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Autonomous underwater vehicles (AUVs) equipped with online visual inspection

systems can detect underwater targets during underwater operations, which is of

great significance to subsea exploration. However, the undersea scene has some

instinctive challenging problems, such as poor lighting conditions, sediment

burial, and marine biofouling mimicry, which makes it difficult for traditional

target detection algorithms to achieve online, reliable, and accurate detection of

underwater targets. To solve the above issues, this paper proposes a real-time

object detection algorithm for underwater targets based on a lightweight

convolutional neural network model. To improve the imaging quality of

underwater images, contrast limited adaptive histogram equalization with the

fusedmulticolor space (FCLAHE) model is designed to enhance the image quality

of underwater targets. Afterwards, a spindle-shaped backbone network is

designed. The inverted residual block and group convolutions are used to

extract depth features to ensure the target detection accuracy on one hand

and to reduce the model parameter volume on the other hand under complex

scenarios. Through extensive experiments, the precision, recall, and mAP of the

proposed algorithm reached 91.2%, 90.1%, and 88.3%, respectively. It is also

noticeable that the proposed method has been integrated into the embedded

GPU platform and deployed in the AUV system in the practical scenarios. The

average computational time is 0.053s, which satisfies the requirements of real-

time object detection.
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1 Introduction

The ocean occupies the most extensive space on Earth and is an

important place for the spread, exchange, and development of human

civilization. During their long history, influenced by navigation

technology and unpredictable marine weather conditions, a large

number of ships, unfortunately sank at sea, and the ships themselves,

together with the cargo they carried, were scattered on the seabed and

remained dormant for thousands of years. These cultural relics are

scattered on the seabed and contain rich information on history,

culture, and the level of technological development and are of great

significance to the study of human civilization and economic and

social development. At the same time, the ocean features in a large

amount of minerals and a place for military and economic activities.

In addition to shipwrecks and historical cultural relics, researchers are

also concerned about subsea targets such as rare biological resources,

mineral resources such as manganese nodules, special geological

formations such as hydrothermal and cold springs, underwater lost

objects and military targets on the seafloor. The abovementioned

targets, together with underwater artifacts, are the focus of attention

for seabed exploration.

Autonomous underwater vehicles (AUVs) are commonly used

equipment in subsea exploration and have advantages in

operational range, detection efficiency, and operational flexibility

compared with human-occupied vehicles (HOVs), remotely

operated vehicles (ROVs) and other underwater exploration

equipment (Manley, 2016). During subsea exploration missions,

AUVs usually carry acoustic and optical loads, such as forward-

looking sonar (FLS), 3D multibeam echosounder, side-scan sonar,

camera, and so on. For the AUV studied in this paper, a forward-

looking sonar, a side-scan sonar, and a camera were installed, taking

into account the price, size, and weight of the load, as well as the

operational objectives of the AUV. Among them, the forward-

looking sonar is used to detect obstacles ahead, and the side-scan

sonar and the camera are used to detect targets on the seafloor. For

subsea target detection applications, the side scan sonar has a large

detection range, but its resolution is low, and the target information

that can be obtained is limited. For the AUV mentioned above, the

side scan sonar is mainly used for rapid searches over a large range.

The camera has a small detection range, but it can obtain rich

information such as target shape, color, and texture, which is

convenient for underwater target recognition. For the AUV

mentioned above, the camera is mainly used for close range fine

detection on the deep seafloor where the water quality is

relatively good.

In the process of traditional underwater exploration based on

AUVs, AUVs usually perform comb searches (lawn mower mode)

on the seafloor according to the preplanned navigation path and

take video image information of the seafloor. After the AUV is

recovered to the research vessel, it is then manually judged whether

the target to be searched exists in the captured video. If the target is

found in the video, the location of the found target is inferred from

the navigation information recorded by the AUV. When operating

in this mode, the AUV cannot determine whether it has

photographed the target, so even if the target is encountered in

the underwater search process, it can only follow a preplanned path
Frontiers in Marine Science 02
and cannot conduct further detailed exploration of the target and its

surroundings. During subsea explorations, if the AUV can

autonomously identify the targets in the captured video images, it

can replan the navigation path based on the location of the

discovered targets and take more shots around the targets of

interest for subsequent analysis and judgment (Lin and Zhao,

2020). Therefore, it is necessary to carry out research on vision-

based underwater target recognition methods so that AUVs can

autonomously analyze the videos captured during operations online

to improve the operational efficiency and intelligence of AUVs.

