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For investigating ocean activities and comprehending the role of the oceans in

global climate change, it is essential to gather high-quality ocean data. However,

existing ocean observation data have deficiencies such as inconsistent spatial and

temporal distribution, severe fragmentation, and restricted observation depth

layers. Data assimilation is computationally intensive, and other conventional

data fusion techniques offer poor fusion precision. This research proposes a

novel multi-source ocean data fusion network (ODF-Net) based on deep

learning as a solution for these issues. The ODF-Net comprises a number of

one-dimensional residual blocks that can rapidly fuse conventional observations,

satellite observations, and three-dimensional model output and reanalysis data.

The model utilizes vertical ocean profile data as target constraints, integrating

physics-based prior knowledge to improve the precision of the fusion. The

network structure contains channel and spatial attention mechanisms that guide

the network model’s attention to the most crucial features, hence enhancing

model performance and interpretability. Comparing multiple global sea

temperature datasets reveals that the ODF-Net achieves the highest accuracy

and correlation with observations. To evaluate the feasibility of the proposed

method, a global monthly three-dimensional sea temperature dataset with a

spatial resolution of 0.25°×0.25° is produced by fusing ocean data from multiple

sources from 1994 to 2017. The rationality tests on the fusion dataset show that

ODF-Net is reliable for integrating ocean data from various sources.

KEYWORDS

data fusion, three-dimensional ocean datasets, deep learning, attention mechanisms,
physics-based prior knowledge
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1 Introduction

Ocean science research has acquired international attention in

recent years due to the ocean’s importance as a regulator of the Earth’s

system and its importance in controlling and preventing global

climate change (Cheng et al., 2020). To understand and predict

climate change and the evolution of the marine environment,

researchers collected high-quality ocean data to conduct scientific

investigations and numerical simulations. Currently, in situ

observations are used to collect the vast majority of ocean data.

Oceanographic float observations can provide more precise data on

the interior of the ocean, but their sparsity, uneven distribution, and

low resolution make them challenging to employ directly in ocean

research and numerical model simulations (Su et al., 2018; Su et al.,

2021). Satellite remote sensing monitoring of the ocean has advanced

rapidly in recent years, allowing for continuous observations of the

ocean over a wide area and for long periods of time. However, ocean

satellites are unable to observe subsurface and deeper ocean structures

and processes due to their limited observation depth (Chapman and

Charantonis, 2017). Combining the benefits of multi-source

observation data to build 3D gridded ocean datasets is therefore an

important and challenging problem.

A large number of researches have been conducted on multi-

sensor sea surface satellite data fusion, including optimum

interpolation methods, Bayesian methods, and variational methods

(Zhu et al., 2018; Xiao et al., 2021). For example, NCEP developed

RTG SST, a satellite-based SST analysis dataset for real-time global

SST monitoring, and OISST, an SST analysis dataset for optimum

interpolation (Thiébaux et al., 2003; Chelton and Wentz, 2005). To

acquire high spatial and temporal resolution SST from the merging of

coastal multi-satellite SST and in situ observation data, Chao et al.

(2009) utilized the two-dimensional variational (2DVAR) data

assimilation method. To achieve the fusion of multi-sensor SST

data, Zhu et al. (2018) employed the Spatiotemporal Hierarchical

Bayesian Model. Successive correction analysis (SCA), optimum

interpolation (OI), variational methods (3DVAR and 4DVAR), and

Kalman filter (KF) are the primary assimilation techniques utilized in

ocean research (Cressman, 1959; Danard et al., 1968; Lorenc, 1981;

Courtier et al., 1994; Evensen, 1994). Many objective analysis datasets,

e.g., the EN4 analysis dataset (Good et al., 2013), the global gridded

Argo dataset (Zhang et al., 2022), and reanalysis datasets, e.g., the

Simple Ocean Data Assimilation (SODA) reanalysis (Carton and

Giese, 2008), the Estimating the Circulation and Climate of the Ocean

(ECCO) reanalysis, and the Hybrid Coordinate Ocean Model

(HYCOM) reanalysis, have been developed using data assimilation

methods. However, as the volume, velocity, variety, and veracity of

ocean observation data continue to grow, conventional data

assimilation and fusion systems are facing increasingly complicated

issues (Bauer et al., 2015; Stammer et al., 2016). Existing methods for

fusing ocean data always rely heavily on a prior knowledge of linear

principles, normal distributions, and appropriate error covariances.

This limits their suitability in realistic nonlinear ocean systems, and

the resulting fusion accuracy still needs improving. In 3D ocean data

assimilation, typical observation profiles are assimilated at each grid

point, layer by layer. The generation of spurious high-frequency
Frontiers in Marine Science 02
signals in the vertical direction is one problem, while the huge

increase in observation data volume and the large computational

cost of the assimilation approach are others. Therefore, scientists are

focusing on new methodologies, particularly artificial intelligence

(AI), to rapidly fuse different ocean observation datasets.

