.e., semi-transparent

tests and fully opaque encrusted tests.
Results

Figure 2 shows a generalized overview of seawater dissolved

oxygen and iodate concentrations for the different locations. For

the Eastern Tropical North Pacific, we show water column data from

station F19 (Falkor cruise FK 180624) obtained by Moriyasu et al.

(2020), which is 400 km away from our plankton tow location. At this

location dissolved oxygen concentrations (~200 μmol/kg) were

uniform in the top 80 m and then decrease to almost 0 μmol/kg at

140 m water depth and deeper in the water column (Figure 2D).

Between 0 and 110 m water depth iodate concentrations at this

location vary between ~250 and 330 nmol/l, decreasing to < 50 nmol/l

until ~ 210 m after which they increased to >400 nmol/l (Figure 2A).
A B DC

FIGURE 2

Representative profiles of oxygen and iodate concentrations from selected stations for comparison with foraminifera I/Ca ratios. (A) Station F19 in the NE
Pacific. Oxygen from Evans et al. (2020) and iodate from Moriyasu et al. (2020). The plankton net sample for the North-East Pacific is 400 km away from
the iodate profile station and an oxygen profile from the plankton trawl station (Wishner et al., 2018) is shown along the closest WOA18 grid point profile.
(B) South Benguela (SB, continuous lines, CTD cast 7) and North Benguela (NB, dotted lines, CTD cast 18). (C) Iceland Basin iodate profile from Waite
et al. (2006) and oxygen from WOA18 (Garcia et al., 2019). (D) Drake Passage iodate profile (PS71/232-1) from Bluhm et al. (2011) and oxygen from
WOA18 (Garcia et al., 2019).
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At the Benguela location, the SB station had a mixed layer with

oxygen concentrations of 232–218 μmol/kg between 0 and 120 m

(Figure 2B). At the North Benguela station there is a two-step

decrease in dissolved oxygen from the surface with 237 μmol/kg to

310 m where the lowest dissolved oxygen concentrations of ~ 35

μmol/kg occurred (Figure 2B).

Iodate concentrations were variable over time at both stations in

the Benguela Current System, and the closest CTD casts to the net

hauls are shown in Figure 2B. At SB, the CTD and bottle sampling

was ca. 40 hours before the net hauls and at NB all net samples were

taken within 32 h before or after the CTD and bottle sampling. At

both stations the iodate concentration increased from the surface to

120 m depth, though the water samples from SB had lower

concentrations going from 60 nmol/l to 320 nmol/l while NB had

concentrations from 226 nmol/l to 400 nmol/l (Figure 2B). Water

samples from four days earlier (CTD 1) at SB had higher iodate

concentrations in the top 120 m, ranging from 230 to 300 nmol/l.

Comparable depletions of iodate in low latitude surface waters have

been observed elsewhere in the Atlantic, and are attributed to a

combination of biological activity and stratification (e.g., Campos

et al., 1996; Truesdale et al., 2000). The extent of the depletion seen in

CTD 7 is particularly large, and the change over four days rapid given

the relatively slow rates of iodine transformations (see e.g., Chance

et al., 2014). We suggest this could be due to advection of a localized

area of particularly high biological activity near the station. The two

CTDs 1 and 7 are also ca. 40 km apart from each other and therefore

reflect local variation in surface iodate distribution (see

Supplementary Table 1 for exact locations and times of the CTDs).

In the deeper water, below 120 m, the iodate concentrations were also

always lower at SB than at NB despite oxygen concentrations being

similar. This may result from the slow iodine oxidation kinetics and

highlights that iodate concentrations are not solely a function of

oxygen level. All iodate and oxygen profiles are shown in

supplementary Figures 1-3.

There are two plankton tow sites in the North Atlantic, one in the

Iceland Sea northeast of Iceland (JR271 B6, Table 1) and the other in

the Iceland Basin southeast of Iceland (JR271 B5). The closest iodate

profiles are from Waite et al. (2006) and we use the North-East

station, which was ca. 240 km northwest of our station JR271 B6. In

Figure 2C the August 2000 profile from Waite et al. (2006) is shown,

as this season matches best with the plankton samples that were taken
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in June 2012. Both oxygen and iodate profiles show little vertical

variation, with mean iodate values of 410 nmol/l in the upper 150 m

and a slight surface reduction to 390 nmol/l. The climatological

oxygen concentrations were 200 to 300 μmol/mol (WOA18, Garcia

et al., 2019) for both plankton net stations around Iceland.

