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The second-generation real-time
ecological environment
prediction system for the
Guangdong–Hong Kong–Marco
Greater Bay Area: Model setup,
validation, improvements, and
online visualization
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1State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology,
Guangzhou, China, 2College of Marine Science, University of Chinese Academy of Sciences,
Beijing, China, 3Oceanography Department, College of Oceanic and Atmospheric Sciences, Ocean
University of China, Qingdao, China, 4Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf,
Beibu Gulf University, Qinzhou, China, 5Key Laboratory of Science and Technology on Operational
Oceanography, Chinese Academy of Sciences, Guangzhou, China
With the rapidly growing population and socioeconomic development of the

Guangdong–Hong Kong–Marco Greater Bay Area of China, inputs of diverse

contaminants have rapidly increased. This poses threats to the water quality of the

Pearl River Estuary (PRE) and adjacent seas. To provide valuable information to

assist the governors, stakeholders, and decision-makers in tracking changes

in environmental conditions, daily nowcasts and two-day forecasts from the

ecological prediction system, namely the Coupled Great Bay Ecological

Environmental Prediction System (CGEEPS), has been setup. These forecast

systems have been built on the Coupled Ocean–Atmosphere–Wave–Sediment

Transport modelling system. This comprises an atmospheric Weather Research

Forecasting module and an oceanic Regional Ocean Modelling System module.

Daily real-time nowcasts and 2-day forecasts of temperature, salinity, NO2 +NO3,

chlorophyll, and pH are continuously available. Visualizations of the forecasts are

available on a local website (http://www.gbaycarbontest.xyz:8008/). This paper

describes the setup of the environmental forecasting system, evaluates model

hindcast simulations from 2014 to 2018, and investigates downscaling and two-

way coupling with the regional atmosphericmodel. The results shown that though

CGEEPS lacks accuracy in predicting the absolute value for biological and

biogeochemical environmental variables. It is quite informative to predict the

spatio-temporal variability of ecological environmental changes associated with

extreme weather events. Our study will benefit of developing real-time marine

biogeochemical and ecosystem forecast tool for oceanic regions heavily impact

by extreme weathers.

KEYWORDS

Pearl River Estuary, Marine biogeochemical and ecosystem, forecast tool, coupled
atmosphere-ocean circulation-carbon biogeochemistry model, nowcast and
shortrange forecast
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1 Introduction

The Pearl River Estuary (PRE) in South China is a large

subtropical permanent open estuary fed by the Pearl River, which

is the second largest river in China in terms of freshwater discharge

(3.3 × 1011 m3/yr) (Figure 1). Due to the substantial amount of

anthropogenic nutrient inputs along with high discharge, the PRE is

relatively productive with a high level of biodiversity. It provides

crucial habitat and natural resources for multiple marine and

freshwater fish species and the Chinese white dolphin, which is

designated as a first-class national protected animal (Jefferson and

Hung, 2004; Zhou et al., 2019). Oyster aquaculture has also

developed rapidly in the PRE since the Ming and Qing dynasties,

generating high revenue for the Guangdong government (Liu and

Song, 2022). According to Cai and Li (2011), the PRE marine

ecosystem is estimated to be valued at $31 billion per year. This

represents an important component of the Gross Domestic Product

of the Guangdong–Hong Kong–Marco Greater Bay Area.

Over the last few decades, rapid economic growth and

progressive urbanization in the Pearl River Delta have led to

considerable population growth in large cities in this region,

including Hong Kong, Macao, Shenzhen, Zhuhai, and

Guangzhou. This population increase poses a threat to the water

quality of the PRE due to dumping of new pollutants, such as

organophosphorus compounds, pharmaceuticals, and microplastics

derived from personal care products (Stedman and Dahl, 2008;

Zhou et al., 2016; Wang and Rainbow, 2020). These pollutants can

cause severe damage to estuarine ecosystems and reduce

biodiversity and fishery resources. This has caused substantial

ecological and economic losses. Thus far, the loss value of the

PRE is estimated to be approximately $5 billion per year. Therefore,

protecting the estuarine environment from further water quality

degradation is of considerable interest to stakeholders.
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Real-time environmental forecasting systems based on three-

dimensional, coupled hydrodynamic-biogeochemistry models are

important tools for providing information on spatio-temporal

varied environmental conditions (Wang, 2001). These data can be

used to assist local governments and private partners to establish

specific strategies for water quality improvement. The increase in

anthropogenic derived nutrients has fueled larger and more

frequent hypoxia in recent years (Li D et al., 2020; Ma et al.,

2009; Ye et al., 2017; Qian et al., 2018). Oyster aquaculture has been

shown to mitigate eutrophication and hypoxia, whereas the location

and size of the farming area require circulation and appropriate

biogeochemical conditions (Yu and Gan, 2021).

The coupled hydrodynamic–biogeochemical model usually

serves as the internal core of a real-time environmental forecasting

system. Web-based visualization systems are another important

component that aid in forecasting. Real-time environmental

systems with visualization systems can provide an intuitive way for

governments and private partners to understand data and facilitate

rapid decision-making. These systems have been established in many

estuarine areas and oceans adjacent to coastal areas worldwide. For

example, the Chesapeake Bay Environmental Forecast System

(CBEFS) runs every 6 h over 1–2 km as well as the Chesapeake

Bay Regional Ocean Modelling System (ChesROMS) – Estuarine

Carbon Biogeochemistry (ECB)Model (Feng et al., 2015). CBEFS can

provide real-time nowcast and two-day forecasts of salinity, water

temperature, pH, aragonite saturation state, alkalinity, dissolved

oxygen, and hypoxic volume in graphics on the local website

(www.vims.edu/hypoxia). Another example of a real-time

forecasting system is the China high-resolution coastal ocean

ecological environment numerical prediction system. This was

constructed using the Regional Ocean Modelling System–Carbon

Silicate and Nitrogen Ecosystem model (ROMS-CoSiNE) and Semi-

implicit Cross-scale Hydroscience-Integrated System Model-CoSiNE
A B

FIGURE 1

(A) Cites of Guangdong–Hong Kong–Marco Greater Bay Area, including Zhao-Qing (ZQ), Guang-Zhou (GZ), Hui-Zhou (HZ), Fo-Shan (FS), Dong-
Guan (DG), Jiang-Men (JM), Zhong-Shan (ZS), Shen-Zhen (SZ), Zhu-Hai (ZH), Macau (MC), and Hong Kong (HK). (B) The tributaries of Pearl River, the
Pearl River Estuary (PRE) and adjacent seas. Abbreviations are sub estuaries, including Ling-Ding-Yang (LDY), Mo-Dao-Men (MDM), Huang-Mao-Hai
(HMH), and Ji-Ti-Men (JTM).
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(SCHIMS-CoSiNE) for the BoHuang Sea, Yellow Sea, South China

Sea, and Xiamen Bay (http://202.108.199.24:8080/BJ_SZYB_Web/

default.html). The system can predict water temperature, current,

multiple inorganic nutrients, chlorophyll, dissolved oxygen (DO),

and pH predictions every 6 h. For the PRE, we constructed the

Guangdong–Hong Kong–Marco Greater Bay Area Ecological

Security Prediction System V1.0 using the Regional Ocean

Modelling System (ROMS), Soil and Water Assessment Tool

(SWAT), and Estuarine Carbon Biogeochemistry Model (ECB).

