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Introduction: Mastacembelus armatus is a commercially valuable fish, normally

distributed in southern China and Southeast Asia. The natural population size of M.

armatus is shrinking in recent yearsbecauseofoverfishingandhabitat loss. Inorder to

clarify thegeneticdiversityanddifferentiationofM.armatuspopulations,wecollected

114samples fromeightpopulations insouthernChinaandVietnamandanalyzedtheir

population structure usingnuclear ribosomalDNA sequences, the concatenated 18S

and ITS2 regions.

Methods: Genomic DNA from the fin clip was extracted and sequenced on an

Illumina novaseq 6000 (Illumina, USA) high-throughput sequencing platform in

accordance with the manufacturer’s instructions. After assembly and annotation,

haplotype diversity, TCS network analysis, AMOVA analysis, population pairwise

genetic distances, and UPGMA tree construction were conducted based on the

concatenated sequences of 18S and ITS2.

Results and discussion: In total, eleven nrDNAhaplotypeswere detected based on

the concatenated sequences of 18S and ITS2. Amongst, three haplotypes were the

main haplotypes, as representatives of three corresponding Clusters. There were

two major Clusters in China, however, the Cluster in Vietnam was significantly

divergent from the other two in China, likely due to the lack of river connection

between China and Vietnam. Interestingly, based on low FST value, we found that

gene flowoccurred between the isolated island, Hainan Province, and themainland

China of Guangxi Province, probably as a result of exposed continental shelf

connected them during glacial periods. In general, combing our data and

literature data, genetic diversity and differentiation of M. armatus populations are

relatively high regardless of spatial scale, although their natural population size is

declining. This suggests that it is not too late to adopt measures to protect M.

armatus, which benefits not only species itself but also the whole ecosystem.

KEYWORDS

genetic diversity, populations, mastacembelus armatus, southern China, Vietnam
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2023.1100949/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1100949/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1100949/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1100949/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1100949/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1100949&domain=pdf&date_stamp=2023-03-06
mailto:muxd@prfri.ac.cn
https://doi.org/10.3389/fmars.2023.1100949
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1100949
https://www.frontiersin.org/journals/marine-science


Yang et al. 10.3389/fmars.2023.1100949
Introduction

Mastacembelus armatus, the common name is zig-zag eel or

tire-track spiny eel, is an economically important fish, belonging to

the Order Symbranchiformes (Family: Mastacembelidae; Genus:

Mastacembelus). Among the four species of the genus, M. armatus

is the largest (Serajuddin and Pathak, 2012). It is widely distributed

in southern China, mainly in Yangtze River and Pearl River (Xue

et al., 2020), and Southeast Asia, such as India, Thailand, Nepal,

Vietnam, Sri Lanka, and Pakistan (Hossain et al., 2015; Gupta and

Banerjee, 2016; Han et al., 2019). Usually, it inhabits rivers, streams,

ponds, beels and inundated fields (Hossain et al., 2015; Gupta and

Banerjee, 2016). M. armatus is a carnivorous fish, it prefers to feed

on crustacean and insect larvae when young while the adults devour

small fish and tadpoles (Hossain et al., 2015).M. armatus is in high

demand on the market as it attracts consumers with its delicious

taste, no intermuscular spines and high nutritional value (Gupta

and Banerjee, 2016; Li et al., 2016; Xue et al., 2020). Besides, the

appealing color pattern ofM. armatusmakes it a popular aquarium

fish as well (Gupta and Banerjee, 2016).

However, due to overfishing and habitat loss, the wild population

size of M. armatus gradually declines year by year (Hossain et al.,

2012; Rahman et al., 2016; Xue, 2018).M. armatus is designated as an

endangered species in Bangladesh (IUCN Bangladesh, 2000) and has

been classified as least concern by the International Union for

Conservation of Nature (IUCN) (IUCN, 2019). In addition, large-

scale artificial breeding has not been achieved forM. armatus (Jiang,

2018). Therefore, it is urgently needed to clarify the present condition

of natural populations of M. armatus, particularly their genetic

diversity and structure, thus providing basis for their biological

conservation. As a native species in China, M. armatus is assigned

as a key protected wild aquatic animal by Fujian, Guangdong, and

Hunan provinces, and moreover, a national germplasm resource

reserve ofM. armatus has been established in Fujian Province (Jiang,

2018). Furthermore, aquaculture of M. armatus has intensified in

several provinces of China, greatly facilitating its artificial breeding

(Han et al., 2017; Han et al., 2019).