AI techniques have been extremely successful in the fields of

audio, picture, video, and natural language processing because of their

ability to fit nonlinear systems and capture high-dimensional features

(Hinton and Salakhutdinov, 2006; Kahou et al., 2016; Yu and Deng,

2016; Jiao and Zhao, 2019; Strubell et al., 2019). Scientific data and

techniques made possible by advances in AI have aided researchers in

the atmospheric and oceanic sciences (Overpeck et al., 2011;

Reichstein et al., 2019). There have been many significant advances

in ocean research, including wave forecasting (Bento et al., 2021), sea

ice forecasting (Andersson et al., 2021), mesoscale eddy identification

(Vafaei et al., 2022), subsurface temperature reconstruction (Su et al.,

2021), and ENSO prediction (Ham et al., 2019). Multi-sensor sea

surface satellite data has been fused using AI techniques in the field of

ocean data fusion. To implement wind speed inversion over the

ocean, Chu et al. (2020) used a multimodal deep learning approach to

combine disparate GNSS-R data. Xiao et al. (2021) presented a genetic

algorithm-aided deep neural network model to enhance the SST

field’s resolution and accuracy. Although the AI model has acquired

sufficient accuracy in merging surface satellite data, experts are

sometimes suspicious of its results because it is uncertain which

factors influence the model’s decisions. To the best of our knowledge,

few academic institutions have used AI methods to generate the

reanalysis data set. Therefore, it is crucial to ensure interpretability in

data fusion methods.

In order to overcome the shortcomings of current data fusion and

assimilation methods, this paper proposes a novel multi-source ocean

data fusion method based on deep learning to achieve intelligent

fusion of in situ observations, sea surface satellite data, numerical

model data, objective analysis data, and reanalysis data. For the

objective of integrating sources into common “multidimensional

grids”, the ODF-Net combines several spatial-temporal scales by

applying appropriate transforms to disparate ocean data (Salcedo-

Sanz et al., 2020). By using physics-based prior knowledge, vertical

profile observations, and gradient information as objective

constraints, the model is able to reduce high-frequency spurious

signals in the vertical direction of ocean data. The addition of

global attention mechanisms (GAM), comprising channel and

spatial attention mechanisms, improves both the model’s fusion

performance and interpretability. Finally, the ODF-Net is utilized to

fuse multi-source ocean data from 1994 to 2017 to create a global

0.25°×0.25° monthly 3D sea temperature fusion dataset named ODF-

ST dataset.

The remainder of the article is organized as follows. Section 2

introduces all data used in the study, as well as data processing and

sample production methods. Section 3 introduces the ODF-Net,

including the network structure, attention mechanisms, and

objective function design. Section 4 validates the performance and

interpretability of the ODF-Net, and evaluates the ODF-ST dataset to

verify the practicality of the model. The conclusions and a discussion

of future work are provided in Section 5.
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2 Data

To undertake intelligent data fusion, we collected ocean data from

a range of sources, including in situ observations, ocean satellite

observations, and 3D gridded data (e.g., numerical model data,

objective analysis data, and reanalysis). This study covers the

majority of the entire marine domain (180°W–180°E, 60°S–65°N).

The proposed strategy was discussed over time (every month from

1994 to 2017) and depth (from the sea surface to 1000 m). The

horizontal resolution of the target grid is 0.25°, while the vertical

resolution is 23 standard levels (0, 4, 8, 12, 20, 30, 40, 50, 70, 90, 125,

150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, and 1000 m).

Because different ocean data had diverse spatial and temporal

resolutions and distributions, we employed interpolation to ensure

consistency in both space and time.
2.1 1D observation profile

In this work, high-precision in situ observation profiles acquired

from the UK Met Office Hadley Centre’s EN4 temperature and

salinity profiles dataset version 4.2.1 (subsequently referred to as

EN4-profiles) were used as model training labels. The World Ocean

Database (WOD), the Arctic Synoptic Basin-wide Observation

(ASBO), the Global Temperature and Salinity Profile Program

(GTSPP), and the Argo Global Data Assembly Centers (GDACs)

provide the fundamental observations in EN4-profiles (Good et al.,

2013). EN4-profiles are widely used to evaluate model simulations as “

ground truth” (Kumar et al., 2017). We selected high-quality

temperature profiles through quality flags.

EN4-profiles have a discontinuous and irregular spatial and

temporal distribution and need to be interpolated into the

previously mentioned target grid. First, we utilized linear

interpolation to interpolate EN4-profiles to 23 standard levels. The

processed profiles were then interpolated level by level onto the

previously described 0.25° horizontal grid. Because the observation

profiles are extremely sparse, a spatial-temporal weighted

interpolation method (Zeng and Levy, 1995) was used to increase

the number of samples and improve the interpolated data accuracy.

For each horizontal objective grid to be interpolated, a spatial-

temporal domain with a spatial radius Rs and a temporal radius Rt

are specified as the interpolation neighborhood centered on the target

grid. The objective grid will be null if there are no observation profiles

in the interpolation neighborhood. The monthly temperature Tobj.i of

the level i of the objective grid is computed as

Tobj,i =
oN

k=1wkTk

oN
k=1wk

(1)

where N represents the total number of observations in the

neighborhood, Tk represents the k-th temperature observation in

the neighborhood, and wk represents the interpolation weight of Tk.