There are still many challenges for underwater target

recognition, especially online underwater target recognition based

on AUV platforms.
(1) The poor image quality of underwater target images.

Underwater images typically suffer from color deviations

and low visibility due to wavelength-dependent light

absorption and scattering (Zhang et al., 2022). At the

same time, insufficient lighting and low-end underwater

imaging devices on board AUVs further degrade the quality

of underwater images (Qiang et al., 2020; Lei et al., 2022).

(2) Underwater target samples are difficult to obtain. Due to

their long history, underwater targets usually have

problems such as sediment cover, marine organism

attachment, damage, and incomplete shape. However, it is

difficult to obtain enough samples with relevant

characteristics in the early research on target recognition

algorithms.

(3) Low arithmetic resources for embedded computers. Due to

the limitations of equipment size and power supply

capacity, high-performance computing equipment such as

mainframe computer workstations commonly used in the

laboratory cannot be used on AUV, and only embedded

computers, for example, the NVIDIA series, can be selected

for online target detection (Lin and Zhao, 2020).
In response to the above problems, this paper proposes a vision-

based algorithm for real-time underwater target detection, with the

following main contributions:
(1) Design of the underwater image enhancement network

component. The contrast limited adaptive histogram

equalization with the fused multicolor space (FCLAHE)

algorithm is designed to improve the quality of underwater

target images. It achieves this by performing histogram

equalization in multiple color spaces.

(2) An underwater target detection algorithm based on a

convolutional neural network is designed. Through group

convolution and inverted residual blocks, the lightweight

and efficient feature extraction network design is

completed, which can further reduce the model

calculation while ensuring the accuracy of the algorithm.

(3) An underwater visual inspection system that can meet the

needs of the AUV online application has been built. By

collecting a large number of underwater target images, the
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establishment of the UCR dataset is completed, and the

system proves the robustness of the algorithm through a

large number of tests.
Section 2 of this paper presents related research work in the area

of underwater target detection algorithms. Section 3 details the

algorithmic framework and specific design elements. Section 4

describes the acquisition and production of the datasets used for

the experiments. Section 5 is the experimental results section, where

the advancement of this algorithm is analyzed through test

comparisons. Section 6 summarizes the whole paper, illustrating

the advantages of our approach in high-precision and real-time

underwater target detection scenarios, as well as future

research directions.
2 Related work

There are two important branches of underwater target

detection algorithm research as follows. One is based on the

traditional image processing method, which enhances the target

detail features and then accomplishes the target detection task. The

other is a deep learning-based approach, which analyzes image

features and designs a feature extraction network to accomplish

target detection (Yeh et al., 2021).

Traditional underwater target detection algorithms first digitize

the images and then analyze them by modeling them with statistical

learning theory to finally complete the detection task. One of the

representatives of traditional underwater target detection is the

surface feature ripple extraction underwater target detection

algorithm proposed by Xu et al. (2019), which models the

photoelectric polarization image and then performs underwater

target detection. However, this algorithm presents different shapes

when imaging at different angles, resulting in a complex

mathematical model that cannot be applied in real underwater

scenarios. The traditional underwater target detection algorithm

has problems such as a low detection rate and poor real-time

performance when detecting multicategory targets in low-light

underwater environments.

The rapid expansion of underwater image data has spurred

research into deep learning-based detection algorithms for various

underwater marine targets. Compared with traditional algorithms,

underwater target detection algorithms using deep learning have

significantly improved accuracy and robustness (Moniruzzaman

et al., 2017). Valdenegro-Toro (2016) introduced a CNN-based

approach to build an end-to-end system, designing shared

convolutional layers for object detection and recognition in sonar

images. Zacchini et al. (2020) designed a deep learning-based

underwater automatic target recognition (ATR) system for

identifying and locating potential targets in FLS images. Song

et al. (2023) proposed a two-stage underwater target detection

algorithm with boosting R-CNN, which improves the detection of

buried and obscured targets by modeling the uncertainty of

underwater targets and difficult sample mining. Zeng et al. (2021)

proposed the Faster R-CNN-AON network for the case of limited

underwater samples, which effectively improved the overall
tiers in Marine Science 03
detection performance by introducing an AON adversarial

network to prevent the detection network from overfitting.