The system was run every 24 h and primarily used for forecasting

ocean currents, temperature, salinity, NO2 + NO3, chlorophyll, and

DO (http://zhujiangtest.xyz:8000/).

This study describes an updated version of the real-time

Ecological Environmental Forecast System for the Pearl River

Estuary, the Coupled Great Bay Ecological Environment

Prediction System (CGEEPS). We have introduced a general

model configuration and evaluated the model accuracy for

multiple hindcast variables and graphic visualization. CGEEPS

provides daily nowcasts and two-day forecasts of environmental

conditions throughout the PRE for temperature, salinity, NO2 +

NO3, chlorophyll, DO, and pH. Configuration of the first

generation of CGEEPS used a coupled ocean circulation–

atmosphere model with a nitrogen-based ocean biogeochemistry

component. The river inputs were generated from the land surface

model SWAT climatology. We have added a range of updates that

build on the first generation model (http://zhujiangtest.xyz:8000/).

This includes a carbonate chemistry module that has been

previously implemented in an existing nitrogen-based

biogeochemistry model. River discharge was updated in near real-

time from the China National Water and Rain Information Center

(http://xxfb.mwr.cn/) and snatched by the Python request module.

The remainder of this paper is organized as follows. Section 2

presents the configuration of the modelling system core for the

Forecast System and the model validation methodology. Section 3

presents the model validation and advantages of coupling it with the

atmospheric model in a typhoon passage case. Section 4

summarizes the results and discusses the disadvantages of the

current version of the forecasting system and potential future

techniques that can be implemented.
2 Materials and methods

2.1 Atmosphere–ocean circulation–carbon
biogeochemistry model implementation

The physical model of CGEEPS is built on the Coupled Ocean–

Atmosphere–Wave–Sediment Transport (COAWST) modelling

system. This comprises an atmospheric Weather Research

Forecasting (WRF) module and a ROMS (Warner et al., 2008;

Warner et al., 2010). The WRF domain spans from 98 ° to 122 °E

and from 16 °to 30°N with an average horizontal resolution of

approximately 12 km. This encompasses the entire Pearl River
Frontiers in Marine Science 03
Watershed and northern part of the South China Sea. The ROMS

domain ranges from 105° to 121°E and from 16° to 26°N, covering

the continental shelf of the North South China Sea (NSCS) and the

PRE (Figure 2A). The horizontal grid spacing varies between 2.8 km

and 40.7 km with an average resolution of approximately 4 km. The

model has 30 vertical layers that follow the terrain with a higher

resolution near the surface and bottom boundaries. The vertical s-

coordinate function is based on that of Shchepetkin and

McWilliams (2009). The physical model is configured to use the

recursive MPDATA 3-D advection scheme for tracers, four-order

horizontal advection of tracers, third-order upwind advection of

momentum, and the Mellor and Yamada (1982) turbulence closure

scheme for vertical mixing. A viscosity/diffusivity coefficient of 10-

5m2s-1 was used for biharmonic horizontal mixing in the

momentum and tracer equations. Based on the CFL criterion,

which is one of the global stability conditions, the internal mode

time step of the numerical integration was 900 s, while the external

mode time step was 60 s.

The circulation model was coupled with a nitrogen cycle model

with consideration of carbonate chemistry and O2 (Fennel et al.,

2006, 2008, 2011). The model has 12 state variables, namely

phytoplankton (Phy), chlorophyll (Chl), zooplankton (Zoo),

nitrate (NO3
−), ammonium (NH4

+), O2, dissolved inorganic

carbon (DIC), total alkalinity (TAlk), and two detritus pools.

These include small and large detritus, each split into nitrogen

(SDetN and LDetN) and carbon (SDetC and LDetC) (Figure 2B).

The mathematical description of the biogeochemical source and

sink terms for the state variables is as follows.

∂Phy
∂ t

= mmax(T)f (E)LNPhy − gmax
Phy2

kP + Phy2
Zoo −mPPhy

−   t(SDetN + Phy)Phy − wP
∂ Phy
∂ z

  (1)

Where

mmax(T) = m01:066
T (2)

f (E) =
aEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
max + a2E2

p (3)

LNO3
=

NO3

kNO3
+ NO3

1
1 + NH4=kNH4

(4)

LNH4
=

NH4

kNH4
+ NH4

(5)

E = E(z) =   E0 ˙ par ˙ exp −Z(Kw + Kchl

Z 0

z
Chl(ϑ)dϑ)

� �
(6)

∂Chl
∂ t

=
qmaxmPhy
aIChl

  mmax(T)f (E)LNChl − gmax
Phy2

kP + Phy2
Zoo

−mPChl −   t(SDetN + Phy)Chl (7)
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∂Zoo
∂ t

= (gmax
Phy2

kP + Phy2
b − lBM − lE

Phy2

kP + Phy2
b

−mZZoo)Zoo (8)

∂NO−
3

∂ t
= −  mmax(T)f (E)LNO−

3
Phy + n̂NH+

4 (9)

∂NH+
4

∂ t
= −  mmax(T)f (E)LNH+

4
Phy − n̂NH+

4 + lBMZoo

+   lE
Phy2

kP + Phy2
bZoo + r̂NSDSDetN +   r̂NLDLDetN (10)

∂ SDetN
∂ t

= gmax
Phy2

kP + Phy2
(1 − b)Zoo +mZZoo

2 +mPPhy

−   t(SDetN + Phy)SDetN −   r̂NSDSDetN

− wSD
∂ SDetN

∂ z
(11)