The wk is calculated as

wk =
2 − ½(xk−x0)2+(yk−y0)2Rs

2 + (tk−t0)
2

Rt
2 �

2 + ½(xk−x0)2+(yk−y0)2Rs
2 + (tk−t0)

2

Rt
2 �

(2)
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Where xk, yk, tk represent the longitude, latitude, and time

corresponding to Tk, x0, y0 and t0 represent the longitude, latitude,

and time corresponding to Tobj,i, respectively. In this work, Rs is 0.48°,

Rt is 15 days, and t0 is the 16th day of each month.
2.2 2D sea surface datasets and 3D
gridded datasets

To yield sea surface information for ocean data fusion, multi-

source ocean satellite observation and analysis data were used as

model training input. The surface variables include sea surface

temperature (SST), sea level anomaly (SLA), and sea surface wind

(SSW). Three satellite SST analysis datasets were collected, including

NOAA’s Optimum Interpolation Sea Surface Temperature (OISST,

version 2) (Reynolds et al., 2007), the Extended Reconstructed Sea

Surface Temperature (ERSST, version 5) (Huang et al., 2017), and the

Hadley Centre Global Sea Ice and Sea Surface Temperature

(HadISST) (Rayner et al., 2003). The OISST data is daily with a

horizontal resolution of 0.25°, the ERSST data is monthly with a

horizontal resolution of 2°, and the HadiSST data is monthly with

a horizontal resolution of 1°. The satellite SLA is a daily Aviso-SLA

(version 4.0) dataset from Copernicus Marine Environment

Monitoring Service (CMEMS) with a horizontal resolution of 0.25°.

NASA’s monthly Cross-Calibrated Multi-Platform (CCMP, Version

2) wind data with a horizontal resolution of 0.25° is provided by the

satellite SSW (Atlas et al., 2011). All sea surface data were collected

between 1994 and 2017.

To generate subsurface information for ocean data fusion,

numerical model data, objective analysis data, and reanalysis data

were used. The addition of numerical model data and reanalysis data

increased the physical rationality of the 3D ODF-ST dataset. Monthly

historical simulation data (r1i1p1f1) from NCAR’s CESM2 Earth

system model (Danabasoglu et al., 2020) and monthly historical

simulation data (r1i1p1f1) from CMA’s BCC-CSM2-HR climate

system model (Wu et al., 2021) were included in numerical model

data. The Hadley Center’s EN4 monthly objective analysis data

(version 4.2.1, subsequently referred to as EN4-analysis) is used

for the objective analysis, which has a horizontal resolution of 1°.

(Good et al., 2013). SODA (version 3) monthly ocean reanalysis data

from the University of Maryland (Carton et al., 2018), ECCO (version

4) monthly reanalysis dataset with a horizontal resolution of 0.5° from

NASA (Forget et al., 2015), and HYCOM daily reanalysis data with a

horizontal resolution of 1/12° from the US Naval Research Laboratory

are the reanalysis datasets used (Chassignet et al., 2007). All of these

3D gridded datasets were collected between 1994 and 2017.

To produce the monthly average dataset for sea surface data, daily

OISST and AVSIO SLA analysis data were averaged. Using bilinear

interpolation, all sea surface data were uniformly interpolated to the

previously described 0.25° horizontal grid. The daily HYCOM

reanalysis data for 3D gridded data were averaged to generate a

monthly average dataset. All 3D gridded data were linearly

interpolated to vertical standard levels before being uniformly

interpolated to the previously defined horizontal grid with 0.25°

resolution using a bilinear interpolation method.
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3 Methodology

We propose a data-level fusion architecture, depicted in Figure 1,

to accommodate the multi-dimensionality and heterogeneity inherent

in ocean data gathered from various sources. We first transform,

align, and organize heterogeneous data such as multi-source ocean

data and spatiotemporal information into regular samples, and then

build a deep learning-based data fusion model to automatically

extract multi-level features from the samples and finally generate

fused data. One benefit of a data-level fusion architecture is that it

allows for the fusion of data from multiple sources while utilizing a

single network. Data-level fusion is superior to feature-level and

decision-level fusion methods in terms of reducing the number of

model parameters(Kopuklu et al., 2018). Furthermore, as model

fusion takes place at the data level, the correspondence between

different datasets can be automatically extracted.

In order to organize data from multiple sources into samples for

model training, we produced samples based on the observation

profiles collected in section 2.1, where one observation profile is

equivalent to one sample. To better incorporate prior knowledge,

such as the vertical structure of sea temperature, into the model and to

suppress the spurious high-frequency signal of fusion data in the

vertical direction, we chose to use the observation profile interpolated

to standard layers as the label, as shown in Figure 1. Therefore, a label

has a dimension of 1×D, where D is the number of vertical standard

levels (23 in this work). The deepest effective sea temperatures were

used to fill the missing data produced by seafloor terrain, and the filled

data were not taken into account in the loss function. We reserved

10% of all samples as the test set for validation of model performance.