Although the above studies have significantly improved the

performance, the algorithms are poor in real-time and cannot be

applied to online detection systems. To address these problems, Lei

et al. (2022) introduced the Swin Transformer into the backbone

network of YOLOv5 to enhance feature extraction from underwater

blurred images, making the network suitable for underwater

detection tasks with blurred targets. Yan et al. (2022) added the

CBAM attention mechanism to the one-stage target detection

model to make the network more focused on target feature

information, improving detection accuracy and reducing the

model. Guo et al. (2021) combined target keyframe extraction

with network channel pruning to reduce the model complexity.

Deep learning-based underwater target detection algorithms show

better performance in complex underwater environments, but the

above algorithms still cannot adapt to low computing power

resources and thus cannot achieve online target detection.
3 Algorithm framework

The vision-based lightweight underwater target detection

algorithm proposed in this paper and the overall framework of

the algorithm are shown in Figure 1. This algorithm framework

contains the following main components: (1) This paper designs an

underwater image enhancement model of FCLAHE with fused

multicolor space to enhance the quality of underwater target

images. (2) A spindle-shaped backbone network is designed by

introducing inverted residual blocks to improve the extraction of

target feature information. (3) Use group convolution instead of the

original standard convolution to reduce model parameters and

improve inference speed.
3.1 Image enhancement algorithm of
FCLAHE

Contrast limited adaptive histogram equalization (CLAHE) is a

classical image enhancement algorithm that sets a threshold for

each region of the histogram and spreads the number of pixels

above that threshold evenly to other regions of the histogram,

avoiding over-enhancement (Aggarwal and Ryoo, 2011). The

specific steps of the CLAHE algorithm are as follows:
(1) Image subregion division: the original image is divided into

several subregions of equal size, each subregion is

nonoverlapping and contiguous, and the number of pixels

in each subregion is C;

(2) A histogram of a subregion denoted by Hij(k);

(3) Calculate the threshold value: calculate the truncation limit

value according to equation (1)
b =
c
L

1 +
a
100

(Smax − 1)
� �

(1)
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where b is the calculated limit value; a is the truncation

factor, whose value ranges from [0, 100]; and Smax is the

maximum slope.
Fron
(4) Reallocation of pixel points: each subregion, Hij(k) is

cropped using the corresponding b value. The cropped

pixels are reassigned to each gray level of the histogram in a

loop until all the cropped pixels are assigned;

(5) Histogram equalization is performed separately for the

cropped grayscale histogram of each subregion;

(6) Reconstructing pixel point grayscale values: the center

point of each subregion is used as a reference point to

obtain its gray value, and the gray value of each pixel in the

output image is calculated by linear interpolation using a

bilinear interpolation method.
tiers in Marine Science 04
Although the CLAHE algorithm achieves better results in image

enhancement, its application in underwater environments results in

color deviation and contrast reduction in underwater images due to

light scattering, and the single use of the CLAHE algorithm leads to

poor contrast enhancement (Ancuti et al., 2012). Therefore, this

paper proposes the FCLAHE algorithm with fused multicolor space

to enhance the image by pulling the gray dynamic range of the

image, thus enhancing the image contrast.

To solve the problems in the CLAHE algorithm, this paper

designs the algorithm of FCLAHE with fused multicolor space,

which is shown in Figure 2, where the specific steps are as follows:
(1) the input images are converted into RGB and HSV color

spaces and input into the CLAHE algorithm module to

obtain the enhanced images Irgbc and Ihsvc ;
FIGURE 2

The flow of the FCLAHE algorithm.
FIGURE 1

Algorithm framework.
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(2) Euclidean parametric calculation of the enhanced image

Irgbc , Ihsvc , according to equation (2), completes the image

fusion.
Imerge(i, j) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2rgbc (i, j) + I2hsvc (i, j)

q

(i = 0, 1…,M − 1; j = 0, 1…,N − 1)
(2)

In this paper, the algorithm is applied to underwater artifact

images, and a partial comparison of the enhancement effect is

shown in Figure 3.
3.2 Inverted residual block

The inverted residual block enhances the gradient propagation

of the feature extraction network and significantly reduces the

memory footprint required for inference. Under the same amount

of computation, the network consisting of an inverted residual

block contains more model parameters and is more efficient in

feature extraction. The method uses the crush-and-excite attention

(Hu et al., 2018) mechanism in the channel dimension to make the

feature extraction network focus more on the information-rich

channel features and remove the unimportant channel features,

which makes it easier to distinguish between the sensing target and

background information and further improves the model accuracy.