∂ SDetC
∂ t

= qZ
C:N(gmax

Phy2

kP + Phy2
(1 − b)Zoo +mZZoo

2)

+ qP
C:NmPPhy −   t(SDetC + qP

C:NPhy)SDetC

−   r̂ CSDSDetC − wSD
∂ SDetC

∂ z
(12)

∂ LDetN
∂ t

= t(SDetN + Phy)2 − r̂NLDLDetN − wLD
∂ LDetN

∂ z
(13)

∂ LDetC
∂ t

= t(SDetC + qP
C:NPhy)

2 − r̂ CLDLDetC

− wLD
∂ LDetC

∂ z
  (14)
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∂O2

∂ t
= mmax(T)f (E)(

LN0
−
3

LN
RO2 :NO

−

3

+
LNH

+
4

LN
R02 :NH

+
4
)LNPhy − 2n̂NH

+
4
− (lBM

+ lE
Phy2

kp + Phy2
b)R02 :NH

+
4
Zoo − r̂

N
SD

R02 :NH
+
4
SDetN

− r̂
N
LD

R02 :NH
+
4LDetN

(15)

∂DIC
∂ t

= −   qP
C:Nmmax(T)f (E)LNPhy + r̂ CSDSDetC + r̂ CLDLDetC

+   r̂ CRDRDOC + qZ
C:N(lBM + lE

Phy2

kP + Phy2
b)Zoo (16)

∂TAlk
∂ t

= mmax(T)f (E)
LNO−

3
− LNH+

4

LN
LNPhy − c2nNH+

4

+ lBMZoo +   lE
Phy2

kP + Phy2
bZoo + r̂NSDSDetN

+   r̂NLDLDetN (17)

The parameter definitions, values, and units used in this model

for coastal applications are listed in Table S1. The inclusion of

inorganic carbon and alkalinity as state variables is critical for the

successful simulation of pH using CO2SYS (Lewis and Wallace,

1998), as implemented in MATLAB. Phosphate is not included in

this version of the model but will be added in the future to improve

the system.

The bathymetry of the model domain was obtained from ETOPO

and smoothed to reduce truncation errors, with the minimum water

depth set to 5 m. The minimum depth was set to 5 m to ensure global

stability, i.e., hmin+zmax>0 (hmin is the min undisturbed water depth

and zmax is the max free surface elevation at the coast due to gust
frontiersin.or
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FIGURE 2

General setup of the Coupled Great Bay Ecological Environment Prediction System (CGEEPS) (A); the structure of the biogeochemistry model (B).
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wind-induced storm surges, Wang, 1996). The river discharge data

were sourced from the three main branches of the Pearl River

(Xijiang, Dongjiang, and Beijing Rivers) and from the Ministry of

Water Resources of the People’s Republic of China (http://

xxfb.mwr.cn). Freshwater inflows for the forecast period of each

daily simulation were held constant for the two-day forecast. This was

based on the inflow during the nowcast period. The data were

summed and assumed to be distributed in the upper part of

Lingding Bay, the lower Modaomen sub-estuary, and

Huangmaohai Bay. River nutrient concentration was retrieved from

water samples collected monthly from the eight river outlets of the

Pearl River Delta (Lu et al., 2009) This included NO3, NH4, and

organic nitrogen. All riverine organic matter was treated as SDetN in

the simulations. The phytoplankton, zooplankton, and LDetN values

were set to zero. DIC and alkalinity riverine inputs were sourced from

the Xiamen University on request. Given that the nutrient and

carbon-associated measurements are highly limited, climatological

values were used at the open boundary, and the physical module was

forced by the daily average temperature, salinity, current velocity, and

de-tidal water level from a high-resolution regional South China Sea

model (Peng et al., 2015). The biochemical variables used for the

boundary conditions of the model were derived from the historical

simulation of the CMIP6 model CESM-WACCM. The main inputs

and open boundary conditions are presented in Table 1. We spun up

the model for over six years before using the available historical cruise

data (2014–2018) to validate the model.
2.2 Forecast system configuration

CGEEPS is maintained manually and runs at a specific time of

the day to automate the workflow of the prediction system. The

forecast system retrieves the necessary information from NOAA ftp

to download the seasonal climate forecast from the NCEP coupled

forecast systemmodel Version 2 (CFSv2) using the “wget” command.

Python was used to interpolate the downloaded data to a fine WRF

atmospheric model grid. The Python requests module was used to

snatch the river discharge from the China National Water and Rain
Frontiers in Marine Science 05
Information Center. NetCDF operators combined with MATLAB

and Python were used to modify the NetCDF input and output files

efficiently. The forecast system maintainer replaces dates in a generic

ROMS text input file for the simulation to commence on the correct

day. The system was run on a workstation with 66 CPUs and

simulated for three days, including a one-day nowcast and a two-

day forecast. Each successive nowcast resulted from the end of the

nowcast for the previous day. MATLAB was used to further

postprocess the model NetCDF output to generate portable

network graphics (png) files for online visualization.

An ecological security prediction system requires nowcast and

forecast boundary conditions. TheWRF model was used to produce

real-time forecasting meteorological conditions for CGEEPS

(Figure 3). The WRF provides evaporation and precipitation, sea

surface heat flux, sea surface wind, and air pressure data to the

ocean model. The ROMS subsequently feeds the sea surface

temperature back to the meteorological model. The exchange

frequency was once every 10 min. In this study, the impact on

the study area of Hurricane Hato in August 2018 was simulated

with and without the WRF.
2.3 Observational data

We used a series of cruise observations from 2014 to 2018 to

validate the model (Figure 4; Table 2). The observations are part of

an ongoing program from a ship time-sharing project sponsored by

the National Natural Science Foundation of China (NSCF) and

Xiamen University. Measurements from Conductivity,

Temperature, and Depth (CTD) sensors documented the vertical

structure and monthly temperature, salinity, and DO. Chlorophyll,

NO3, NH4, and pH levels were measured in the laboratory.
2.4 Model skill metrics

Quantitative model–data comparisons using multiple skill

metrics are critical because they highlight the advantages and
TABLE 1 Major boundary conditions and inputs required to run the atmosphere–ocean circulation– carbon biogeochemistry model.