The dimension of sample features is C×D, where C=M+1 is the

number of channels in the input layer of the fusion model, M is the

number of 3D gridded datasets, and M=6 in the current study. As

shown in Figure 1, the first six channels are vertical profiles of EN4-

analysis, HYCOM, SODA, ECCO, CESM2, and BCC-CSM2-HR that

correspond to the sample label in the temporal and spatial

dimensions. The last channel provides the spatial data (latitude and

longitude), the temporal data (year and month), and the sea surface

data (ERSST, OISST, HadiSST, AVSIO SLA, and CCMP)
Frontiers in Marine Science 04
corresponding to the sample label, with the remaining locations

filled with zeros.
3.1 Model structures of the ODF-Net

The ODF-Net, shown in Figure 2A, is a variant of the 1D-ResNet

model. There are three distinct sections to this design. To accomplish

the task of extracting shallow features from multi-source ocean data,

block A contains a 1D convolutional layer that uses a 3×1 kernel in

addition to two GAMs. Blocks B and C, depicted in Figures 2B, C,

respectively, are composed mostly of 1D convolutional layers with a

3×1 kernel, dropout layers (dropout probabilities of 0.5), and skip-

connection structures to harvest the deep features. Block D is a

decoding block that fully integrates sea temperature data from

many sources through the use of a combination of shallow and

deep features.

In the ODF-Net, we choose to use the more advanced Adaptively

Parametric Rectifier Linear Unit (APReLU) activation function rather

than the more common ReLU activation function used in the 1D-

ResNet. When the original features are less than zero, APReLU runs

each sample through a small fully connected network to produce

matching weights, which are then used as coefficients of the original

features to provide a more flexible method of nonlinear

transformation (Zhao et al., 2020).
3.2 GAMs in the ODF-Net

Improving the model’s interpretability assists with both

understanding the deep learning model’s complex decision-making

foundation and guaranteeing the model’s reliability (Xu et al., 2021).

Giving neural networks an attention mechanism improves their

ability to learn by focusing on the relevant important feature while

discarding the rest. In order to emphasize the interaction of multiple

sources of information at different depth levels and to enable the

model to capture important features in both dimensions, we modify

the GAM (Liu et al., 2021) and redesign the sub-modules. Figure 3A
FIGURE 1

Framework for the intelligent fusion of multi-source heterogeneous ocean data.
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depicts the GAM’s overall attention mechanism process, which

sequentially combines channel attention and spatial attention.

Given input features F1 the intermediate state F2 and output F3 are

defined as

F2 = MC(F1)⊗ F1 (3)

F3 = MS(F2)⊗F2 (4)

where Mc and Ms are the channel attention and spatial attention

weights, respectively, indicating the model’s degree of attention to

distinct channels and depth levels of input features. ⊗ denotes the

multiplication operation by element. For the first GAM, in particular,
Frontiers in Marine Science 05
channel attention reflects the importance of different sources, while

spatial attention reflects the model’s concentration on diverse physical

depth levels.

A major part of the channel attention submodule is shown in

Figure 3B. When extracting information in two dimensions, 2D

permutation is employed, and then a two-layer neuron network is

used to magnify the dependence between channels and depth levels

across dimensions. Each channel’s weights are then calculated using

the sigmoid function. Figure 3C depicts the spatial attention

submodule, which uses two convolutional layers to aggregate

information from different depths and a sigmoid function to

determine the weights of each depth.
A

B

C

FIGURE 3

(A) The overview of redesigned GAM. The structures of (B) channel attention submodule, and (C) spatial attention submodule.
A

B C

FIGURE 2

Structures of (A) the ODF-Net, (B) Block B, and (C) Block C.
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3.3 Design of loss function

In order to integrate prior knowledge such as the vertical structure

of sea temperature into the model and reduce the spurious high-

frequency signal of fusion data in the vertical direction, the vertical

gradient and integral of the sea temperature profile were added to the

loss function, which is calculated as

Loss1 = RMSE + a · LossST _Grad + b · LossCumsum (5)

where LossST_Grad is the sea temperature gradient constraint,

LossCumsum is the sea temperature profile integral constraint. a and

b are hyperparameters, which were determined as 0.004 and 0.02

respectively through comparison experiments. The LossST_Grad and

LossCumsum are defined as

LossST _Grad =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1(ST _Gradlabel,  i − ST _Gradpred,  i)

2

r
,  

ST _Gradk =
Tk+1 − Tk

Zk+1 − Zk

(6)

LossCumsum =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1(Cumsumlabel,  i − Cumsumpred,  i)

2

r
,  

Cumsum =oM
k=1Tk

(7)

where ST_Grad and Cumsum represent the vertical gradient and

the vertical integral of the sea temperature profile, respectively. Ti

denotes the sea temperature value of the i-th level and Zi denotes the

vertical depth of the i-th level.

Meanwhile, to determine whether the loss function with gradient

and integral constraints may improve the model’s fusion

performance, a comparative experiment was run with the loss

function Loss2=RMSE, and the experimental results are provided in

Table 1. R2 is the coefficient of determination, a value ranging from 0

to 1 that indicates how effectively a statistical model predicts an

outcome. The closer a model’s R2 is to 1, the better it is at making

predictions. Equation 8 gives the calculation of R2.