The inverted residual block is mainly divided into two structures,

the MBConv block (Howard et al., 2019) and Fused-MBConv

(Xiong et al., 2021), as shown in Figures 4A, B.

Since most existing GPU gas pedals are optimized for standard

3×3 convolution, the MBConv block, while having fewer

parameters and smaller computation, cannot take advantage of

existing gas pedals, resulting in computational inefficiencies.

However, the Fused-MBConv block can take advantage of GPU

gas pedals to achieve a more ideal state of computational efficiency.

Therefore, the accuracy of the underwater target detection

algorithm is ensured while further reducing the computational

effort of the model. In this paper, we design the strategy of using
tiers in Marine Science 05
the Fused-MBConv block and MBConv block together, placing the

Fused-MBConv block in the shallow layer of the network and the

MBConv block in the deep layer of the network. This strategy

greatly improves the training and prediction speed of the model by

making full use of CPU and GPU. The description of the backbone

feature extraction network is shown in Table 1. The input of the

backbone network is the image with a size of 640×640×3, and the

feature is extracted through the Focus and Conv layers. The output

is the feature map (map size: 320×320×64) which is extracted

through the Fused-MBConv to obtain the shallow features of the

target. The output 160×160×64 feature map goes through two

MBConv layers of different scales to extract deeper feature

information about the target. With the Fused-MBConv block and

MBConv block, the backbone network can fully extract the features

of the input image.
3.3 Group convolution

With the strategy of using the Fused-MBConv block and

MBConv block together, the detection accuracy is guaranteed,

and part of the computation of the model is reduced. To further

satisfy the low arithmetic resource scenario of AUVs, this paper

adopts group convolution instead of the original standard

convolution. By grouping the input feature maps by channel, each

group of feature maps is convolved with the corresponding

convolution kernel in the group. Each convolution kernel is not

involved in the convolution operation of the rest of the group,

reducing the dimensionality of the convolution kernels and thus the

computational effort.

The calculation of standard convolution and group convolution

is shown in (Figures 5A, B), where C is the number of channels of

the input feature map, H and W represent the height and width of

the feature map, respectively, and N is the number of channels of

the output feature map. When the number of convolution kernels is

and the size is , the operations of the two convolutions are analyzed

as follows: the size of the convolution kernel of standard
A B

D E F

C

FIGURE 3

Comparison of enhancement algorithms: (A, D) original image, (B, E) CLAHE, (C, F) FCLAHE.
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convolution is C × K × K, and the total operation of the network is

shown in equation (3).

Q1 = N � C � K � K (3)

Let the number of convolutional groups be G, the number of

channels per group of feature maps is C
G, the number of channels per

group of output feature maps is C
G, the size of each convolutional

kernel be C
G � K � K , the number of convolutional kernels per

group is N
G , and the total number of network operations be as shown

in equation (4).

Q2 = N � C
G
� K � K (4)

From equations (3)(4), it can be seen that the group convolution

is 1/G of the total number of operations of the standard convolution

under the same input conditions, and the use of group convolution

significantly reduces the number of model operations.
4 Dataset

4.1 Image acquisition

The underwater target dataset constructed in this paper is

obtained from two sources, one from real seafloor photography

and the other from experimental simulations. The real underwater

target data are images of various types of porcelain taken at an

underwater archaeological site, totaling 10,000 images (resolution

1920×1080). In the experimental simulation scenario, porcelain

plates, bowls, jars, and other types of porcelain targets are

dropped into the water, showing different scattered states, and

then filmed from different angles using underwater cameras. A

total of 10,000 (resolution 1920×1080) simulated underwater target

data were collected to simulate the scenes when the AUV was
Frontiers in Marine Science 06
conducting subsea exploration, including four cases of blurring,

