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Introduction: Various types of ships sail at sea, and identifying maritime ship types

through shipradiated noise is one of the tasks of ocean observation. The ocean

environment is complex and changeable, such rapid environmental changes

underline the difficulties of obtaining a huge amount of samples. Meanwhile, the

length of each sample has a decisive influence on the classification results, but

there is no universal sampling length selection standard.

Methods: This study proposes an effective framework for ship-radiated noise

classification. The framework includes: i) A comprehensive judgment method

based on multiple features for sample length selecting. ii) One-dimensional deep

convolution generative adversarial network (1-DDCGAN) model to augment the

training datasets for small sample problem. iii) One-dimensional convolution

neural network (CNN) trained by generated data and real data for ship-radiated

noise classification. On this basis, a onedimensional residual network (ResNet) is

designed to improve classification accuracy.

Results: Experiments are performed to verify the proposed framework using public

datasets. After data augmentation, statistical parameters are used to measure the

similarity between the original samples and the generated samples. Then, the

generated samples are integrated into the training set. The convergence speed of

the network is clearly accelerated, and the classification accuracy is significantly

improved in the one-dimensional CNN and ResNet.

Discussion: In this study, we propose an effective framework for the lack of

scientific sample length selection and lack of sample number in the classification

of ship-radiated noise, but there aret still some problems: high complexity,

structural redundancy, poor adaptability, and so on. They are also long-standing

problems in this field that needs to be solved urgently.

KEYWORDS

ship-radiated noise, data augmentation, generative adversarial network, deep learning,
target classification
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1 Introduction

Ship-radiated noise is the unavoidable noise emitted by ships

during movement. Traditional classification for ship-radiated noise

mainly relies on the artificial extraction of features, such as time,

frequency and time-frequency domain characteristics Zhang

et al. (2020a).

Ship-radiated noise is generally modelled as a composition of

mechanical, hydrodynamic and propeller noise components Yan et al.

(2021); Zhang and Yang (2022). Mechanical noise is generated by

diesel engines, the generators and air condition units, and mainly

comprises line spectra Zhang et al. (2020b). Hydrodynamic noise is a

time-stationary signal with a continuous spectrum. Considered

environmental noise, as well as multi-path and Doppler effects in

the propagation process, which make ship-radiation noise an unstable

process with nonlinear, non-Gaussian and non-stationary

characteristics Zhang et al. (2022b).

With the development of noise reduction technology, the

distinguishing features have been significantly weakened, which

increases the difficulty of collecting data. Meanwhile, the sample

size in existing publicly available dataset is small. Most researchers

commonly use feature extraction algorithms to solve this problem Qi

et al. (2020); Zhang et al. (2021). In this paper, on the basis of

traditional feature extraction and data augmentation Ian et al. (2014),

a new idea of noise data augmentation is proposed to deal with the

problem of small sample sizes in ship-radiated noise classification.

Traditional approaches in ship-radiated noise classification with

small sample size are based on an analysis of machine learning Li et al.

(2019); Xie et al. (2020). The core steps are to extract the features of

the signal, increase the differences between different samples, and use

these features to identify or classify signals Pethiyagoda et al. (2018).

In earlier works, researches classify the signal using amplitude and

frequency content Yang et al. (2021). Based on the difficulties of

effective features extracting, some researchers start to use artificial

feature extraction techniques, such as principal component analysis

Wei (2016).

In Li et al. (2019), Support vector machine (SVM) is used for ship

classifying because its ability to perform non-linear classification. In

Xie et al. (2020), permutation entropy is combined with the

normalized correlation coefficient and enhanced variational mode

decomposition, and an SVM is used to classify three types of ships. In

Jiao et al. (2021), fluctuation-based dispersion entropy is combined

with intrinsic time-scale decomposition, and SVM is used for

classification. The common classification methods are compared in

Table 1. GAN is proposed by Goodfellow et al. Ian et al. (2014) for

solving the imbalanced data problem. It is used in many fields

Arniriparian et al. (2018). In Atanackovic et al. (2020), authors use

GAN to augment ship-radiated noise data. In this study, we augment

ship-radiated noise data using GAN models to obtain sufficiently

similar and diverse samples.

With the development of neural networks in recent years, faster

convergence times and higher accuracy have been achieved. This

requires large amounts of balanced data to fully train the deep

network structures. Some researchers have focused on manually

extracted features combined with SVMs for ship-radiated noise

classification Li and Yang (2021). If the number of samples is small

or there is a big gap in the proportion of different samples, then there
Frontiers in Marine Science 02
will be reduced classification accuracy Buda et al. (2018). When

considering a one-dimensional speech signal, the length of the

sample needs to be considered Zhang et al. (2022c). Under normal

circumstances, collected ship-radiated noise is a piece of audio, which

needs to be split, and thus the appropriate length of each sample

needs to be determined. In this paper, we propose a comprehensive

judgment method based on multiple features to select an appropriate

sample length. The model used for data augmentation and the deep

neural networks are designed with the selected sample length.

In Pan et al. (2019), two ways are proposed for the optimization

GAN models: architecture optimization and objective function

optimization. Convolutional neural networks (CNNs) are a kind of

network that can adaptive extract the characteristics of the signal

Zhang et al. (2022a). Moreover, there are also deep features extracted

by convolution that cannot be easily extracted manually. For the

above reasons, we choose convolution-based GANs for structural

optimization. Convolution-based GANs are a development of CNNs,

and DCGAN is one of the main models used Arniriparian et al.

(2018). However, these GAN models are mostly used in the two-

dimensional image processing domain. Based on DCGAN, in this

paper we propose a one-dimensional DCGAN (1-DDCGAN) to

generate ship-radiated noise samples.