R2 = o
N
i=1(f i − �y)2

oN
i=1(yi − �y)2

(8)

where fi and yi represent the i-th prediction and label, respectively.
�y denotes the averaged value of all labels. The model with Loss1 has

nearly the same root mean square error (RMSE) as the model with

Loss2 but the sea temperature profile gradient error (STPGE) is

reduced by 4%, indicating that the addition of physics-based prior
Frontiers in Marine Science 06
knowledge constraints in the loss function has an enhancement effect

on the vertical structure of the fusion sea temperature.
3.4 Ablation studies

Four sets of experiments (Exp0–Exp3) were designed to validate

the favorable impacts of GAM and APReLU on the fusion model.

Exp0 is the baseline, which does not include GAM or APReLU. Exp1

includes GAM, and Exp2 includes APReLU. Exp3 includes both

GAM and APReLU, i.e., the ODF-Net. In addition, we designed

Exp4 to do the same fusion task using Transformer (Vaswani et al.,

2017), a state-of-the-art model for sequence-to-sequence learning, in

order to validate the ODF-Net’s performance in comparison to other

models. The transformer’s hyperparameters were tuned, and the

encode dimension, number of attention heads, number of identical

layers, query vector length, and key vector length were all set to 128, 8,

6, 16, and 16, respectively.

Table 2 shows a comparison of test results from the five sets of

experiments. Comparing Exp1 and Exp0, GAM reduces RMSE by

2.87% and STPGE by 4.28%; comparing Exp2 and Exp0, APReLU

reduces RMSE by 4.33% and STPGE by 5.32%; comparing Exp3 and

Exp0, GAM and APReLU reduce RMSE by 6.98% and STPGE by

6.86%. As a result, GAM and APReLU considerably increase model

performance. The comparison of Exp4 and Exp3 shows that the ODF-

Net outperforms the Transformer in all metrics, including RMSE,

STPGE, and R2. The quantities of trainable parameters are listed in

the third column of Table 2 with M representing 106, the higher the

value, the more complicated the model. The amount of trainable

parameters in the ODF-Net is only about 60% of the Transformer,

demonstrating that the ODF-Net we developed is lightweight and

high-performance.
4 Results and discussion

This section begins with an evaluation of the ODF-Net’s

performance using in situ observations from the reserved test set.

The model’s interpretability was then examined by collecting the

attention weights of the first GAM in the ODF-Net. Finally, the global

sea temperature dataset developed by the ODF-Net was examined to

verify the method’s practicality.
4.1 Performance of the ODF-Net

To verify the accuracy of the fusion model, we compared the

RMSE, STPGE, and R2 of all eight data sources, including ODF-Net
TABLE 1 Comparison of metrics on test set using different loss functions.

Loss function RMSE(°C) STPGE(°C/m) R2

Loss1 0.74 0.0418 0.992

Loss2 0.73 0.0435 0.988
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predictions, six sets of fused data, and their ensemble average data

(EAD), with in situ observations. Table 3 summarizes the accuracy of

different datasets over the test set using the metrics mentioned above.

As Table 3 suggests, ODF-Net predictions are optimal on all

evaluation metrics. ODF-Net predictions have an average RMSE of

0.74°C, while other data sources have RMSEs greater than 0.9°C.

ODF-Net predictions have an average STPGE of 0.042°C/m, while

other data sources have average STPGEs greater than 0.046°C/m. The

ODF-Net improves both the accuracy and the vertical structure of the

fusion sea temperature.

The spatial distribution of RMSE is depicted in Figures 4A, B.

ODF-Net predictions are more accurate than EAD’s in almost all

regions, especially in areas with large gradients such as the Gulf

Stream, the Kuroshio Extension, and the West Wind Drift, where the

improvement is noticeable. Figure 4C shows the spatial distribution of

the percentage improvement in R2 of ODF-Net predictions with

observation profiles versus R2 of EAD predictions with observation

profiles. Statistical examination of the test set reveals that R2 of ODF-

Net predictions is greater than EAD for 78.51% of the profiles. The

improvement is more significant in areas with large gradients, such as

the boundary current regions, which are similar to the spatial

distribution of RMSE, suggesting that the deep learning model

learns more correct information from multiple datasets.

The distribution and variation of sea temperatures in different

ocean areas and depth levels exhibit distinct characteristics due to the

effects of several factors, such as solar radiation, land-sea distribution,

ocean currents, and monsoons (Chen et al., 2002; Li et al., 2020). To

examine the fusion effect, we evaluated the accuracy of ODF-Net

predictions at different depth levels by region. The global ocean was

divided into five oceans, which are the Pacific Ocean, the Atlantic
Frontiers in Marine Science 07
Ocean, the Indian Ocean, the Arctic Ocean, and the Southern Ocean.

ODF-Net performance in the five oceans and global regions is

then discussed.