Input Variables Initial Source Source Resolution

Ocean
Boundary

Tides
Non-tidal Water Levels
Salinity and
Temperature
Ocean Currents
Biogeochemistry

Global Inverse Load Tide Model
Real-time regional Forecast System of the South China Sea Marine Environment
(RFSSME)
CMIP6

1/6°
8 Tidal Harmonics;
0.06°/0.07°
5-day average
1°
Monthly

Atmospheric
Boundary

Wind Velocity
Temperature
Relative Humidity
Geopotential Height

NCEP version 2 Coupled Forecast System (CFSv2) model
https://www.cpc.ncep.noaa.gov/products/CFSv2/CFSv2_body.html

0.5°
6-hour

River Inflow Discharge
Temperature
Biogeochemistry

Ministry of Water Resources of the People’s Republic of China
http://xxfb.mwr.cn
Climatology from observation
Climatology from observation

Daily
Monthly
Monthly for nutrients
Seasonal for carbonate
chemistry
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potential limitations of a particular model, which must be carefully

considered before using the model as a tool for scientific study or

decision-making (Jolliff et al., 2009; Stow et al., 2009). In this

analysis, multiple skill metrics were examined. This included the

correlation coefficient the that measures the tendency of the model
Frontiers in Marine Science 06
and observed values to covary, and was calculated as

r =   on
i=1(Oi − �O)(Mi − �M)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(Oi − �O)2on

i=1(Mi − �M)2
q (18)

where Oi is the observation at time ti,Mi is the model estimate at

ti, �O is the mean of the observations, �M is the mean of the model

estimates, and n is the total number of observations available for

comparison with model estimates. The bias, unbiased root–mean–

squared difference (unbiased RMSD), and total root–mean–squared

difference (RMSD) were calculated as:

Bias =  o
n
i=1(Mi − Oi)

n
=   �M − �O (19)

unbiased RMSD =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1½(Mi − �M) − (Oi − �O)�2
n

s
(20)

RMSD =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(Mi − Oi)
2

n

s
(21)

These three skill assessment statistics are particularly useful as

bias reports of the size of the model-observation discrepancies. Bias

values near zero indicate a close match. However, this can be

misleading because negative and positive discrepancies can cancel
FIGURE 3

Flow chart of the forecast system automated workflow.
FIGURE 4

Sampling stations on the North South China Sea (NSCS) shelf off the PRE from multiple open cruises. The survey time is listed in Table 1. The red line
shows the location of the vertical section in Figures 7, 5, and 11.
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each other. The unbiased RMSD nullifies the effect of the mean and

is a pure measure of how model variability differs from

observational variability. Total RMSD provides an overall skill

metric, given that it includes components for assessing mean

(bias) and variability (unbiased RMSD).
2.5 Target and Taylor diagrams for
model validation

Multiple model skill metrics are compactly visualized on Taylor

(Taylor, 2001) and target diagrams (Hofmann et al., 2008;

Friedrichs et al., 2009; Jolliff et al., 2009). For the Taylor diagram,

in addition to these skill metrics, the model standard deviation, sm

has also been calculated.

sm =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(Mi − �M)2

n

s
(22)

For both types of diagrams, skill statistics are typically

normalized by the observational standard deviation (so). This

allows plotting of multiple different datasets on the same diagram.
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sO =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(Oi − �O)2

n

s
(23)

The Taylor diagram is plotted using a polar coordinate system

and summarizes the skill metrics, including r, s, and unbiased

RMSD. In contrast, the target diagram was plotted using a Cartesian

coordinate system and summarized the total RMSD, unbiased

RMSD, and bias. On the normalized Taylor diagram, the

reference point at (1, 0) represents a perfect skill score.

Meanwhile, on the target diagram, the center of the target (0, 0)

represents a perfect skill score.
3 Results

3.1 Hindcast simulations for evaluating
model accuracy

The hindcast simulation of sea surface salinity was in strong

agreement with the observations for all eight cruises (Figure 5). The

correlation coefficient was 0.89. The bias and RMSD were 0.83 and

2.77 PSU, respectively. The simulated sea surface salinity showed
TABLE 2 The survey time and variables of datasets 1–8 from the cruises.

Dataset Time period Variables Data Source

(1) Sept 5-9, 2015 T, S Shiptime sharing project sponsored by NSCF

(2) Sept 11-16, 2016 T, S

(3) Jun 6-17, 2017 T, S, Chla

(4) Oct 20-22, 2017 T, S, Chla

(5) Jun 13-22, 2018 T, S, Chla

(6) Aug 18-20, 2018 T, S, Chla, DO

(7) Jul 19-25, 2015 T, S, pH Cruise by Xiamen Universtiy

(8) Aug 3-5, 2015 T, S, pH
A B D

E F G H

C

FIGURE 5

Comparison between observed (dots) and simulated (background color) surface salinity (< 2 m) for datasets (1) to (8) (Corresponding to A–H). The
model results were assessed in the same time period as the observation.
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that the river plume exhibited multiple shapes during the eight

cruises. It spread easterly in July, August, and September 2015

(Figures 5A, B, H) and along the west coast in October 2017

(Figure 5D). The river plume bulged offshore in June and August

2018 (Figures 5E, F), and symmetrical alongshore in September

2016 and June 2017 (Figures 5B, C). The simulated plume

morphology is consistent with previous observational facts

reported in literature that the Pearl River buoyant plumes formed

during summer can be classified into four types, namely offshore

bulge spreading, west alongshore spreading, east offshore spreading,

and symmetrical alongshore spreading. These were predominantly

determined by the combined effect of river discharge and wind

(Chen et al., 2017; Luo et al., 2012; Zu and Gan, 2015; Ou et al.,

2009). River discharge has regulated the plume size, while wind has

played an important role in changing the plume shape. The east and

southeast winds drive the buoyant plume westward, resulting in the

plume spreading westward alongshore. Given that the river plume

resides at the surface, it is susceptible to the surface Ekman effect.

The southwest wind upwelled and detached the eastward plume off

the coast, which then spread offshore. If the wind is purely in a

southerly direction, the plume is confined nearshore and moves

both eastward and westward, thus forming a symmetrical structure.

Next, we compared the CGEEPS hindcast temperature and

salinity along the vertical transect for six cruises where profiled

CTD data were available (Figure 6). The simulated temperature and

salinity were in strong agreement with the observations. For

temperature, the CGEEPS hindcast replicated the observational

fact that there was a strong thermocline in September 2015 and

2016, June 2017 and 2018, and August 2019, but not in October

2017. The correlation coefficient was 0.81. The bias and RMSD was

0.36 and 1.74 °C, respectively. The formation of a strong

thermocline was due to upwelling of cold water under

southwesterly winds, which generally occurs from June to August.