Water column measurements from Drake Passage were ~150 km

and ~370 km distance away from the plankton tow sites. At this

location (59.5°S, 56.5°W) dissolved oxygen concentrations decrease

gradually from ~330 μmol/kg at the surface to 200 μmol/kg at 1000 m

(Figure 2D, WOA18, Garcia et al., 2019). The closest iodate profile is

at station PS71/232-1 from Bluhm et al. (2011) and shows slightly

lower sea surface iodate concentrations of 330 nmol/l, but uniform

further below (350 to 400 nmol/l). Both oxygen and iodate

concentrations have similar high values across the whole Drake

Passage (Bluhm et al., 2011; Garcia et al., 2019).

Tow-derived planktic foraminifera I/Ca ratios vary between the

detection limit of the method (average 0.1 μmol/mol) and 0.72 μmol/

mol, with the lowest values reported for the Northeastern tropical

Pacific Site (between detection limit and 0.17 μmol/mol), whereas at

the Benguela and North and South Atlantic stations they varied

between 0.19 μmol/mol and 0.72 μmol/mol (Table 1).

In addition, three species of planktic foraminifera from the South

Atlantic ODP core 1088 (0-1 cm, 41.14°S, 13.56°E) were analyzed.

They were displaying either semi-transparent tests (fresh) or

encrusted white tests (gametogenic and diagenetic overprint). The

semi-transparent samples are on average 0.89 ± 0.65 μmol/mol lower

than the white specimens at an average I/Ca of 2.89 μmol/

mol (Table 3).
Discussion

Seawater oxygen and net haul planktic
foraminifera I/Ca ratios

In Figure 3 we compare tow-derived planktic foraminifera I/Ca

ratios with in situ (i.e., the plankton net depth range) and water

column minimum oxygen concentrations to assess whether planktic

foraminifera I/Ca ratios reflect redox conditions. There is no

relationship between fresh planktic foraminifera I/Ca ratios and in

situ oxygen concentrations. We note that none of the species analyzed
TABLE 2 Effect of different organic material removal techniques on core-top sample from ODP 1088 (0-1 cm, > 300 µm Globigerina bulloides).

Sample Organic carbon removal treatment I/Ca in µmol/mol

A1 Buffered 1% H2O2 4.2

A2* Buffered 1% H2O2 3.9

B1 Buffered 50 % H2O2 4.0

B2 Buffered 50 % H2O2 5.0

C1 Soaking in bleach (4 hours) 5.9

C2 Soaking in bleach (4 hours) 5.3

D1 Combustion at 450 °C 4.7

D2 Combustion at 450 °C 4.4
*Was stabilized using tetramethylammonium hydroxide but cleaned using the same method. For a comparison of stabilization techniques please refer to Winkelbauer et al. (2021).
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have a habitat in the OMZ, as shallower-dwelling species have

historically been used for I/Ca reconstructions (Lu et al., 2016b;

Hoogakker et al., 2018). However, when we compare planktic

foraminifera I/Ca ratios with minimum oxygen concentrations

(following Lu et al., 2016a and Lu et al., 2020), then we observe

that the lowest I/Ca ratios of ≤ 0.17 μmol/mol correspond to the

lowest oxygen concentration of < 10 μmol/kg, while the other samples

are still widely spread (Figure 3). This threshold is much lower than

previously observed for core top I/Ca ratios that are generally below

2.5 μmol/mol when minimum oxygen concentration is below 50 to

100 μmol/kg (Lu et al., 2016a; Lu et al., 2020). The lack of a

relationship between planktic foraminifera I/Ca and in situ oxygen

concentrations could be reflective of the relatively long time of

months to years it takes for iodide to be oxidized back to iodate

within the oxygenated surface waters overlying oxygen depleted

waters (Hardisty et al., 2020 and references therein). At higher

oxygen concentrations, between 40 and 300 μmol/kg, planktic

foraminifera I/Ca varies between 0.19 and 0.72 μmol/mol.
Seawater oxygen, iodate and tow planktic
foraminifera I/Ca ratios