So far, a lot of studies have been conducted onM. armatus, such

as studies at individual level on their morphology (Shu et al., 2017;

Zhou et al., 2019), nutritional composition (Wu et al., 2010; Fan

et al., 2018), metal bioaccumulation (Javed and Usmani, 2016;

Pandey et al., 2017), karyotype (Oliveira et al., 1997);, taxonomy

(Jiang, 2018; Duong et al., 2020), reproduction (Serajuddin and

Pathak, 2012), histopathology (Dhole et al., 2011), sex-specific

markers (Xue et al., 2020; Xue et al., 2021b), artificial breeding

(Lin et al., 2016; Xue, 2018), Toll-Like Receptors (TLR) (Han et al.,

2017; Han et al., 2019), mitochondrial genome sequencing (Li et al.,

2016; Han et al., 2018), whole genome sequences at the

chromosomal scale (Xue et al., 2021a), as well as population

studies (Wang et al., 2012; Zou, 2013; Chen, 2014; Yang et al.,

2016; Lin, 2017; Jiang, 2018; Thapliyal et al., 2020; Gao et al., 2022).

Among the above listed population studies, some used

mitochondrial DNA markers, such as COI (Chen, 2014; Jiang,

2018; Gao et al., 2022), Cytb (Wang et al., 2012; Thapliyal et al.,

2020; Gao et al., 2022) and D-loop (Chen, 2014), and others
Frontiers in Marine Science 02
employed nuclear makers, like SSR (Zou, 2013; Yang et al., 2016;

Lin, 2017) and exon-primed intron-crossing markers (EPICs)

(Jiang, 2018). These studies, however, are all from Chinese

populations, except one study from India (Thapliyal et al., 2020).

Population data from Southeast Asia is very scarce. Therefore, we

expanded our sampling area from China to Vietnam to fill our

knowledge gap. Additionally, mitochondrial markers were mostly

used in M. armatus population studies, only few nuclear markers

like SSR and EPICs, while no reports were based on nuclear

ribosomal DNA (nrDNA) markers to reveal their genetic diversity

(Wang et al., 2012; Zou, 2013; Chen, 2014; Yang et al., 2016; Lin,

2017; Jiang, 2018; Gao et al., 2022). It is well known that nrDNA

markers have been successfully employed in various fish population

research (Mladineo et al., 2013; Garcia et al., 2015; Ağdamar and

Tarkan, 2019), such as 18S, ITS1, ITS2 and 28S, due to their high

evolutionary rates (Presa et al., 2002). Therefore, in this study, we

employed the concatenated 18S and ITS2 sequences to assess levels

of genetic diversity and differentiation of M. armatus populations

from China and Vietnam at different spatial scale.
Materials and methods

Sampling

M. armatus from seven regions in southern China and one region

in Vietnam were sampled in 2021. Sample sets collected from a single

region were considered a population. In China, we collected M.

armatus from four Provinces. Two populations were sampled from

Guangdong Province, three populations from Guangxi Province, one

population from Jiangxi Province and one population from Hainan

Province (Table 1, Figure 1). What should be noted is that Hainan

Province is located in an independent island, spatially separated with

the mainland China by Qiongzhou Strait. Additionally, Guangxi

Province is geographically adjacent with Vietnam. The Vietnam

samples were collected from Guangzhou Lanhai Marine Technology

Co., Ltd, Guangzhou city,GuangdongProvince, China (latitude: 23.21°

N, longitude: 113.47°E). More specifically, we collected 12 and 16

samples in GDHY and GDQY regions from Guangdong Province,

respectively; 18, 18, 15 samples in GXBS, GXLZ and GXYL regions

fromGuangxi Province, respectively; 7 samples in HNHK region from

Hainan Province, 13 samples in JXGZ region from Jiangxi Province, 15

samples in YN region fromVietnam.A total of 114 samples from eight

populations were collected in this study (Table 1).
DNA extraction and sequencing

A 30-40 mg fin clip was collected and preserved in 95% ethanol at

-20°C for later genomic sequencing. Both DNA sequencing and

assembly were performed by Science Corporation of Gene

(SCGene) Co., Ltd, Guangzhou city, Guangdong Province, China.