In addition to the thermocline from upwelling, the low salinity

riverine water extended further offshore with the southwesterly wind in

both the CGEEPS hindcast simulation and observations. The 28 psu

isohaline extended over 22 °N. However, October 2018 was highly

favorable for the occurrence of downwelling conditions. The low

salinity water was increasingly confined adjacent to the river mouth

and the isohalines were vertically distributed. The correlation coefficient

was 0.94 and the bias and RMSD were 0.19 and 1.78 psu, respectively.
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The high level of skill in terms of temperature and salinity fields

suggested that our modelling system was relatively robust in

replicating the dynamics of the PRE–ocean system, which is a

river-dominated margin (Rabouille et al., 2008).

We subsequently examined how the nitrogen type nutrients,

which are a combination of NO3 + NO2 + NH4, were reproduced by

CGEEPS. Given that rivers and upwelling are the two main sources

of nutrients, we initially observed that the concentrations of N-type

nutrients can reach as high as 150 mM inside the estuary and

decrease to less than 1 mM as the plume water extends offshore. The

nitrate concentration was relatively high (5–10 mM) at 20 m from

the bottom owing to upwelling (Figure 7). The correlation

coefficient between simulated and observed NO3 was 0.91;

however, the bias seemed to be slightly larger (Bias = 20.79 mM,

RMSD = 63.1 mM). We examined the output data and found that

NO3-overestimation predominantly occurred at three stations in

the upper reaches of the estuary closer to the river mouth boundary

of the model grid. This overestimation was likely because we had set

up at the river mouth in the upper part of Lingding Bay rather than

at the actual river mouth. If we excluded these three points from the

calculation, the bias and RMSD were almost halved (Table 3).

The nutrient distribution was in line with the salinity

distribution pattern in the river plume region, which were the

two variables with the best performance in the simulation system.

The full model observation skill assessment is presented in

Table 3. The comparison was conducted by gathering all the

observational points and extracting the model output at the

observational stations. This implies that the skill number

incorporated both spatial and temporal variability. In addition to

the temperature, salinity, and N-type nutrients, we also examined

the model performance for surface chlorophyll concentration and

bottom DO (Table 3). The comparison results showed that the

correlation between the observed and simulated surface chlorophyll

content was 0.29. The surface chlorophyll concentration was

overestimated by approximately 3 mg–Chl/L, particularly in the

plume area. This was likely due to the deficiency of the current

ecosystem module in CGEEPS. To date, we have not incorporated

the P- and light-limitation effects due to resuspended sediment. We

expected that further incorporation of these processes would slow

the growth of phytoplankton and decrease the surface

chlorophyll concentration.
FIGURE 6

Comparison between observed (dots) and simulated (background color) temperature (A–F) and salinity (G–L) along vertical section for datasets
(1) to (6).
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Although the surface chlorophyll concentration had been

overestimated, the subsurface high chlorophyll maximum (DCM)

structure was reproduced by the model (not shown here). The DCM

layer lies immediately above the upwelled high NO3 concentration,

where nutrients and light were determined to be sufficient.

We further estimated the model’s overall ability to reproduce

bottom DO and surface pH. The model’s skill in producing surface

chlorophyll concentration and bottom DO was relatively poor. The

correlation coefficient was positive at 0.41 for surface pH, but

negative at −0.41 for bottom DO. The surface pH was

underestimated by approximately −0.11 and the bottom DO was

overestimated by approximately 1.2 mg/L. The underestimation of

pH was likely associated with the surface temperature being

underestimated by the model. This resulted in more dissolved

CO2 being held in the water and more hydrogen ions being

released, resulting in lower pH values. The bottom DO was

overestimated by the model, which was unexpected because the

surface DO chlorophyll overestimated and more oxygen-

consuming materials should be available. This overestimation

may be because the current version of the biogeochemistry model

did not include sediment oxygen consumption (SOC). Currently,

the biogeochemistry model assumes that organic matter is
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immediately consumed upon reaching the bottom, whereas

measurements show that organic matter consumption can be

taken up over months. Instead of remaining in the same location,

it is transported as fluid mud and undergoes numerous cycles of

resuspension and deposition. The movement and long-term

retention of organic matter in the sediment layer consumes

additional oxygen when decomposed by bacteria. The current

version of the carbon biogeochemistry model does not include

the dissolved form of organic matter, which is another significant

pool reserving organic matter and consuming DO. The current

model parameter selections are predominantly empirical without

optimization, which introduces considerable uncertainty to the

simulated biogeochemical variables.

Table 3 provides the overall skill of the model by compiling

multiple cruise data. However, it was not known how the model

reflects spatial and temporal variability. Next, we performed a cruise-

by-cruise comparison, which provided more specific information on

the model’s skill in replicating the spatial variability of multiple

variables. Both Taylor and target diagrams were introduced to

graphically and quantitatively visualize multiple model skill metrics

(Figure 8). For the predicted environmental variables at the surface

and on the bottom, the model performances for salinity and
TABLE 3 Model evaluation statistics for 2015–2018.

Variable r Bias RMSD ubRMSD

Surface Temperature 0.34 -0.67 1.16 1.22

Surface Salinity 0.89 0.83 2.77 2.64

Surface Chlorophyll 0.29 2.99 5.10 4.12

Bottom DO -0.41 1.20 1.28 0.44

Surface NO3 + NO2 0.91 20.79 63.1 59.6

Surface (Without Lingding Bay
NO3 + NO2)

0.91 10.2 30.3 28.6

Surface pH 0.41 -0.11 0.26 0.24

Section Salinity 0.94 0.19 1.78 1.77

Section Temperature 0.81 -0.36 1.74 1.70
fro
FIGURE 7

Comparison between observed and simulated nitrogen type nutrients (NO3 + NO2 + NH4) for the surface (A–D) and along vertical transect (E–H) for
datasets (3) to (6).
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temperature were uniform for all cruises. For salinity, the bias and

RMSD were lower than 2 and 3.6 PSU, respectively, but the

correlation coefficients were higher than 0.9. However, for

temperature, both the bias and RMSD were low, and the

correlation coefficients were also low (Figures 8A, B). In contrast to

salinity and temperature, the performance of biogeochemical

variables, especially surface chlorophyll, was cruise dependent. The

model output showed a small bias and RMSD in October 2017, but a

large bias and RMSD in June 2017. Similarly, the correlation

coefficient was −0.08 in October 2017 but reached 0.61 in August

2018. Although the overall correlation coefficients for surface pH and

chlorophyll concentration were 0.41 and 0.29, respectively, the

correlation coefficient for a single cruise can reach as high as 0.7.