Here, we examined the time average RMSEs of eight data sources

at different depth levels in the five oceans and global regions,

including CESM2 (green line), BCC-CSM2-HR (red line), ECCO

(purple line), SODA (pink line), EN4-analysis (orange line), HYCOM

(brown line), EAD (gray line), and ODF-Net predictions (blue line)

(Figure 5). The time average RMSEs in the vertical direction of eight

data sources varied in each of the five oceans, but the RMSE of ODF-

Net predictions at different depth levels is significantly lower than that

of other data sets in each ocean as well as the global region. This

indicates that the proposed ODF-Net performs better on a global

scale. The accuracy improvement in ODF-Net predictions above the

thermocline is greater than in other deeper layers, particularly at the

thermocline with the largest vertical gradient. This might be

attributed to the large number of thermocline observations, which

enables the ODF-Net to learn the bias between other data sources

and observations.

The Taylor diagram incorporates numerous assessment measures

that are commonly used to evaluate model performance, including

the correlation coefficient (COEF), root mean square error (RMSE),

and standard deviation (STD) (Taylor, 2001). Taylor diagrams were

utilized to more thoroughly and objectively analyze the statistical

connections between various data points and observations in this

work. Taylor diagrams of sea temperatures in the five oceans and

global regions based on nine data sources, including projections

(black dots) and observations (red dots) from ODF-Net are shown

in Figure 6. Figure 6 shows that the results from several datasets vary

widely, while the predictions generated by ODF-Net consistently and
TABLE 3 Comparison of metrics on test set of different data sources.

RMSE(°C) STPGE(°C/m) R2

EN4-analysis 0.90 0.046 0.989

CESM2 2.17 0.058 0.933

BCC-CSM2-HR 2.48 0.057 0.913

ECCO 2.33 0.060 0.923

HYCOM 1.19 0.057 0.980

SODA 1.01 0.048 0.986

EAD 1.21 0.049 0.979

ODF-Net predictions 0.74 0.042 0.992
frontier
The bold values are generated by our model (ODF-Net).
TABLE 2 Comparison of metrics on test set using different model structures.

Model structure Parameters RMSE(°C) STPGE(°C/m) R2

Exp0 Baseline 0.43M 0.79 0.0436 0.9911

Exp1 Baseline+GAM 0.47M 0.77 0.0429 0.9915

Exp2 Baseline+APReLU 0.95M 0.76 0.0425 0.9918

Exp3 Baseline+GAM+APReLU 0.98M 0.74 0.0418 0.9922

Exp4 Transformer 1.59M 0.77 0.0438 0.9912
The bold values are generated by our model (ODF-Net).
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FIGURE 5

Vertical distribution of time-averaged RMSEs in (A) Pacific Ocean, (B) Atlantic Ocean, (C) Indian Ocean, (D) Arctic Ocean, (E) Southern Ocean, and
(F) Global Ocean.
A

B

C

FIGURE 4

Spatial distribution of RMSE between (A) the ODF-Net, (B) EAD and EN4-profiles observations; (C) Spatial distribution of increase percentage in R2 of the
ODF-Net relative to EAD.
Frontiers in Marine Science frontiersin.org08

https://doi.org/10.3389/fmars.2023.1112065
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2023.1112065
comprehensively outperform those generated by any other dataset.

ODF-Net predictions are unbiased with a high level of correlation.

The ODF-Net also has different outcomes depending on location. The

performance of the ODF-Net in the Pacific, Atlantic, and Indian

Oceans was comparable to that of the global region (Figures 6A–C).

Figures 6D, E illustrate that the performance of the ODF-Net model

in the Northern and Southern Oceans still needs to be improved. The

main reason is that the performance of ODF-Net is highly dependent

on high-quality observations, which are much less available in the

Arctic and Southern Oceans than in other regions.
4.2 Interpretability of the ODF-Net

Attention weights, as an intermediate output of the network

model, can be used as a convenient tool to explain model decisions.

Many studies have discussed the model interpretation ability of the

attention weight distribution for neural network models based on

attention mechanisms (Pruthi et al., 2019; Serrano and Smith, 2019;

Wiegreffe and Pinter, 2019). In this study, we utilized attention weight

distribution to analyze the contribution of multi-source ocean data as

well as spatiotemporal information to the ODF-Net fusion process.

Since multi-source data were sent directly to the first GAM in the

ODF-Net, the attention weights could represent the contributions of

the original ocean data as well as of the spatiotemporal information.

We obtained the channel attention weight Mc and the spatial

attention weight Ms of the first GAM, and since the GAM used a

combination of channel and spatial attention serially, the global

attention weight Mglobal is defined as:
Frontiers in Marine Science 09
Mglobal = MC ⊗MS (9)

Figure 7 shows a heat map of the global attention weight Mglobal.