Total genomic DNA was extracted with a Tissue DNA Kit (OMEGA

E.Z.N.A) following the manufacturer’s protocol. The quality and

quantity of genomic DNAs were determined by 0.8% agarose gel
frontiersin.org
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electrophoresis and NanoDrop 2000 spectrometer (Thermo

Scientific, Waltham, MA, USA). High-quality genomic DNAs were

used to construct a paired-end sequencing library with an insert size
Frontiers in Marine Science 03
of 450 bp. The library was then sequenced on an Illumina novaseq

6000 (Illumina, USA) high-throughput sequencing platform in

accordance with the manufacturer’s instructions.
Sequence assembly

Adaptors and low-quality reads were filtered using

Trimmomatic v0.39 (Bolger et al., 2014), resulting the raw reads,

which number were between 3,876,630 and 51,352,359. Paired-end

reads of 2 × 150 bp were generated, and the quality threshold was

set to Q20. Qualified reads were then compared by BWA (Li and

Durbin, 2009) employing setting of 0 match and 0 gap. Afterwards,

the obtained reads were assembled using SOAPdenovo (Luo et al.,

2012). To verify the correctness of the assembly, assembled whole

nrDNA sequences were amplified and sequenced by Sanger

sequencing. The annotation of assembled nrDNAs was performed

using blastn in NCBI with closely related and well-annotated

sequences, manually verified afterwards. Finally, respective region

sequences were generated, including 18S, ITS1, 5.8S, ITS2 and 28S.
Data analysis

Standard diversity indices, including number of haplotypes (Nh),

haplotype diversity (hd) and nucleotide diversity (p), were calculated
using DnaSP v 5.10 (Librado and Rozas, 2009). A TCS network was
TABLE 1 Summary of samples and genetic diversity of Mastacembelus armatus (N: number of samples; Nh: number of nrDNA haplotypes; hd:
haplotype diversity; p: nucleotide diversity; F/M: ratio of the number of females to males).

Country Province Region N Sex ratio
(F/M) Nh Haplotypes hd ±

S.D p ± S.D

China

Guangdong

GDHY 12 2/10 (0.20) 2 H1(10),H4(2)
0.303±
0.147

0.00025 ±
0.00012

GDQY 16 9/7 (1.29) 3 H1(14),H6(1),H7(1)
0.242±
0.135

0.00010 ±
0.00006

Total 28 11/17 (0.65) 4 H1(24),H4(2),H6(1),H7(1)
0.267±
0.107

0.00017 ±
0.00008

Guangxi

GXBS 18 8/10 (0.8) 2 H1(17),H5(1)
0.111±
0.096

0.00005 ±
0.00004

GXLZ 18 10/8 (0.8) 1 H1(18) 0 0

GXYL 15 7/8 (0.88) 2 H2(14),H8(1)
0.133±
0.105

0.00006 ±
0.00005

Total 51 25/26 (0.96) 4 H1(35),H2(14),H5(1),H8(1)
0.462±
0.060

0.00071 ±
0.00009

Hainan HNHK 7 3/4 (0.75) 2 H2(6),H9(1)
0.286±
0.157

0.00012 ±
0.00011

Jiangxi JXGZ 13 5/8 (0.63) 1 H1(13) 0 0

Total (China) 99 8/12 (0.67) 8 H1(72),H2(20),H4(2),H5(1),H6(1),H7(1),H8(1),H9(1)
0.434±
0.052

0.00064 ±
0.00008

Vietnam YN 15 8/7 (1.14) 3 H3(13),H10(1),H11(1)
0.257±
0.142

0.00011 ±
0.00006

Overall (China and Vietnam) 114 52:62 (0.84) 11
H1(72),H2(20),H3(13),H4(2),H5(1),H6(1),H7(1),H8(1),H9(1),