These results suggest that surface chlorophyll and pH are more

challenging to predict than temperature and salinity, because

ecological and biogeochemical processes generally have larger

uncertainties than physical processes.

Sectional data are only available for salinity and temperature. They

showed a small bias and RMSD for all cruises. The correlation

coefficients are over 0.7 for most cruises, except in September 2016,

when the correlation coefficient for temperature was approximately 0.4.

Currently, data from multiple cruises are not collected at the

same locations. Therefore, the ability of the model to reproduce

temporal variability has not yet been assessed. Raw cruise data are

processed using multiple laboratories. This implied that we could

not guarantee that the same criteria and standards would be

followed during data collection and preliminary processing.

Therefore, the data quality itself may degrade the overall

performance. We expect a future observational network and
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data-sharing platform to be set up in this region, which would

benefit the systematic evaluation of the simulation performance in

the future.
3.2 Differences in physical and
biogeochemical fields by coupling with
regional atmospheric model

Most coupled ocean–biogeochemistry model use atmospheric

reanalysis products as forcing. One advantage of CGEEPS is the

coupling of the regional atmospheric model with the regional ocean

model. Compared to reanalysis products, the regional model usually

has a high spatio-temporal resolution and the feedback of SST to the

atmosphere. The coupled model has unique advantages in terms of

simulating hurricane tracks and intensity. Therefore, we examined

how the coupling technique has impacted ocean dynamics and

biogeochemistry by using Hurricane Hato (2017) as an example.

Hurricane Hato formed over the western North Pacific at 128 °

E, 20.4 °N on August 21, 2017. It moved westward and passed the

Luzon Strait at approximately 0000 UTC on August 22 and

intensified into a Category 1 typhoon by 0800 UTC on August

22, with maximum sustained near-surface wind speeds increasing

to 33 ms−1. At 0000 UTC on August 23, Hato was upgraded to a

Category 2 typhoon with a maximum sustained near-surface wind

speed of 42 ms−1. Approximately 3 h later, Hato reached its peak

intensity with a maximum sustained near-surface wind speed of 48

ms−1. Hato made landfall near Zhuhai City (113.2 °E, 22.1 °N),

Guangdong Province, at 0450 UTC on August 23. Soon after its
A B

DC

FIGURE 8

Target and Taylor diagrams displaying model skills for multiple hindicast variables between 2015 to 2017 individually on surface and bottom
(A, B) and Sections (C, D). Each marker shape represents a different cruise.
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landfall, Hato weakened rapidly to 30 ms−1 over several hours and

dissipated by 0800 UTC on August 24.

Two simulations were conducted from August 07 to September

05, 2017, the month when Hurricane Hato (2017) passed through.

One was undertaken using two-way coupling with high-resolution

regional configured WRF and the other by one-way forcing with

coarse-resolution global ERA5. The simulated tracks of typhoons

across the NSCS during August 22–24, 2017 are shown in Figure 9.

The differences in both physical and biogeochemical fields are

shown in Figures 10, 11.

We initially found that the typhoon tracks under the two runs

were comparable. This indicates that the track of the typhoon was

predominantly controlled by the background of large-scale

atmospheric circulation (Figure 9).

For both runs, SST decreased and SSS increased rapidly from

August 22 to August 23, 2017 (Figures 10B, C). This was caused by

strong vertical mixing induced by the high wind of the hurricane.

The SST increased after August 23 and decreased again from

August 26. This was caused by upwelling after the eye passed

offshore. The magnitude of the temperature drop from August 26 to

August 28, 2017, in the two-way coupling WRF run was smaller

than that in the one-way ERA5 run. This was likely because SST

feedback to the atmosphere during the coupling weakened the

strength of the tropical cyclone. The SST recovered from 28

August in both runs. However, the coupled WRF run diverged

from the ERA5 one-way run from 31 August by maintaining a high

SST at approximately 29°C. At the same time, the tropical cyclone

brought heavy precipitation. This resulted in lower SSS in the two-

way coupled WRF run than in the ERA5 one-way run.

Due to SST feedback to the atmosphere, we found that the

difference between the two runs for surface air temperature (0.57 °

C) was larger than SST (0.34 °C) (Figure 10A). The sea surface

salinity was maintained at approximately 32 °C until August 27,

2017, and subsequently decreased. This was because river runoff

increased after hurricane-induced heavy rainfall, which introduced
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a substantial amount of freshwater to the region being studied. The

simulated results are consistent with the previous studies on ocean

SST cooling and enhanced vertical mixing during a passage of a

typhoon (Shen et al., 2021).

Surface chlorophyll, bottom DO, and surface pH varied with SSS

and SST (Figures 10D–F). The temporal variability of chlorophyll, DO,

and pH are strongly related to each other, that is, higher chlorophyll

concentrations result in lower DO and higher pH. High surface

chlorophyll concentrations indicate high primary production, which

indicates that more oxygen-consuming materials are generated and

DO decreases. A higher primary production also results in a higher pH

because the equilibrium of carbonate ionization moves left after CO2 is

taken up by photosynthesis, thereby decreasing the concentration of

hydrogen ions and increasing the pH value.

Owing to the strong vertical mixing induced by the hurricane,

the surface chlorophyll concentration decreased, bottom DO

increased, and surface pH decreased (Figures 10D–F). During the

upwelling period when SST decreased, surface chlorophyll

increased, bottom DO decreased, and surface pH also increased,

which was caused by high primary production stimulated by sub-

surface high nutrients. When the SSS decreased, the surface

chlorophyll increased, the bottom DO decreased, and the increase

in surface pH became larger.

A comparison between the two-time series and the two runs

showed that the surface chlorophyll concentrations yielded larger

differences than the SST and SSS differences. During Hato’s (2017)

passage, although the chlorophyll concentration decreased in both

runs, the average surface chlorophyll concentration in the ERA5 run

was approximately 2.5 mg–Chl/L higher. The concentration

differences were approximately 6.0 mg–Chl/L two weeks later

(September 02, 2017). This suggests that the physical and biological

processes are highly nonlinear. A minor change in the physical field

may be enlarged several times in biogeochemical fields.