This is the first study to compare modern planktic foraminifera I/

Ca ratios versus dissolved oxygen and iodate concentrations. It is

important to note that we only have in situ oxygen and iodate profiles
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from the same location as the plankton-tows for the Benguela

locations. For the other three locations we used the nearest profiles

available from other studies, which were not only sampled during a

different year but also at a distance from the tows. As can be seen from

Figure 1, the global database for ocean iodine speciation is still very

limited in coverage (Chance et al., 2019). Despite relatively sparse

observations, large scale latitudinal and depth gradients in iodate

abundance are well described (see e.g., Chance et al., 2014), and the

profiles we have selected for comparison are consistent with these

trends. We compare our North Atlantic plankton tow samples with

the iodate and oxygen profiles of station “NE” from Waite et al.

(2006), ca. 240 km northwest of our station JR271 B6. Waite et al.

(2006) found iodine speciation in this region to be spatially and

temporally stable – iodate profiles were very similar (> 400 nmol/L

throughout the top 1000 m) to the NE station at additional stations

four degrees further south (“SW”) and 15 degrees further west

(“NW”), and showed very little variation between November,

February, and August. For the NE Pacific, iodate and supporting

oxygen profiles are from a location to the south of the plankton tow

(distance 400 km). However, with iodate in subsurface and mixed

layer water being quite variable in the Pacific (Rue et al., 1997; Cutter

et al., 2018; Moriyasu et al., 2020), we are constrained in our

comparison of seawater iodate concentrations with planktic

foraminifera I/Ca ratios. Below ~ 300 m, all four locations show

uniform 400 nmol/l, whilst oxygen concentrations vary considerably

(Figure 2). In the top 300 m there are some notable differences, with
A B

FIGURE 3

I/Ca values of planktic foraminifera compared to seawater oxygen concentrations. (A) planktic foraminifera I/Ca from net hauls vs. mean oxygen
concentrations from the upper 120 m from nearby CTD casts. The range shows the maximum and minimum oxygen concentrations in the upper 120 m.
(B) planktic foraminifera I/Ca vs. the minimum water column oxygen concentration, generally deeper down in the water column.
TABLE 3 I/Ca results of foraminifera with semi-transparent and cloudy appearances from ODP core 1088 (0 to 1 cm).

Species Semi-transparent specimen I/Ca
(µmol/mol)

White specimens I/Ca
(µmol/mol)

Globigerina bulloides 2.42 3.07

Globorotalia truncatulinoides 3.13 4.49
4.66

Globorotalia inflata 3.13 4.12
3.03
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the NE Pacific showing a large reduction in iodate when oxygen levels

fall below 5 μmol/kg.

In surface waters oxygen concentrations are influenced by

primary production, temperature, remineralization of organic

material, and mixing with other water masses. The distribution of

iodide and iodate in the oxygenated ocean is thought to arise from

the interplay of the biologically mediated transformations, and

physical mixing and advection processes (Campos et al., 1996;

Truesdale and Bailey, 2000; Chance et al., 2014). In areas where

oxygen is severely depleted, such as subsurface oxygen minimum

zones, iodide becomes the dominant form of iodine (e.g., Wong and

Brewer, 1977; Wong et al., 1985; Rue et al., 1997; Truesdale and

Bailey, 2000). It appears that iodate becomes depleted, and iodide

the dominant iodine species when oxygen concentrations fall below

7 ± 2 μmol/kg (Rue et al., 1997; Cutter et al., 2018; Moriyasu et al.,

2020). It is only in the NE Pacific that oxygen reaches such low

levels (Figure 2).