H10(1),H11(1)
0.561±
0.047

0.00199 ±
0.00028
FIGURE 1

Distribution of sampling sites of Mastacembelus armatus
populations in China. Region abbreviations follow those in Table 1.
Pie charts represent the Cluster frequency of nrDNA haplotypes
belong to in each region; the colour of each Cluster is consistent
with Figures 2, 3.
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constructed with PopArt (Clement et al., 2002; Leigh and Bryant, 2015)

to investigate genealogical relationships among populations inferred

from the concatenated sequences of 18S and ITS2. Hierarchical analysis

of molecular variance (AMOVA) was performed to detect genetic

variations within and among different regions using Arlequin v 3.5

(AMOVA; Excoffier and Lischer, 2010), with statistical significance

determined by 1,000 permutations. To quantify the genetic

dissimilarity between populations, population pairwise genetic

distances (FST) were also calculated by Arlequin v 3.5 (Excoffier and

Lischer, 2010). The genetic distance among different populations was

used to construct the UPGMA tree in MEGA X (Kumar et al., 2018).
Results

Characteristics of nrDNA

Variations of the length of either whole nrDNA sequences or

respective region sequences were slight, see details in Table 2. To be
Frontiers in Marine Science 04
specific, the length of 18S and 5.8S of all individuals were all the

same, with 1,840 bp and 154 bp, respectively. Especially, all

sequences of 5.8S were completely identical. In addition, there

was also very little variation in the length of 28S, with only a 2 bp

difference in length. In the 28S alignment of all individuals, 30

variable sites were found, accounting for 0.85%, compared with 3 in

18S (0.16%), 20 in ITS2 (3.37%) and 66 in ITS1 (5.77%). It is worth

to note that although the proportion of variable sites in the 28S

alignment was low, the majority of variable sites, 21 out of 30, were

singletons variable sites. Clearly, ITS1 and ITS2 were regions with

greater variability. Furthermore, we found that many indels

occurred in the alignment of ITS1, for example, the longest indel

was 14 bp in length, located at 1020 nt - 1043 nt. The GC content of

whole nrDNA in all populations was similar, between 62.5% and

62.7%, showing a high GC content.

More than 5% indels and 5.77% variable sites occurred in the

alignment of ITS1, directly affecting the accuracy of subsequent

analyses. Additionally, in the alignment of 28S, too many singletons

variable sites were detected, which is also thought to negatively impact

the molecular analyses, such as phylogenetic analysis and population

genetics (Dress et al., 2008; Steenwyk et al., 2020). Besides, the 5.8S

sequences of all individuals were the same, we thus decided to use the

concatenated sequence of 18S and ITS2 for all later analyses.
Genetic diversity

Eleven nrDNA haplotypes were identified from the

concatenated sequences of 18S and ITS2, consistently inferred

from DnaSP results and TCS network (Table 1, Figure 2). The

overall genetic diversity was relatively high (0.561 ± 0.047) while

nucleotide diversity was low (0.00199 ± 0.00028) (Table 1). The

highest haplotype diversity was found in GDHY region in China,

followed by HNHK, YN, and GDQY region. Most regions harbored

more than one haplotype, except GXLZ and JXGZ region. In a

word, we found eight haplotypes in China and three haplotypes in
FIGURE 2

TCS network based on the concatenated sequences of 18S and ITS2 of Mastacembelus armatus. Each tick represents a mutational step. nrDNA
haplotypes are named as in Table 1. Circle size is proportional to the haplotype frequency.
FIGURE 3

UPGMA dendrogram of eight populations of Mastacembelus
armatus based on pairwise genetic distances between populations.
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Vietnam (Table 1, Figure 2), and H1, H2 and H3 were the main

haplotypes, making three different Clusters (Figure 2). Amongst,

H1 and H2 were the main haplotypes found in China and H3 in

Vietnam. Moreover, in China, the genetic diversity ofM. armatus in

Guangxi province was the highest (0.462 ± 0.060), consisting of two

main haplotypes H1 and H2, while only H1 was detected in Jiangxi

Province, predominant H1 in Guangdong Province, and

predominant H2 in Hainan Province.

Overall, more males were found in our study. In Vietnam, the

number of females exceeded males, compared to Chinese

populations with dominant males.
Population structure

In general, AMOVA analyses presented that there was high

genetic differentiation in overall populations of M. armatus (FST

= 0.882, p < 0.001), and the largest level of genetic differentiation

was found among populations (88.19%) (Table 3). The similar

pattern was shown at the province level (FST = 0.796, p < 0.001)

and at the country level (FST = 0.886, p < 0.001) as well (Table 3).
Frontiers in Marine Science 05
Pairwise FST comparisons revealed that most populations were