The top six rows illustrate the contribution of each of the 3D gridded

datasets to the final fusion task, while each column represents the

contribution of ocean data at various depth levels. As shown in

Figure 7, the top three 3D gridded data contributors, in order, are

EN4-analysis, SODA, and HYCOM, whereas ECCO, CESM2, and

BCC-CMS2-HR contribute relatively little. The distribution of

attention weights is rather reasonable, as the error between EN4-

analysis and observed EN4-profiles is the smallest on the test set,

followed by SODA and HYCOM, whereas the average errors are

larger for ECCO, CESM2, and BCC-CMS2-HR. This implies that the

ODF-Net has given more attention to high-precision data. In the

spatial dimension, the attention weights of the shallow levels above

100 m are greater than those of the deeper levels below 100 m for

EN4-analysis and SODA, the two datasets that received the most

attention, and for other datasets, the weights of the deep levels are

greater than those of the shallow levels. This is due to the fact that sea

temperatures are more stable at deeper levels, and 3D gridded datasets

at deeper levels are more accurate than those at shallow levels. Due to

the extremely high correlation of sea temperature variations with

latitude, latitude has the greatest weight in the last channel. In

contrast, the attention weights of temporal information and sea

surface data are not significantly different. The analysis of attention

weights shows that the ODF-Net pays more attention to the data

sources that are more accurate. At the same time, information from

different depth levels of the same data source makes different

contributions to the fusion process.
A B

D E F

C

FIGURE 6

Time-averaged Taylor diagram in (A) Pacific Ocean, (B) Atlantic Ocean, (C) Indian Ocean, (D) Arctic Ocean, (E) Southern Ocean, and (F) Global Ocean.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1112065
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2023.1112065
4.3 Evaluation of ODF-ST dataset
Since the purpose of this study is to accomplish accuracy, high

resolution, and spatiotemporal continuous intelligent fusion of multi-

dimensional, multi-source heterogeneous ocean data, we used the

ODF-Net to generate a 3D sea temperature fusion dataset (ODF-ST

dataset). ODF-ST dataset spans the years 1994 to 2017, with a spatial

extent of the global ocean (180°W–180°E, 60°S–65°N), a monthly

temporal resolution, and a spatial resolution of 0.25°. To assess the

spatial rationality of the ODF-ST dataset, we compared the fusion SST

with that of OISST, the spatial distribution of fusion sea temperature

profiles, and sea temperatures at different levels with WOA18 (Boyer

et al., 2018). To assess the temporal rationality of the ODF-ST dataset,

we compared the fusion sea temperature profiles with Tropical

Atmosphere Ocean Array (TAO) monthly observation profiles.

Finally, we evaluated the ENSO index time series calculated with

fusion sea temperature.

The global climatic SSTs (averaged from 1994 to 2017) of the

ODF-ST dataset and the OISST are shown in Figure 8, where both

SSTs have a “low-high-low” distribution from north to south, with a

notable high-value area in the mid-western Pacific Ocean and a center

SST of nearly 29°C. The transition of 25°C isotherms in the east-

central Pacific Ocean (red frame area) is similar. The differences in

SSTs are in the range of 0.5°C in most regions, indicating that

the distribution of ODF-ST SST is acceptable and trustworthy.

ODF-ST SST is significantly higher than OISST in Hudson Bay,

the Mediterranean Sea, the southwestern coast of Africa, and

the western Okhotsk Sea, but markedly lower than OISST in the

northwestern and southwestern Atlantic Ocean and the southeastern

Okhotsk Sea, possibly due to more complex changes in nearshore

currents and sparse observations.

The distribution of global climatic sea temperatures (averaged

from 1995 to 2017) between the ODF-ST dataset and WOA18 at

500 m (Figures 9A–C) and 900 m (Figures 9D–F) shows that the

ODF-ST sea temperature is very similar to WOA18. From north to
Frontiers in Marine Science 10
south, both 500 m sea temperatures exhibit a “low-high-low-high-

low” distribution, with noticeable high-value areas in the northwest

Atlantic Ocean, the Mediterranean Sea, the southwest Indian Ocean,

and the northwest Pacific Ocean, with the center sea temperature of

the high-value area in the northwest Atlantic Ocean being around

17°C. Both 900 m sea temperatures have obvious high-value areas in

the mid-eastern Atlantic Ocean, the Mediterranean Sea, and the Gulf

of Aden, with the center sea temperature of the high-value area in the

Mediterranean Sea being around 15°C. The isotherm trends are also

strikingly similar, with homologous transitions of 500 m sea

temperatures in the northern Atlantic Ocean and the southern

Indian Ocean(red frame area). The differences between 500 m and

900 m sea temperatures of the ODF-ST dataset and WOA18 in most

regions are lower than 0.25°C. Differences in 500 m sea temperatures

have noticeable positive and negative oscillations in the Gulf Stream,

the Kuroshio Extension, the North Pacific Current, and the West

Wind Drift. Differences in 900 m sea temperatures have noticeable

positive and negative oscillations in the Nansha Islands and the West

Wind Drift.

To evaluate the rationality of ODF-ST sea temperature in the

vertical direction, we averaged sea temperatures from the ODF-ST

dataset and WOA18 in the longitudinal and latitudinal directions and

then compared their sea temperature profiles along the latitudinal

(Figures 10A–C) and longitudinal (Figures 10D–F) directions. The

profile along the latitudinal direction demonstrates that the ODF-ST

dataset and WOA18 both have a high sea temperature value of 28°C

in-depth levels over 100m near 5°N. The isotherms exhibit evident

grooves in the northern and southern hemispheres’ mid-latitudes.

The difference in sea temperature is mostly less than 0.25°C. ODF-ST

sea temperature is about 0.5°C higher than WOA18 in depth over

80 m in the Northern Hemisphere.