Comparison of our planktic foraminifera I/Ca ratios with

seawater dissolved iodate does not show a very clear relationship

(Figure 4). We use the depth range of the nets to calculate a

vertically weighted mean iodate concentration. In the top 120 m

of the well-oxygenated North and South Atlantic the mean iodate

concentrations are slightly elevated (310-360 nmol/l) compared to

the Benguela and NE Pacific (210-340 nmol/l). While the iodate

profiles in the top 120 m at Benguela and the NE Pacific look similar,

the planktic foraminifera from the NE Pacific have lower I/Ca values

compared with those from the Benguela sites (Figure 4). Unless in

situ seawater iodate values at the NE Pacific sites are lower than

measured for station 19 ~400 km away from the site, these results

suggest that the relationship between planktic foraminifera I/Ca and

seawater iodate concentration may not be straightforward. More

contemporary data containing planktic foraminifera I/Ca and

seawater iodate concentrations are needed to improve our

understanding of the use of planktic foraminifera I/Ca as a

potential subsurface redox proxy.
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Comparison of plankton tow derived
planktic foraminifera I/Ca with core-tops

There are various proxies that have been used to capture low

oxygen waters of OMZs: presence/absence of sedimentary

laminations, benthic foraminifera assemblages and morphology,

redox sensitive metals, and nitrogen isotopes (Moffitt et al., 2015;

Rathburn et al., 2018; Erdem et al., 2020; Studer et al., 2021).

Application of most of these proxies are however limited to

sediment cores that are immersed in low oxygen waters

(Winkelbauer et al., 2021), limiting the areal extent of assessments

of past OMZs to the upper continental slope. Iodine/calcium ratios,

measured in planktic foraminifera that calcified in close proximity of

the OMZ (e.g., in seawater directly within or above it) have the

potential to expand research on seawater redox conditions to the open

ocean (Winkelbauer et al., 2021), as do planktic-foraminifera shell-

bound nitrogen isotopes (Smart et al., 2020; Studer et al., 2021). Any

downcore application of such proxies needs calibration whether

quantitative or qualitative.

Core-top planktic foraminifera I/Ca data can be divided into two

groups: those with I/Ca ratios of > 4 μmol/mol, which appear to be

characteristic of areas where minimum dissolved oxygen

concentrations are between 100 and 280 μmol/mol; and those with

I/Ca < 2.5 μmol/mol, which appear to be characteristic of areas where

minimum subsurface oxygen concentrations are below 90 μmol/mol

(Figure 5, Lu et al., 2016a; Lu et al., 2020). These authors compared

their planktic foraminifera I/Ca data with the lowest oxygen

concentrations in the water column, which does not generally

represent the water depth that the foraminifera calcify at. For

example, for the North-East Pacific, Davis et al. (2021) show that

only a few planktic foraminifera species, like Globorotaloides

hexagonus, are found in very low oxygen environments, whereas

most species are found in the well-oxygenated mixed layer. Lu et al.

(2020) argue that minimum water column oxygen concentrations

need to be used as the oxygen content must drop below a certain

threshold to trigger iodate reduction, which then gets recorded as low

foraminiferal I/Ca (Lu et al., 2016a). Seawater iodate generally starts

to reduce under suboxic conditions (O2 <10 μmol/kg), so a low I/Ca

ratio < 1 μmol/mol in our planktic foraminifera samples cannot be

explained by iodate reduction when the minimum oxygen

concentration is > 100 μmol/kg (Figure 5).

Another important question is how signals from the OMZ/

oxygen depleted waters are communicated to planktic foraminifera

living in the generally shallower and better oxygenated mixed layer.

Potentially, this could be related to the time it takes for iodide to

oxidize to iodate, where in settings with suboxia in subsurface waters

the iodate concentration of the mixed layer above is decreased as a

result of vertical exchange compared to settings with a mildly hypoxic

or well oxygenated water column. More research is needed to

explore this.

It is striking that across the spectrum of dissolved oxygen

concentrations planktic foraminifera I/Ca ratios from core-tops

are significantly higher than tow-derived samples (Figure 5). In

OMZ environments, core-top samples show considerable variation,

with I/Ca ratios between the detection limit and 2.5 μmol/mol;

whereas plankton tow samples are limited to 0.17 μmol/mol.

Furthermore, core-top planktic foraminifera I/Ca ratios from
FIGURE 4

I/Ca of planktic foraminifera relative to dissolved mean iodate from the
upper 120 m of the water column, representing the habitat of the
analyzed species. Iodate values are from representative profiles up to
400 km away from the foraminifer sampling site as detailed in section 4.
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better oxygenated environments (>100 μmol/kg) show values

between 4 and 9 μmol/mol; plankton tows only reach 0.72 μmol/

mol (Figure 5).