burial, stacking, and low light. Some of the acquired images are

shown in Figures 6A–D.
4.2 Production of dataset

Using Labelimg, the locations of underwater targets were

manually labeled with rectangular boxes in each image, and real

box labeling files in text format were obtained. The images in the

dataset were enhanced using the FCLAHE image enhancement

algorithm based on fused multicolor space to improve the

generalization of the model to underwater blurred images. The

final UCR underwater dataset was created. The dataset comprises

five categories of objects, including porcelain plates, bowls, jars,

censers, and porcelain fragments. These five types of porcelain are

commonly found as underwater cultural relics. The completed
A

B

FIGURE 4

Inverted residual block: (A) MBConv, (B) Fused-MBConv.
TABLE 1 Specification of the designed network.

Input Operator Channels Activation
Function

Output

640×640×3 Focus 320×320×12

320×320×12 Conv, k3×3 64 SiLu 320×320×64

320×320×64 Fused-
MBConv,
k3×3

64 ReLu6 160×160×64

160×160×64 MBConv,
k5×5

128 H-swish 80×80×128

80×80×128 MBConv,
k3×3

256 ReLu6 40×40×256

40×40×256 SPP, k5×5,
9×9, 13×13

512 20×20×512
fr
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annotated dataset was randomly divided into a training set, a

validation set and a test set at a ratio of 8:1:1. The training set

was used to train the model, the validation set was used for iterative

optimization during model training, and the test set was used to test

the accuracy of the optimal model.
5 Algorithm comparison and
experimental analysis

The hardware environment of the experimental platform in

this paper is a high-performance server, which is configured as

follows: Intel Core i7 processor, CPU main frequency is 3.6 GHZ,

16 GB RAM, and equipped with four Nvidia Geforce GTX 1080Ti
Frontiers in Marine Science 07
graphics cards with 11 GB of video memory. The software

environment is the Ubuntu 18.04 operating system, Python 3.7,

and CUDA 11.0.

The relevant training parameters in the experiments are shown

below. The gradient descent optimizer used to update the

convolution kernel parameters is Adam, the optimizer

momentum is 0.937, the maximum learning rate is 0.001, the

batch size of training is 16, the weight attenuation coefficient is

0.0004, and the epoch (training iteration cycle) is 200.

To verify the superiority of the proposed algorithm, the following

experiments are conducted: (1) comparative performance analysis of

underwater vision detection algorithms. (2) The AUV deploys a

visual inspection system and tests the relevant performance in an

underwater environment.
A B

DC

FIGURE 6

Example datasets: (A, B) real underwater target data, (C, D) simulated underwater target data.
A B

FIGURE 5

Convolution blocks: (A) standard convolution, (B) group convolution.
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5.1 Underwater vision inspection algorithm
performance comparison analysis

To better validate the detection performance of the proposed

underwater vision detection algorithms in this paper, three typical

strategies are selected: DPM+SVM (Felzenszwalb et al., 2009), YOLO

algorithm (Bochkovskiy et al., 2020) (Jocher, 2020), and Mask R-

CNN (He et al., 2017) are compared with the algorithm in this paper.

The detection results of each strategy are shown in Figures 7A–D.

Our method benefits from the optimization of the backbone feature

extraction network, which can detect all targets even when they appear

to be buried and overlapped. And the algorithm is robust. The DPM

+SVM algorithm is the least effective, and the model generalization

becomes poor when the target presents multiple angles or occlusion,

and cannot be effectively detected, and the algorithm has a high rate of

missed detection. The YOLO algorithm appears to miss detection

when the target buried part is too large, and the robustness of the

algorithm is poor. Mask R-CNN detection is obviously better than

DPM+the SVM algorithm and YOLO algorithm, and can detect all

targets even when they are buried and overlapped, but the confidence

of the algorithm is lower than this method. The algorithm in this paper

has better recognition than DPM+SVM, YOLO, and Mask R-CNN.