For a better view of the differences, we plotted the horizontal

distribution of these variables for August 23 and September 02,
FIGURE 9

The observed and simulated track of Hurricane Hato (2017). The six-hour best-track TC data were obtained from the Shanghai Typhoon Institute.
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2017. During hurricane Hato’s (2017) passage and 11 d after it had

passed, was when increased runoff substantially impacted

biogeochemical processes.

On August 23, 2017, typhoons Hato induced strong vertical

mixing and onshore currents, resulting in low-temperature water

mixing up to the surface and confinement to the narrow nearshore

band (Figure 11). Low salinity and riverine waters were
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predominantly confined to Lingding Bay. As a result, there was

relatively higher chlorophyll and lower DO within Lingding Bay

and adjacent to the nearshore western bank. As river discharge

increased and was delivered to the coastal ocean, the plume water

extended offshore. As a result, high surface chlorophyll, low DO,

and high pH water also extended further offshore. The low salinity,

high chlorophyll, and bottom DO water in the one-way ERA5 run

occupied a larger area than that in the coupling WRF run. This was

likely because the regionally configured WRF had a higher

resolution than the one-way ERA5, which induced high sub-grid

vertical mixing.
3.3 Forecasts for eutrophication, hypoxia,
and ocean acidification

Although our simulation system may not have an exact

accuracy in replicating the absolute value of all environmental

variables at present, it is relatively informative in predicting

variability under extreme weather conditions, such as floods

and droughts.

The Pearl River Basin experienced a rainstorm in June 2022,

which rapidly increased river discharge to 6×104 m3s−1 on June 15

(Figure 12A). CGEEPS successfully captured the surface salinity

decrease associated with a sudden increase in runoff (Figure 12B).

Compared to June 01, 2022, a low-salinity bulge formed on June 15

beside Lingding Bay (Figure 13B). The sudden increase in runoff

also delivered more nutrients from land to the estuarine shelf,

leading to phytoplankton blooms and a decrease in bottom
FIGURE 11

Comparison of horizontal distribution of SST, SSS, sea surface
chlorophyll, bottom DO, and surface pH between ERA5 one-way
atmospheric forcing (A, C, E, G, and I) and WRF two-way forcing
(B, D, F, H, and J). Snapshots were selected during (August 23, 2017)
and 11 d (September 02, 2017) after the typhoon.
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FIGURE 10

Surface air temperature (A), sea surface temperature (SST) (B), sea surface salinity (SSS) (C), sea surface chlorophyll (D), bottom DO (E), and sea
surface pH (F) when forcing by one-way ERA5 atmosphere (blue lines) and two-way weather research forecasting (WRF; red lines). Vertical dashed
lines depict timings for Hato (2017) passing by the PRE. The simulated passage of Hurricane Hato (2017) is shown in Figure 9.
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dissolved oxygen (Figures 12E, F). At the surface, the low-salinity

bulge was accompanied by a high NO3 concentration (Figure 13D).

However, the surface chlorophyll water was not synchronized with

surface salinity and NO3, which was relatively low within Lingding

Bay and nearshore, but relatively high offshore (Figure 13H).The

surface chlorophyll concentration depends on the relative

importance of flushing and phytoplankton growth. High runoff

reduces the residence time of phytoplankton, flushing them

nearshore. Although the nutrient concentration was relatively

high, there was insufficient time for phytoplankton to take up

nutrients. Therefore, surface chlorophyll concentration was

maintained at a low level. In contrast, phytoplankton had

sufficient time to uptake NO3 and bloom in the offshore region.

We observed that high surface chlorophyll water was accompanied

by higher pH levels. The pH was regulated by primary production.

River runoff also brought a mass of DIC, resulting in a significant

decrease in pH adjacent to the river mouth (Figure 13H). We also

observed a sudden decrease in pH on June 16 from the time series

after the peak discharge (Figure 12D).

These results suggest that the PRE and adjacent seas became

more eutrophic, hypoxic, and acidic due to flooding. CGEEPS can

capture such temporal and spatially varying environmental

conditions, which can facilitate stakeholders making daily

decisions regarding their usage of the bay’s resources.

To make it easier for the governments and private users to

access and understand relevant information, the information

provided by the CGEEPS system should be presented in an easily

accessible format. In addition to the near-real-time simulation
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system, CGEEPS also includes a real-time online data

visualization system in which the visualized graph is published in

a webpage format. Graphics generated from CGEEPS can nowcast

environmental variables daily and forecast them over two days

(Figures 14, 15). The focus has been on the horizontal distribution

of variables in the first generation of the forecast system (http://

zhujiangtest.xyz:8000/). To better inform governance and

stakeholders, we have recently extended it to produce a vertical

profiles and maps to display the subsurface structure, which is

informative for visualizing eutrophic, hypoxic, and acidic water.
4 Discussion

Daily nowcasts and two-day forecasts from the ecological

prediction system, the CGEEPS, were set up in the PRE and

adjacent seas. The forecast systems were built on the COAWST

modelling system. This comprises an atmospheric WRF module, an

oceanic ROMS module, and a carbon-based biogeochemistry

module (FENNEL). The forecast system can now provide real-

time nowcast and two-day forecasts for temperature, salinity, NH4

+ NO2 + NO3, chlorophyll, DO, and pH. Hindcast comparison with

available historical data from summer 2015–2018 has shown that

the prediction system can replicate the temperature, salinity, and N-

type nutrients for surface and vertical transects. However, the model

performance for chlorophyll, DO, and pH was relatively poor. We

also compared how the predicted biogeochemical fields differed

from those predicted using coarse-resolution atmospheric
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FIGURE 12

The river discharge (A) and CGEEPS predicted SSS (B), Sea surface NO3 (C), pH (D), Chlorophyll (E), and bottom DO (F) from June 01, 2022, to June
20, 2022, when the flood happened. Vertical lines denote timing of maximum river runoff, sea surface NO3, chlorophyll, and minimum sea surface
salinity, surface pH and bottom DO.
frontiersin.org

http://zhujiangtest.xyz:8000/
http://zhujiangtest.xyz:8000/
https://doi.org/10.3389/fmars.2023.1096435
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Luo et al. 10.3389/fmars.2023.1096435
reanalysis products. Using Hurricane Hato (2017) as an example,

we found that stronger sub-grid vertical mixing was introduced

after coupling with WRF. As a result, the surface salinity was lower

than that when using coarse-resolution one-way ERA5 forcing. Due

to the non-linear interaction between the physical and

biogeochemical fields, the differences in surface chlorophyll

became much greater than the salinity. Results suggest that the

ecological environment prediction system was highly sensitive to

physical forcing. The improved physical model would be beneficial

to the system accuracy. We also determined how the physical and

biological variables were predicted during the June 2022 rainstorm

event. Results have shown that CGEEPS successfully captured data
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showing that the PRE and adjacent seas became fresher, more

eutrophic, hypoxic, and acidic due to the Pearl River floods

associated with the rainstorm. Results suggest that CGEEPS is

capable of capturing the spatio-temporal variability of ecological

environmental changes associated with extreme weather events.