significantly differentiated (Table 4). Particularly, pronounced

differences among different provinces were found in a range of

FST between 0.210 and 0.970, all being statistically significant

(Table 5), in agreement with AMOVA result that most variations

were from among provinces (79.59%) at the province level

(Table 3). In addition, the UPGMA tree demonstrated that all

populations were divided into three groups (Figure 3). Cluster I

consisted of all populations from Jiangxi and Guangdong Province

and two of three populations of Guangxi Province (GXLZ and

GXBS). While the other population of Guangxi Province (GXYL)

was clustered with the population from Hainan Province, forming

Cluster II, consistent with the low FST value between them, only

0.004. The Vietnam population was a single group, Cluster III.

Overall, Cluster I and Cluster II were grouped together, making

the Chinese Cluster. Furthermore, the genetic differentiation of

Clusters between China and Vietnam was also distinctive,

characterized with different nrDNA haplotypes (Table 1,

Figure 2) and distinct phylogenetic Clusters (Figure 3), as well

as shown in the AMOVA analysis, with 88.59% variances from

among countries (Table 3).
TABLE 3 Analysis of molecular variance (AMOVA) of Mastacembelus armatus populations at different spatial scale.

Pattern Source of variation d.f. Variance components Percentage variation Fixation indices Significance

country
level

among countries 1 15.036 Va 88.59

FST = 0.886 p < 0.001within countries 112 1.937 Vb 11.41

total 113 16.973

Province level

among provinces 4 5.581Va 79.59

FST = 0.796 p < 0.001within provinces 109 1.432 Vb 20.41

total 113 7.013

Overall

among populations 7 5.353 Va 88.19

FST = 0.882 p < 0.001within populations 106 0.717Vb 11.81

total 113 6.07
TABLE 2 The length and GC content of whole nrDNA and respective region of Mastacembelus armatus from eight populations.

Country Province Region Length (bp) Overall GC content

18S ITS1 5.8S ITS2 28S Overall

China

Guangdong
GDHY 1840 1080-1087 154 580-585 3518 7176-7183 62.6-62.7%

GDQY 1840 1080-1088 154 584-585 3518 7176-7185 62.6-62.7%

Guangxi

GXBS 1840 1080-1088 154 583-586 3518 7176-7186 62.6-62.7%

GXLZ 1840 1084-1090 154 584-586 3518 7178-7187 62.6-62.7%

GXYL 1840 1077-1086 154 581-586 3518 7173-7181 62.5-62.6%

Hainan HNHK 1840 1077-1084 154 581-584 3518-3520 7173-7178 62.5-62.6%

Jiangxi JXGZ 1840 1087-1095 154 584-586 3518 7184-7192 62.70%

Vietnam YN 1840 1074-1088 154 581-585 3518-3520 7171-7184 62.6-62.7%

Total 1840 1074-1095 154 580-586 3518-3520 7171-7192 62.5-62.7%
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Discussion

Genetic diversity and population structure

Previous population studies (Wang et al., 2012; Zou, 2013; Chen,

2014; Yang et al., 2016; Lin, 2017; Jiang, 2018; Gao et al., 2022) all

showed high genetic diversity ofM. armatus populations in China, but

the haplotype diversity in our result (hd=0.434) is lower than that in

other population studies, for example, Wang et al. (2012), Jiang (Jiang,

2018) and Gao et al. (2022) reported the haplotype diversity in China

was 0.965, 0.768 and 0.895, respectively. This may be due to different

markers employed and the small sample size in our study compared to

other studies. Additionally, the overall genetic diversity ofM. armatus

populations in this studywas over 0.5, showing a relative high diversity

(Grant and Bowen, 1998). In general, combing our data and literature

data, the genetic diversity ofM. armatusmaintains at a relatively high

level, although the size of natural population is declining as reported

(Hossain et al., 2012; Rahman et al., 2016; Xue, 2018). Furthermore,

genetic differentiation between most populations is pronounced,

regardless of spatial scale. Guangxi Province harbored the highest

genetic diversity. Amongst, GXLZ population and GXBS population

were grouped together, in agreement with low FST value between them.