To better observe the superiority of each module of the algorithm

proposed in this paper, the YOLO andMask R-CNN algorithms with

better detection effects were selected and three sets of comparison

experiments were conducted using the UCR dataset as follows: the

first group shows the performance comparison of the detection

network; the second group shows the performance comparison of

the algorithm with the addition of the CLAHE image enhancement

module; the third group shows the performance comparison of the

algorithm with the addition of the FCLAHE image enhancement

module. To evaluate the algorithm performance, five general

performance metrics are introduced: Precision, Recall, F1, mean

Average Precision (mAP), and Parameters for evaluating the

algorithm performance. The performance metrics of the three

groups of algorithms are shown in Table 2.
Frontiers in Marine Science 08
This method outperformed other algorithms in all indicators,

with 91.2%, 90.1%, 87.9%, and 88.3% for precision, recall, F1, and

mAP, respectively, for the following analytical reasons. (1) The

backbone network of the underwater target detection algorithm

proposed in this paper uses a combination of inverse residual blocks

and SE attention mechanism with feature correction capability in

the channel direction, which enables the network to enhance the

effective feature channels and achieve adaptive calibration of the

feature channels. The algorithm helps to distinguish the foreground

and background of the image more clearly, and the detection results

of the model are more accurate. In the UCR dataset test, the single

underwater target detection network detects better than the original

YOLO algorithm and Mask R-CNN algorithm. In the second and

third groups of comparison experiments, the detection network in

this paper has higher detection performance improvement and

better compatibility with image enhancement modules compared

to the two comparison algorithm networks. (2) The FCLAHE image

enhancement model designed in this paper reduces the probability

of color bias in the CLAHE algorithm by fusing multiple color

spaces and improves the underwater image enhancement

performance. Compared with the CLAHE model, the image

enhancement model designed in this paper improves the network

detection performance, with 4.8%, 4.7%, 2.6%, and 2.9%

improvement in precision, recall, F1, and mAP, respectively. The

experimental data show that the FCLAHE image enhancement

model has a more positive effect on underwater target recognition.
5.2 AUV vision inspection system
performance testing

To better test the performance of the visual detection system in

this paper, the system was deployed to the actual embedded

computer on board the AUV, and the algorithm performance was

tested using real underwater images taken at the underwater

archaeological site.
A B

DC

FIGURE 7

Detection results: (A) Ours, (B) DPM+SVM, (C) YOLO, (D) Mask R-CNN.
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5.2.1 Introduction of the AUV experimental
platform

AUVs are commonly used equipment in seafloor exploration

and have an important role in underwater-related research (Xu

et al., 2016). An AUV with an online target detection function was

developed for the search of underwater artifacts, shipwrecks, and

other undersea targets, the main parameters of the AUV are shown

in Table 3. The conceptual design of this AUV is shown in Figure 8.

The camera is arranged on the bottom of the AUV to facilitate

the filming of subsea targets. To improve the underwater lighting

effect, one lighting lamp is arranged at the bow and one at the stern

of the AUV. The bow light was designed to be tilted backward to

better illuminate the camera, as shown in Figure 9.

5.2.2 Performance test
High-power, high-load computing platforms are difficult to apply

in AUVs due to space and power constraints. The Nvidia Jetson TX2

image edge computing device was selected as the AUV embedded

platform based on actual requirements. The reasons are as follows: (1)

The embedded platform is 50×87 mm in size and consumes only 7.5

W under regular load, meeting the power consumption and size

requirements of AUVs; (2) The CPU adopts ARM Cortex-A57, and

the GPU adopts Nvidia Pascal GPU with 256 CUDA cores to meet

the requirements of algorithm operation.

The vision inspection system in this paper was deployed to the actual

Nvidia Jetson TX2 on board the AUV, and performance tests were

conducted using images obtained from the underwater archaeological

site. The experiment was conducted at the shipwreck site of the Yuan

Dynasty, situated on the southeast coast, at a depth of 30 meters

underwater. The wreck measures 13.07 meters in length and 3.7

meters in width. The employed AUV camera examined an area

spanning 48 square meters. The site contains an array of cultural

artifacts, including porcelain plates, bowls, and incense burners, which

constituted the primary targets of this test. The empirical results of this

study are illustrated in Figure 10. This method has achieved effective

detection results. The implementation of the channel attention

mechanism within the inverse residual block has enabled the proposed

algorithm to exhibit a high degree of robustness, particularly in

circumstances where the cultural relics are obscured or partially buried.
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To assess the real-time performance of the proposed algorithm in