At present, our ecological prediction system lacks accuracy in

predicting some biological and biogeochemical environmental

variables. We expect future improvements to increase system

predictability, including: 1) more precise description of the water

column and sediment processes, and 2) optimizing the parameter

scheme of biogeochemical models. In addition to the modelling

system itself, we found that building an observational network and
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FIGURE 13

Comparison of SSS (A, B), Sea Surface NO3 (C, D), pH (E, F), Chlorophyll (G, H), and bottom DO (I, J) before (June 01, 2022) and after flood
occurrence (June 15, 2022). The snapshot dates are June 15, 2022 for surface salinity and NO3; June 16, 2022 for surface pH; and June 20, 2022 for
surface Chlorophyll and bottom DO.
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data-sharing platform for this region was important. Compared to

the Texas–Louisiana shelf, which is heavily impacted by the

Mississippi River and Chesapeake Bay in the US, current

observational data used to validate the system are relatively sparse

and not spatially uniform. This increases the difficulty in evaluating

the performance of the prediction system after new processes are

introduced. An observational network has served as the basis for

better parameterization of the ecosystem model. Another

disadvantage of CGEEPS is that the system is currently operated

and maintained manually, and we expect to use the Cron software

utility to completely automate the CGEEPS workflow in the next

phase of development.

Despite these disadvantages, CGEEPS is the first ecological

environmental prediction system for the China Great Bay Area.

The Hong Kong University of Science and Technology model data

platform (http://ocean.ust.hk:8080/SiteMapApi/new/index.jsp)

provides data visualization for daily averaged ocean circulation,

ecosystem, and hypoxia, but no forecasts for these fields. Another

example is the real-time Regional Forecast System of the SCS Marine
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Environment (https://epanf.scsio.ac.cn/), which is used to predict

ocean circulation, waves, and several other important ocean–

atmospheric dynamic variables rather than ecological

environmental conditions (Zhu et al., 2020). Real-time

environmental forecasting systems based on coupled ocean–

atmosphere have also been set up worldwide. The Coupled

Northwest Atlantic Prediction System (CNAPS), which is run by

the North Carolina State University, predicts marine weather, ocean

waves, and ocean circulation daily over an extensive area of the

coastal northwest Atlantic Ocean. Another example is the South

Eastern Levantine Israeli Prediction System (SLEIPS), which was

setup through the Princeton Ocean Model (POM) and Variational

Initial and Forcing Platform (VIFOP) for the coastal zone of the

south eastern corner of the Levantine Basin (https://

isramar.ocean.org.il/isramar2009/selips/), which provides

temperature, salinity, and sea current prediction every 24 h.

Compared with these prediction systems, CGEEPS is capable of

predicting ecological environmental variables based on the coupled

ocean–atmosphere–biogeochemistry technique. However, many
A

B

FIGURE 14

Real-time graphics displaying the surface (A) and vertical transect (B) of salinity (Screen shot from July 07, 2022).
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challenges on prediction accuracy were present because

biogeochemical models are highly unconstrained and observation

streams are much sparser than physical streams (Fennel et al., 2019).

Therefore, we implemented a coupled ocean–atmosphere

technique for ecosystem and biogeochemistry prediction.

However, for river-dominated ocean margins, such as the Pearl

River estuarine–coastal system, the land delivers substantial

amounts of nutrients, organic matter, and suspended sediments.

These materials regulate the biogeochemical cycle of estuarine–

coastal ocean systems; therefore, coupling with process-based land

ecosystem models is required in the future. Such a land–estuary–

ocean biogeochemistry model has been developed for the

Chesapeake Bay system (Feng et al., 2015). However, only land

delivered materials in one-year was cycling used, and river

discharge was still the USGS measurements (Bever et al., 2021).

Model coupling techniques, such as CPL7, are required to develop

an operational system (Sun et al., 2020).
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Coastal marine ecosystems are subject to multiple stressors,

such as climate change and human land activities. Implementation

of an ecological environmental prediction system is important for

protective and adaptive measures in ocean ecosystems. The

prediction tool that we have constructed is based on realistic

representations of ocean circulation coupled with biogeochemical

and ecological models, which can forecast short-term (days to

weeks) to seasonal (months) time intervals. In addition to this

type of model, statistics based artificial intelligence models have

emerged and have been applied to coastal ocean biogeochemistry

studies in recent years (Chen et al., 2019; Li X et al., 2020; Ou et al.,

2022; Yu et al., 2022). Compared with the coupled hydrodynamic–

biogeochemistry model, artificial intelligent models are more

efficient and require less computational resources. However, the

application of such models to ocean biogeochemistry is still in its

early stages. Therefore, the predictability and results explainable for

such a model require further investigation.
A

B

FIGURE 15

Real-time graphics displaying the surface (A) and vertical transect (B) of nitrate (Screen shot from July 07, 2022).
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5 Concluding remarks

Warming, acidification, deoxygenation, and eutrophication of

estuarine–coastal oceans have manifested in recent decades due to

climate change and human land activities. Ecological environmental

prediction systems are important tools that help decision-makers

and the public implement protective and adaptive measures for

ocean ecosystems. Based on the coupled ocean–atmosphere–

biogeochemistry model, we constructed a real-time ecological

environmental forecast system for the Pearl River Estuary (PRE),

namely the Coupled Great Bay Ecological Environment Prediction

System (CGEEPS). Compared to previous ecological prediction

systems built for this region, CGEEPS can not only provide real-

time nowcasts and two-day forecasts for chlorophyll but also DO

and pH. Although limited in its absolute accuracy, the system is still

informative for eutrophication, deoxygenation, and acidification,

especially under extreme weather events. We expect the expansion

of biogeochemical and ecological observational systems built for

this region to help develop and apply such prediction tools in the

future. Ultimately, the predicted data products can benefit the

economic, environmental, and public safety needs of stakeholders

and governments.
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