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Introduction: Frequent disease outbreaks seriously affect porcupinefish (Diodon

hystrix), which is a new aquaculture breed in China. Recently, a novel disease,

termed tail fell syndrome (TFS) was increasingly observed in fish stocks, resulting in

stalk ulceration, tail loss, ascites and white feces in the intestine. Intestinal

microbiota homeostasis is crucial to host health because it influences host and

environmental factors, and responds to various internal and external stimuli.

However, changes in intestinal microbiota induced by TFS are yet to be elucidated.

Methods: In the present study, we analyzed and compared the intestinal

microbiota of normal D. hystrix with TFS fish.

Results: Though microbiota richness and diversity were not affected by TFS,

deviations in diversity indices increased and taxa distribution evenness

decreased, suggesting TFS lowered microbiota community stability in D.

hystrix. Furthermore, at the genus level, Brevibacterium, Mesorhizobium,

Ochrobactrum, Ralstonia, Anaerococcus, and Alistipes abundances were

significantly increased in TFS D. hystrix, plus, we observed significant decreases

in Halomonas, Prevotellaceae_NK3B31_group, and Psychrobacter. Functional

comparison predictions between normal and TFS D. hystrix revealed significantly

altered pathways were mainly associated with metabolism (biotin metabolism,

steroid hormone biosynthesis, flavonoid biosynthesis, biosynthesis of type II

polyketide products, and steroid biosynthesis). Overall, the results revealed

that TFS impacted intestinal microbiota composition and function in D. hystrix,

which should expand our knowledge on diseases associated with porcupine

pufferfish aquaculture.

KEYWORDS
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1 Introduction

Diodon hystrix (porcupinefish) is a commercially important fish

species mainly distributed in the Indo-West Pacific region (Soto

et al., 2013). The fish is a new aquaculture species in China due to its

considerable nutritional and medicinal characteristics. With the

rapid development of D. hystrix aquaculture in recent years, several

diseases have appeared, including the novel tail fell syndrome (TFS),

particularly in D. hystrix aquaculture. The disease was first

discovered in normal aquaculture environments, with TFS and

normal fish emerging from the same environment. The most

dominant disease feature is tail stalk festering with entire tail loss,

accompanied by ascites and white feces in the intestines, and a high

death rate. These observations suggest TFS may be pathogenic

in nature.

Under intensive aquaculture conditions, many diseases are

caused by pathogens, for example, white spot disease in Penaeus

monodon caused by Vibrio alginolyticus infections (Selvin and

Lipton, 2003; Zhou et al., 2020; Zhao et al., 2021). Several diseases

are caused by a variety of pathogens, including viruses and bacteria

(Zhu et al., 2000; Huang et al., 2012). Furthermore, growing

evidence suggests that many aquaculture animal diseases induce

changes in intestinal bacterial communities (Pérez et al., 2010; Zhou

et al., 2020; Zhao et al., 2021). As a complex ecosystem, intestinal

microbiota promotes host health by participating in immune

responses, nutrient absorption, disease resistance, and the

establishment of a balanced community structure (Lin et al.,

2014). In Litopenaeus vannamei, infection with white spot

syndrome virus altered intestinal microbiota composition and

function (Wang et al., 2019). In zebrafish intestines, bacterial

invasion affected microbiota composition and induced immune

responses (Yang et al., 2017). In grass carp (Ctenopharyngodon

idellus), Aeromonas hydrophila infection induced dynamic changes

in intestinal microbiota (Zhou et al., 2020). Furthermore, intestinal

microbiota also has determinant roles in newly discovered diseases.

In sea cucumber (Apostichopus japonicus), different intestinal

fungal communities were observed between normal and body

vesicular syndrome individuals (Zhao et al., 2021). Our recent

study has indicated that TFS, a newly discovered disease, is

caused mainly by Vibrio (unpublished data); however, further

information on TFS is practically non-existent, however, aberrant

intestinal morphology was found, therefore we speculated TFS

caused changes in the gut microbiome. However, associations

between TFS and the host microbiome remain unclear.