The profile along the longitudinal direction shows that the ODF-

ST dataset’s isotherm change is essentially consistent with that of

WOA18. Both have three regions with strong gradient variations

located at 60°W–80°W, 0°–50°E, and 110°E–150°E, respectively. The

differences in sea temperature are also higher in these regions, while
FIGURE 7

Heat map of GAM attention weights.
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differences in other regions are less than 0.25°C. The highly consistent

ODF-ST sea temperature with WOA18 in the vertical direction

implies that the spatial distribution of ODF-ST sea temperature

is reasonable.
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We used monthly TAO observation profiles from 1994 to 2017 to

conduct a comparative analysis of temporal correlation in order to

assess the temporal rationality of the ODF-ST sea temperature.

Figure 11 depicts, for each observation site, the spatial distribution
A

B

D

E
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FIGURE 9

Global climatic (1995~2017) 500m sea temperature distribution of (A) ODF-ST dataset, (B) WOA18, and (C) their difference; Global climatic (1995~2017)
900m sea temperature distribution of (D) ODF-ST dataset, (E) WOA18, and (F) their difference.
A

B

C

FIGURE 8

Global climatic (1994~2017) SST distribution of (A) ODF-ST dataset, (B) OISST, and (C) their difference.
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of the temporal correlation between the ODF-ST sea temperature and

TAO observation profiles.The Pearson correlation coefficient has a

range of 0.9755 to 0.9995 and a mean value of 0.996.Therefore, in the

sea area where the TAO array is deployed, the temporal distribution

of ODF-ST sea temperature is reasonable.

To verify the ODF-ST dataset’s ability to capture the ENSO signal,

Figure 12 illustrates the ENSO index time series in the Nino3.4 region

(5°S–5°N, 170°W–120°W) of multiple sources from January 1994 to

December 2017. Variations of the ENSO index in the ODF-ST dataset

are generally consistent with those of ERSST and HadiSST and can

reflect the significant El Niño years (1995, 1998, 2003, 2007, 2010,

2015) and La Niña years (1999, 2000, 2008, 2011, 2012, 2017).

We compared the Pearson correlation coefficient and RMSE of

the anomalies in the Nino3.4 region of average sea temperatures

above 100 m from different sources with the ENSO index provided by
Frontiers in Marine Science 12
the U.S. Climate Prediction Center (NOAA/CPC) and discovered that

the Pearson correlation coefficients of the ODF-ST dataset, HYCOM,

ECCO, and SODA were all above 0.9 or higher, and the RMSEs of

them were all below 0.5°C, indicating that the ODF-ST dataset’s sea

temperature field could fairly reflect the ENSO signal.
5 Conclusion and future work

This paper presents an ODF-Net model for fusing ocean data

from multiple sources, including 1D observation profiles, 2D sea

surface datasets, and 3D gridded datasets. This approach is

distinguished by its precision, speed, and interpretability. Instead of

performing level-by-level, single-point ocean data assimilation, the

vertical profile of the ocean is employed as the objective constraint.
FIGURE 11

Spatial distribution of the temporal Pearson correlation coefficient between the ODF-ST sea temperature and TAO observation profiles.
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FIGURE 10

Longitudinal averaged climatic (1995~2017) sea temperature profiles along latitudinal direction of (A) ODF-ST dataset, (B) WOA18, (C) their difference and
longitudinal direction of (D) ODF-ST dataset, (E) WOA18, and (F) their difference.
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This enables us to incorporate physics-based previous knowledge and

eliminate vertical high-frequency spurious signals. Global attention

mechanisms are intended to guide ODF-net to crucial features from a

diverse number of data sources and depth levels. The ODF-Net fusion

sea temperature has a lower RMSE (0.74°C), a lower STPGE (0.042°C/

m), and a higher R2 than the fused data sources and EAD (0.99). A

heat map of global attention weights was utilized to demonstrate the

interpretability of the model. The ODF-Net assigned different weights

to various characteristics of the datasets.

The most significant outcome of this study is a novel approach

and paradigm for solving the age-old problem of integrating data

from various, divergent ocean sources into a single whole.

Nevertheless, the existing ODF-Net has only combined and

investigated sea temperature; we will expand to include more

factors of the marine environment. By adding new factors and

examining their influence on the fusion outcomes, it is possible to

further improve the fusion performance of the model. Moreover, the

single-moment and single-profile data could be substituted with time-

series ocean element fields in a realistic geographical region as

fusion factors.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

MW and XH conceived and designed the research methodology.

YX collected and pre-processed data. DW and MW conducted
Frontiers in Marine Science 13
software, model validation and visualization. MW, DW and XH

wrote and revised the manuscript. YL, RX, FX and JY gave important

advice in the research and thesis writing process. All authors

contributed to the article and approved the submitted version.
Funding

This work is supported by the National Key Research and

Development Program of China (2021YFC3101600,2020YFA0607900,

2020YFA0608000) and the National Natural Science Foundation of

China (42125503, 42075137).
Conflict of interest

Authors MW, DW and LY are employed by Ninecosmos Science

and Technology Ltd.

The remaining authors declare that the research was conducted in

the absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
FIGURE 12

ENSO index time series in the Nino3.4 region of various sources.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1112065
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2023.1112065
References
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