GXYL population, nevertheless, was in a distinct cluster, either shown

in TCS network or UPGMA tree. This suggests not only high genetic

diversity but also high genetic differentiation amongGuangxi Province

populations. Surprisingly, GXYL population was clustered together

with HNHK population. Further, the low FST value between Hainan

Province and the mainland means that gene flow occurred between

them, despite the fact that Hainan Province is an isolated island and

separated from the mainland by sea waters. In contrast, most Chinese

population studies revealed that the population fromHainan Province

was genetically partitioned with the mainland populations (Yang et al.,
Frontiers in Marine Science 06
2016; Lin, 2017; Jiang, 2018). Gene flow between the population of

Hainan Province and the mainland, revealed by nuclear makers in our

study, is congruent with the latest research of Gao et al. (2022)

discovered by mitochondrial markers. This gene flow is probably as

a consequence of geological changes during glacial periods, when the

exposed continental shelf connected Hainan and the mainland China

(Sun et al., 2000; Voris, 2000). However, Guangxi Province and

Vietnam possess completely different nrDNA haplotypes, despite

their proximity. This is mainly because that there are no rivers

connecting Guangxi Province and Vietnam.
Sex ratio

It is well known that the population size is closely related with

sex ratio, and an unbalanced sex ratio may significantly reduce the

effective size of populations (Dubreuil et al., 2010). We checked the

sex of each individual after sampling, and we found that all

sampling sites in China are male dominated, except GDQY.

However, Vietnam is female dominated. In fact, the sex ratio of

M. armatus in the nature is on debate. One research reported female

dominance trend (Panikkar et al., 2013), while the other one

showed an equal proportion of male and female (Serajuddin and

Pathak, 2012). We need more natural population data to clarify the

sex ratio of M. armatus in the future, in order to provide more

references for the further biological conservation. In addition, we

discovered that the sex ratio of M. armatus is very unbalanced

during the artificial breeding process, characterized with significant

female dominance. For example, the proportion of females can

reach 86.33% in the report of Xue et al. (2021b). This suggests that

there are differences and difficulties in sexual differentiation of M.

armatus, which may also occur in nature. At present, although some
TABLE 4 Pairwise estimates of genetic differentiation (FST) of Mastacembelus armatus between different populations (**p<0.05).

Populations GDHY GDQY GXBS GXLZ GXYL HNHK JXGZ

GDQY 0.079

GXBS 0.411** 0.479**

GXLZ 0.225** 0.185** 0.176**

GXYL 0.722** 0.790** 0.777** 0.780**

HNHK 0.775** 0.870** 0.856** 0.859** 0.004

JXGZ 0.351** 0.427** 0.104** 0.040 0.772** 0.865**

YN 0.950** 0.971** 0.966** 0.968** 0.919** 0.938** 0.970**
TABLE 5 Pairwise estimates of genetic differentiation (FST) of Mastacembelus armatus between different provinces (**p<0.05).

Province Guangdong Guangxi Hainan Jiangxi

Guangxi 0.210**

Hainan 0.840** 0.476**

Jiangxi 0.326** 0.110** 0.865**

YN 0.961** 0.881** 0.938** 0.970**
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studies have been done on the sex differentiation of M. armatus,

most focus on the development of sex markers (Xue et al., 2020; Xue

et al., 2021b) and Y chromosome differential (Xue et al., 2021a). The

underlying sex determination mechanisms are still unclear, which

also make challenges to investigate the sex ratio of M. armatus.
Biological conservation

The biological conservation of species heavily depends on their

genetic diversity. Understanding intraspecific genetic diversity and

differentiation can help us take scientific and effective measures to

protect threatened or endangered animals. Combing the results of our

study with other previous studies, we found that the present genetic

diversity ofM. armatus populations is not low, indicating that it is not

too late to take action to protect them, so that their genetic diversity can

remain high. For example, precisely constructing more reserves forM.

armatus based on the distribution of different genotypes/haplotypes,

strengthening the investigation and protection of M. armatus in the

isolated island, Hainan Province, which may provide crucial clues for

their expansion, and exploring artificial breeding techniques to better

conserve the germplasm resource.
Conclusion

In conclusion, we researched the genetic diversity and population

structure of M. armatus in China and Vietnam, based on nuclear

ribosomal DNA markers. The genetic diversity and differentiation of

M. armatus populations were at a relatively high level according to the

data from this study and previous studies. Three Clusters were classified

accordingtothegeneticdistancebetweeneachpopulation, characterized

with two Clusters in China and a distinct Cluster in Vietnam. In

particular, we found that gene flow occurred between an isolated

islandandthemainlandChinabasedonthe lowFSTvaluebetween them.
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