The intestinal microbiota is influenced by host and

environmental factors, and responds to various internal and

external stimuli, therefore, understanding the composition and

structure of intestinal microbial communities is necessary to

understand changes and address different situations or stimuli

(Clements et al., 2014; Butt and Volkoff, 2019). Over the last

decade, clone libraries, culture-based, and denaturing gradient gel

electrophoresis approaches have been applied to microbiota

investigations (Knapp et al., 2008; Morotomi et al., 2011; Tzuc

et al., 2014). While useful, these traditional methods are limited in

characterizing global diversity and complex bacterial communities
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in an integrated environment. In view of this, 16S rRNA sequencing

technology is widely used to study the composition of microbial

communities in fish intestinal samples (Ghanbari et al., 2015; Wang

et al., 2018).

In this study, the intestinal microbiota of TFS and normal D.

hystrix was analyzed using high-throughput sequencing technology.

This study investigated how TFS induced composition, diversity,

and functional changes in gut microbiota inD. hystrix. Our research

identifying gut microbiota in diseased D. hystrix, and provides an

important clue for TFS management and control.
2 Materials and methods

2.1 Sample collection

D. hystrix were collected from aquaculture ponds in Sanya,

China. The average body length of the D. hystrix was 10.54 ± 1.73

cm and the average weight of the D. hystrix was 26.33 ± 4.21g. After

collection, eight TFS and eight normal D. hystrix fish were

randomly selected and dissected immediately. Fish were

anesthetized with MS-222 (Sigma-Aldrich) before sacrifice.

Intestinal tracts were aseptically removed from the body cavity,

and the contents gently squeezed into sterile containers. These were

immediately frozen in liquid nitrogen, and maintained at −80°C

until DNA extraction. This work received ethical approval from the

Animal Research and Ethics Committees of South China

Agriculture University.
2.2 Histopathology

Five TFS and five normal D. hystrix fish were selected, mid-

intestinal segments removed, and fixed in Bouin’s fluid. After

dehydration, tissue was embedded in paraffin wax, sectioned (5

mm), stained in hematoxylin and eosin, and examined using a

Nikon microscope (Nikon Eclipse E100, Japan).
2.3 DNA extraction, amplification
and sequencing

Microbial DNA from intestinal contents was extracted using the

QIAGEN DNA stool mini kit (QIAGEN, USA) following

manufacturer’s instructions. We conducted 1% agarose gel

electrophoresis to assess successful DNA extraction. DNA

concentrations and purity were then measured using the

NanoPhotometer® Classic Launched (IMPLEN, Germany). As

previously described, DNA was diluted to 1 ng/ml, and two

specific barcoded primers (341F, CCTACGGGNGGCWGCAG

and 806R, GGACTACHVGGGTATCTAAT; the barcode was an

eight-base sequence unique to each sample) were used to amplify

the V3–V4 region of the 16S rRNA gene by PCR (Zhou et al., 2020).

PCR product quality was assessed by 2% agarose gel electrophoresis.

Purified amplicons were pooled in equimolar amounts, and paired
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ends sequenced (PE250) on an Illumina platform Hiseq™ 2500

(Gene Denovo Biotechnology Co. Ltd. Guangzhou, China).
2.4 Bioinformatics and statistical analysis

DADA2 was used to perform quality filtering on amplicons,

infer exact amplicon sequencing variants (ASVs), and filter and

remove chimeras (Callahan et al., 2016). Taxonomic assignment

(i.e., kingdom, phylum, class, order, family, genus, and species) by a

naive Bayesian model was conducted using the RDP classifier

(version 2.2, Wang et al., 2007) based on the SILVA database

(version 132, Quast et al., 2013). Singletons across samples and

reads which mapped to mitochondria or chloroplasts

were discarded.

Alpha diversity comparisons (Sob, Chao1, ACE, Shannon,

Simpson, and Pielou indices) between groups were calculated

using the Wilcoxon rank test. To compare microbial community

differences between groups, non-metric multidimensional scaling

(NMDS) ordination and analysis of similarities (ANOSIM) using

the Bray-Curtis distance was conducted in the R project Vegan

package (Oksanen et al., 2016). Biomarker features in each group

were screened using the random forest model in the randomForest

R package (Liaw and Wiener, 2002).

Kyoto Encyclopedia of Genes and Genomes pathway analysis of

ASVs was inferred using PICRUSt2 (Douglas et al., 2020).