target detection, two superior strategies from Section 5.1, namely

FCLAHE+YOLO and FCLAHE +Mask R-CNN, were selected for

comparative analysis. Concurrently, two performance metrics—Frame

Per Second (FPS) and Parameters—were introduced to facilitate a

quantitative evaluation of the algorithm. The system performance

metrics are presented in Table 4. This algorithm detects the frame

rate FPS higher than the FCLAHE+YOLO algorithm and FCLAHE

+Mask R-CNN algorithm in the actual test. The reasons for the analysis

are as follows: (1) This algorithm uses group convolution instead of the

original standard convolution, making the number of model

parameters significantly reduced; (2) By introducing the inverse

residual block and use strategy, the memory space occupation is

reduced during inference, and the GPU inference acceleration is

improved. This algorithm achieves a detection speed of 20 frames

per second in images with a resolution of 1280×720 and 16 frames per

second in images with a resolution of 1920×1080, which basically meets

the requirements of real-time detection.
6 Conclusions and discussions

To achieve real-time online detection of underwater targets that

meet the requirements of AUV applications with limited image

quality and processor computing performance, in this paper, a

vision-based lightweight underwater target detection algorithm is

designed. To improve underwater imaging, an image enhancement
TABLE 3 Main parameters of the AUV.

Parameters Value

Maximum operating depth 1000 m

Cruising speed 2 knots

Maximum speed 5 knots

Diameter j350 mm

Length 3.6 m

Weight in air 250Kg
fron
TABLE 2 Algorithm performance metrics.

Algorithm Precision(%) Recall(%) F1(%) mAP(%) Parameters(M)

YOLO (Jocher, 2020)
Mask R-CNN(He et al., 2017)

SS-net

81.8
86.4
86.1

80.4
85.3
85.3

81.5
85.5
84.7

81.4
85.3
84.9

45.5
65.1
10.8

CLAHE+YOLO(Jocher, 2020)
CLAHE+Mask R-CNN(He et al., 2017)

CLAHE+SS-net

84.5
89.2
89.2

82.8
88.2
88.3

83.2
87.2
87.1

82.6
87.4
87.5

47.0
66.2
12.3

FCLAHE+YOLO(Jocher, 2020)
FCLAHE+Mask R-CNN(He et al., 2017)

FCLAHE+SS-net

86.4
90.3
91.2

83.9
89.7
90.1

85.1
87.8
87.9

84.2
88.0
88.3

48.2
67.5
13.3
The detection network of this paper in the experiment is called SS-net.
The bold value is the best value in the comparison.
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module is added in front of the detection network, and an FCLAHE

enhancement algorithm with fused multicolor space is designed for

underwater image enhancement. In the detection algorithm

backbone network, a new lightweight and efficient feature

extraction network is designed using group convolution and

inverse residual blocks to ensure the feature extraction depth while

reducing the number of model parameters. This algorithm is

lightweight and suitable for deployment on image edge computing

devices. To verify the effectiveness of this algorithm, the UCR dataset

is built to train and test the algorithm. The experimental results show

that the algorithm achieves scores of 91.2%, 90.1%, 87.9%, and 88.3%

for precision, recall, F1, and mAP, respectively. It is also noticeable

that this method has been integrated into the embedded GPU

platform and deployed to the AUV system in the real test scenario.

The average computational time is 0.053 s, which satisfies the

requirements of real-time object detection.
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FIGURE 9

Camera and light on the bottom of the AUV.
A B

D E F

C

FIGURE 10

Comparison of the proposed method at different image resolutions: (A–C) 1280×720, (D–F) 1920×1080.
FIGURE 8

Conceptual design of the AUV.
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The algorithm proposed in this paper has high detection accuracy

and computational efficiency, which can satisfy the requirements of

detecting artifact targets in underwater environments. The

lightweight idea of this algorithm can also be applied to other

underwater target detection tasks. However, there are still some

problems, such as detection failures when marine organisms are

attached to the target. In future research, we will expand richer

datasets to further improve the generalization ability of the algorithm

model. It should also be noted that instead of choosing the NAS-like

architecture search strategy to obtain the optimized models in the

designed hardware platform, we design a new strategy to seamlessly

integrate the MBConv and Fused-MBConv together based on their

structural characteristics, which can take full advantage of the

hardware performance in the prediction process. Concretely,

the authors put the Fused-MBConv block in the shallow layer of

the network and the MBConv block in the deep layer of the network.
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