Our observations of an order of magnitude lower I/Ca ratios in

planktic foraminifera from plankton tows compared with core-tops

would suggest that planktic foraminifera gain iodine post-mortem.

This could be via abiotic incorporation shortly after gametogenesis,

or when sinking through the water column, or following burial

because the bottom waters were better ventilated with high iodate

concentrations. Post depositional crust formation has been observed

in planktic foraminifera with the potential to affect paleoproxy

records of Mg/Ca and Sr/Ca (Branson et al., 2015). Diagenetic

processes could also influence the I/Ca ratio of foraminifera tests,

depending on the iodate concentration of the pore water.

Throughout their lifecycle, planktic foraminifera migrate vertically

through the water column. At the end of their lifecycle, prior to or

during gametogenesis, various species form a calcite crust, which

can potentially account for most of the total shell mass.

Gametogenic crusts can dominate the element signature of the

shell (Steinhardt et al., 2015). Steinhardt et al. (2015) show that

planktic foraminifera Mg/Ca ratios of N. dutertrei and G. scitula are

significantly lower (50%) in the crust compared with ontogenic

calcite. Incorporation of iodate seems to be higher in abiotic

calcification (Lu et al., 2010) compared to biotic calcification of

foraminifera (Figure 5), therefore, abiotic crust growth in the

sediments can increase the overall I/Ca of foraminifera after

deposition. If crust also plays a role in planktic foraminifera I/Ca

ratios, then the results shown here (Figure 5) would suggest that

crust addition in well-oxygenated settings causes a 5 to 11 times

increase in I/Ca ratios, whereas in lower oxygenated settings this is

reduced (in case of suboxic water column) or is negligible (in case of

mild hypoxia in the water column). However, we do not univocally

observe a greater I/Ca enrichment in species that form a thicker

crust, like N. dutertrei or N. pachyderma (Lu et al., 2016a;

Hoogakker et al., 2018; Lu et al., 2020).
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To further assess the potential effect of crusts on planktic

foraminifera I/Ca ratios, we measured I/Ca ratios for G. bulloides,

G. truncatulinoides and G. inflata samples from ODP Site 1088 (0-1

cm), comparing heavily encrusted samples with those that were

transparent to semi-transparent (i.e., limited encrustation).

Globigerina bulloides does not form a crust to the degree that G.

truncatulinoides and G. inflata do in the water column such that most

overgrowth in this species should happen after sedimentation at the

seafloor. While the transparent samples did not show similar values as

the plankton tows (e.g., below 1 mmol/mol) their I/Ca ratios were

lower compared to those that showed considerable encrustation

(Table 3). This supports our hypothesis that in higher oxygenated

settings crusts are associated with increased I/Ca ratios of core-top

planktic foraminifera.
Conclusions

Here we compared planktic foraminifera I/Ca ratios, obtained

from plankton tows, with published and new measurements of

seawater iodate and oxygen concentrations from 1) the Eastern

North Pacific with extensive oxygen depletion, 2) the Benguela

Current System with moderately depleted oxygen concentrations,

and 3) the well oxygenated North and South Atlantic. While we do

not observe a clear relationship between seawater iodate

concentration in the upper 120 m and planktic foraminifera I/Ca,

we do find that the lower planktic foraminifera I/Ca ratios are found

in areas characterized by depleted oxygen concentrations in

subsurface waters at 430 m. The observed trend is similar to that of

core-top studies, however, plankton-tow derived samples from well-

oxygenated regions have I/Ca ratios that are an order of magnitude

lower than their core-top counterparts. We suggest that planktic

foraminifera may gain iodine prior to or following gametogenesis or

post-mortem, at least in well-oxygenated areas, either when falling

through the water column, or through burial.
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SUPPLEMENTARY FIGURE 1

CTD bottle profiles of iodate (circles) and dissolved oxygen (diamonds)

concentrations from the station South Benguela.

SUPPLEMENTARY FIGURE 2

CTD bottle profiles of iodate (circles) and dissolved oxygen (diamonds)

concentrations from the station North Benguela.

SUPPLEMENTARY FIGURE 3

More CTD bottle profiles of iodate (circles) and dissolved oxygen (diamonds)
concentrations from the station North Benguela.
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