Functional differences between groups were analyzed by Welch’s

t-test.
3 Results

3.1 Morphological TFS characteristics

D. hystrix with TFS exhibited tail stalk ulceration, resulting in

tail loss (Figures 1B, D), whereas normal fish did not exhibit this

phenomenon (Figures 1A, C). When we dissected TFS fish

abdomen and observed viscera, ascites and white feces in

intestines (Figure 1E).
3.2 Histopathology

TFS and normal fish intestines were sectioned and histologically

analyzed. TFS fish intestinal villi had many cavities and gaps

(Figures 2A, B). Furthermore, intestinal villi were shorter and

distances between villi were larger in TFS fish intestines. Normal

fish intestines are shown (Figures 2C, D).
3.3 Microbiota composition
and distribution

After quality control and rarefaction, 512368 high-quality reads

were obtained from 16 samples, comprising eight normal D. hystrix

and eight TFS D. hystrix. The total number of ASVs was 14434,
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ranging from 612–2481 ASVs per sample. ASV and taxonomy data

from samples are presented (Table S1).

The top 10 taxa with the highest abundance in each group at

phylum and genus levels are shown (Figure 3). At the phylum level

(Figure 3A), the average abundance of Firmicutes was 37.27%;

Bacteroidetes was 25.80%; Proteobacteria was 19.32%, and

Actinobacteria was 4.43% in the TFS group. In the normal fish

group, the average abundance of Firmicutes was 36.32%;

Bacteroidetes was 21.70%; Proteobacteria was 19.04%, and

Actinobacteria was 5.95% (Figure 3A). At the genus level, the

average abundance of the Lachnospiraceae_NK4A136_group was

5.04% in TFS and 5.64% in normal fish, also the average abundance

of Lactobacillus was 4.91% in TFS and 3.39% in normal

fish (Figure 3B).

Furthermore, we identified nine genus-level indicator taxa

associated with TFS by using a random forest model and

Wi l coxon t e s t (F i gu r e 4A) . O f the s e , Halomonas ,

Prevotellaceae_NK3B31_group and Psychrobacter abundances

were significantly decreased in TFS fish. In contrast ,

Brevibacterium, Mesorhizobium, Ochrobactrum, Ralstonia,

Anaerococcus, and Alistipes were significantly increased (Figure 4B).
3.4 Microbiota diversity and
structural differences

For alpha diversities, all Sob, Chao1, ACE, Shannon,

Shannon, and Pielou indices showed no significant differences

between groups. We calculated the coefficient of variation

(standard deviation/mean), which indicated larger deviations in

alpha diversities in TFS fish (Figure 5; Table 1). In addition,

Pielou’s evenness index indicated a decreasing tendency

(Wilcoxon rank test: p = 0.089) in the TFS group. These

results suggested increased instability in TFS D. hystrix

intestinal microbiota.

NMDS analysis showed that community structures were

significantly altered between groups (Figure 6A). Furthermore,

microbial community differences between groups were tested

using ANOSIM, and showed statistically significant differences (R

= 0.106, P = 0.034) between groups (Figure 6B).

To identify the most important marker functions correlating

with the TFS, we performed Kyoto Encyclopedia of Genes and

Genomes pathway analysis of ASVs by using PICRUSt2. As shown

in Figure 7, as an example, among the top nine pathways, five

(biotin metabolism, steroid hormone biosynthesis, flavonoid

biosynthesis, biosynthesis of type II polyketide products, and

steroid biosynthesis) were classified as metabolism, one (biofilm

formation - Vibrio cholera) was classified as a cellular process, one

(non-homologous end-joining) was classified as genetic

information processing, and two (V. cholerae infection and

systemic lupus erythematosus) were classified as infectious

diseases, most of which were metabolism or disease infectious

related pathways, thus suggesting that these pathways (especially

for “biosynthesis of type II polyketide products” and “flavonoid

biosynthesis”) might be the dominant direct or indirect feedback

responses to TFS.
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4 Discussion

D. hystrix is a new aquaculture breed currently undergoing large

scale cultivation in China, however, with increased aquaculture

comes new diseases. TFS is the latest, with a high mortality rate, tail

stalk festering, tail-loss, and ascites and white feces in the intestines.

We proposed TFS may induce changes in bacteria or fungi in the

gut, therefore, we investigated gut microbiota in diseased and

normal fish, and observed significant differences in microbial

composition and function between groups.

In recent years, an increasing number of studies have identified

correlations between immune functions, disease, and intestinal

microbiota in fish (Li et al., 2011; Sudheesh et al., 2012; Guijarro

et al., 2015; Liu et al., 2016; Qi et al., 2017). Many fish diseases
Frontiers in Marine Science 04
induce intestinal microbiota changes, e.g. the related taxa, Vibrio,

Aeromonas, and Shivella were overexpressed in the intestinal flora

of Carassius auratus ‘red film’ disease (Li et al., 2017). Similarly,

Aeromonas is a biomarker of furuncles in largemouth bass (Li et al.,

2016). These phenomena suggested that certain intestinal microbial

characteristics were indicative of host health status, independent of

disease etiology, as demonstrated by human intestinal diseases

(Mancabelli et al., 2017). Thus far, few studies have investigated

the relationship between disease severity and gut microbiome

disruption during fish disease development; thus, the transition

from healthy to diseased gut flora is unclear (Knights et al., 2014).

However, intestinal microbiota characteristics may be used as

factors in predicting the incidence of fish disease (Xiong et al.,

2017; Xiong et al., 2018), therefore, significant compositional
FIGURE 1

Morphological differences in normal (NOR) and tails fell syndrome (TFS) Diodon hystrix. (A) healthy D. hystrix. (B) TFS D. hystrix. (C) Closeup of the
tail of health D. hystrix.(D) Closeup of the tail of TFS D. hystrix, the black arrows indicate the festering and broken tails. (E) The state of the intestines
of health and TFS D. hystrix, the red arrows indicate the intestines of TFS D. hystrix.
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differences in intestinal microbial communities observed here may

be used to predict TFS occurrence in D. hystrix stocks. Our results

help to elucidate differences in intestinal microorganisms between

normal and diseased fish.

Bacterial diversity is closely associated with the functional

stability of the intestinal microbiota; the more diverse the gut

microbial community, the more likely it is to have species with
Frontiers in Marine Science 05
antagonistic properties against invading pathogens; e.g., this is often

observed for Coreius guichenoti (Li et al., 2016), C. auratus (Li et al.,

2017), and Plecoglossus altivelis (Nie et al., 2017). In this study, we

observed no significant differences in intestine microbiota species

diversity and richness between groups. However, NMDS and

ANOSIM strategies demonstrated differential microbial

communities between normal and TFS fish. Also, intestinal
FIGURE 2

Histological analysis of the intestinal sections of normal (NOR) and TFS D. hystrix. (A) The histological of TFS D. hystrix. (B) High magnification of the
boxed areas in A, black arrows indicate the cavitation and voids. (C) The histological of normal D. hystrix. (D) High magnification of the boxed areas
in (C) Scale bars (A, C): 100mm, Scale bars (B, D): 25mm.
B

A

FIGURE 3

Taxonomy stack distributions of different levels of classification for normal (NOR) and TFS D. hystrix. The top 10 phylum (A) and genus (B) were
selected, and the rest were unified to the other category.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1108737
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhou et al. 10.3389/fmars.2023.1108737
microbiota compositional structures were changed in TFS fish.

Combined, these data suggested diseased fish intestinal microbial

community homeostasis was disrupted.

Previous studies have demonstrated that bacteria are

responsible for fish diseases (Senderovich et al., 2010; Rønneseth

et al., 2017; Castillo et al., 2019). At the phylum level, we observed

Bacteroidetes levels were increased in TFS fish intestines. Many

bacteria in the Bacteroidetes phylum cause inflammation, abscesses,

and deep abscesses in the abdominal cavity and anus of both

animals and humans (Louis and Flint, 2009), thus, TFS appeared

to cause intestinal ulceration which may have been associated with

these bacteria however, more analyses are required. At the genus
Frontiers in Marine Science 06
level, we observed significantly increased bacteria in diseased fish,

including Anaerococcus, Brevibacterium and Alistipes. Anaerococcus

are considered enteropathogenic in mammals (Cobo and Navarro-

Marı,́ 2020), Brevibacterium is becoming increasingly pathogenic to

humans (Magi et al., 2018), and Alistipes are associated with gut

inflammation (Parker et al., 2020). In contrast, Halomonas and

Prevotellaceae_NK3B31 groups were decreased in TFS fish guts. The

fish digestive tract has a stable ecosystem just like the nature.

Normal fish contain huge bacterial numbers and proportions in

the gastrointestinal tract; however, different factors can elicit a vast

variety of changes. Normally, these changes fluctuate within certain

limits, thus maintaining a relatively stable equilibrium. However,
BA

FIGURE 4

Identified differentially abundant genera between the normal (NOR) and TFS D. hystrix. by random forest model (A) and wilcox test (B). A mean
decrease in accuracy measures the increase in misclassification produced on average by removing the given predictor. * P < 0.05, ** P < 0.01.
B C

D E F

A

FIGURE 5

Comparisons of intestinal microbiota alpha diversity between normal (NOR) and TFS D. hystrix. Sob (A), Chao1 (B), ACE (C), Shannon (D), and
Simpson (E) and Pielou indexes (F).
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once fish get sick, this balance is upset, and intestinal flora becomes

imbalanced. Thus, TFS may disrupt intestinal microbiota

homeostasis in D. hystrix.

Investigating bacterial functional diversity highlighted the

importance of the intestinal microbiome in host immunity. In
Frontiers in Marine Science 07
this study, the gut bacteria of healthy and TFS fish were

associated with multiple pathways. The most predominant

included steroid biosynthesis and flavonoid biosynthesis. In

organisms, steroids regulate innate immune responses and

participate in immune regulation. As observed in Drosophila,
B

A

FIGURE 6

Beta diversity difference in the intestinal microbiota of normal (NOR) and TFS D. hystrix. (A) Nonmetric multidimensional scaling (NMDS) analysis base
on Bray-Curtis dissimilarity index. (B) Statistical significance via Analysis of Similarity (ANOSIM) test with 999 permutations.
TABLE 1 Coefficient of Variation in alpha diversities in the intestinal microbiota of normal (NOR) and TFS D. hystrix.

group Sobs Chao1 ACE Pd shannon simpson pielou

NOR 0.300645 0.327363 0.335534 0.250939 0.02671 0.000994 0.024154

TFS 0.420653 0.421154 0.416582 0.32911 0.100461 0.009706 0.076838
fron
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steroid hormone signaling is essential to regulate innate immune

cells and fight against bacterial infection (Regan et al., 2013). The

steroid-signaling pathway can also help Caenorhabditis defend

against bacteria (Fischer et al., 2013). Moreover, several studies

have shown that steroid hormones exert excellent anti-

inflammatory properties; e.g. , 2-methoxyestradiol and

corticosteroids elicit wide ranging anti-inflammatory effects

(Shand et al., 2011; Doycheva et al., 2018). Steroid hormones play

important roles in enhancing biological immunity; however, our

results showed that steroid biosynthesis and flavonoid biosynthesis

were down-regulated in the intestinal microbiota in diseased fish,

and this downregulation can decrease sterol synthesis, weaken fish

immunity, and increase susceptibility to the invasion of pathogens,

thus resulting in TFS. However, these functional profiles were

predicted by 16S data, therefore, more experimental studies

are required.
5 Conclusions

In this study, the changes in the intestinal tissue and microbiota

of TFS and healthy D. hystrix were explored through

histopathological sectioning and 16S rRNA sequencing.

Histological analysis indicated that diseased guts were highly

disrupted. Analysis of the community diversity of the intestinal

microbiota showed that TFS decreased microbiota community

stability and induced intestinal microbiota community structural

change in D. hystrix. Furthermore, functional comparison

predictions between normal and TFS D. hystrix revealed that the

significantly altered pathways were associated primarily with

metabolism, thus leading to the alteration of a number of

pathways related to sterol synthesis. Overall, our data indicate

that TFS affects intestinal microbiota composition and function in

D. hystrix, thus expanding knowledge of diseases associated with

porcupine pufferfish aquaculture.
Frontiers in Marine Science 08
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