In summary, in this paper, by using the public dataset ShipsEar

Santos-Domıńguez et al. (2016), we propose a data augmentation

method with a comprehensive length select algorithm. Then,

construct a deep neural framework for ship classification. The main

contributions can be summarized as follows:
1. A new classification method is proposed, which is based on

deep neural network classification combined with data

augmentation. The proposed method is capable of

performing accurate classification in the presence of small

numbers of training samples.

2. We propose a decision-level fusion method to select sample

length and combine 1-DDCGAN and ResNet for data

augmentation and feature classification without manual

feature extraction. The convergence time is reduced Xie

et al. (2020) and the classification accuracy is improved Li

et al. (2017); Li et al. (2019).

3. The performance of the proposed method is verified using

experimental data Santos-Domıńguez et al. (2016). First, data

augmentation is carried out and the generated sample is

mixed with the original in different proportions to increase

the number of sample in training sets. From using only the

original sample to a ratio of the original sample to the

generated sample being 1:2, the classification rate in CNN

improved from 79% to 90%, while the classification rate in

ResNet improved from 87.5% to 99.17%.
The overall approach is shown in Figure 1. The rest of this paper is

organized as follows. In Section 2, we discuss cepstrum coefficients

and entropy characteristics. Then, an SVM is used for classification in

order to determine the appropriate sample length. A 1-DDCGAN is

then designed and the generated augmentation data are analyzed in

Section 3. Section 4 describes merging the real and generated data in

different proportions, and the classification accuracy under these

training sets is compared. Conclusions are provided in Section 5.
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2 Sample length selection of ship-
radiated noise

The cepstrum coefficients and entropy features reflect different

aspects of the signal characteristics. In order to extract different

aspects of the information contained in the signal, we select the

appropriate sampling length according to the contribution of these

characteristics in the classification process. The details are shown

in Figure 2.

Mel-frequency cepstrum coefficient (MFCC)-based features

reflect the timbre of the signal Noda et al. (2019), while

Gammatone cepstrum coefficients (GFCC)-based features reflect the

robustness, the degree of influence of data disturbance, noise, and

outliers in the model Zhang et al. (2018). On the other hand, entropy-
Frontiers in Marine Science 03
based features describe the extent of signal regularity, which can be

useful for the classification of nonlinear non-stationary ship-radiated

noise. These characteristics can be used to measure the amount of

information contained in the sample from many aspects. Sample

entropy measures the complexity of a time series by measuring the

probability of encountering new patterns in the signal Richman et al.

(2004). Specifically, dispersion entropy is more suitable for long

signals and represents the amplitude characteristics of the signals.

Multi-scale weighted permutation entropy can retain the amplitude

information of the signal when calculating the sequential mode of the

time series Shi et al. (2021). Since these features reflect different

characteristics of signals, we selected them for comprehensive

consideration and selection of an appropriate sample length of

ship-radiated noise. Meanwhile, when the GAN is used for sample
FIGURE 1

General algorithm framework.
TABLE 1 Comparison of common ship-radiated noise classification methods.

Classification Method Feature Engineering Drawbacks

Statistical analyze Time-frequency features High complexity, low adaptability

Machine learning Principle component analysis High feature extraction difficulties

Deep learning Neural network Large demand for data volume
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generation, GAN uses random noise as input to generate, longer

inputs require longer iteration times, so longer sample lengths lead to

longer computation times. The purpose of sample length selection is

to determine the optimal trade-off between having sufficient features

while maintaining the computational load to a minimum.
2.1 Cepstrum coefficient characteristics

MFCC is a characteristic parameter based on the characteristics of

simulated acoustic signals passing through the cochlea Lin et al.

(2021). The Mel scale describes the nonlinear characteristics of

human ear frequencies, and MFCC is the cepstrum coefficient

extracted under the nonlinear characteristics of this frequency. The

relationship between frequency and the Mel scale can be

approximated using the following equation:

M(f ) = 2595log(1 + f =700) (1)
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where f is the frequency of the signal, while the other fixed

parameters are derived from the cochlea. The specific steps of the

algorithm are shown in Figure 3:

In Figure 3, the signal is pre-weighted through a high-pass filter

and divided into frames with a length of 256, while a Hamming

window is applied to each frame to enhance the continuity at both

ends. Next, a fast Fourier transform is applied on these frames, which

then pass through the triangular filter banks based on the Mel scale.

After that, the logarithmic energy of each filter output is calculated

and the discrete cosine transform (DCT) is applied to finally obtain

MFCC feature.

The Gammatone filter simulates the spectrum analysis and

frequency selection characteristic of human ears to achieve strong

noise resistance and maintain good classification performance in

environments with strong interference. It is a bandpass filter,

defined in time domain as:

g(t, fc) = Atn−1e−2pbt cos (2p fct + f) (2)

where n is the filter order, A is the filter gain, b is the filter attenuation

factor, fc is the center frequency, and j is the filter phase.

A Gammatone filter bank is formed using a series of Gammatone

filter combinations with different center frequencies [282018Zhang

et al.Zhang, Wu, Wang, Wang, Wang, and Zhang]. The center

frequencies are first obtained by dividing the equivalent bandwidth

scale in equal parts, and are then mapped to a linear scale to determine

the center frequency of each Gammatone filter. After that, the

characteristic GFCC parameters can be obtained using a logarithmic

operation and the DCT. The detailed process is shown in Figure 4.
2.2 Entropy feature

In this section, we describe sample entropy, dispersion entropy

and multi-scale weighted permutation entropy.

2.2.1 Sample entropy
Sample entropy is a nonlinear entropy metric commonly used to

describe complexity Richman et al. (2004). Sample entropy measures

the likelihood of the occurrence of a new pattern in a time series, that

is, it is a prediction of the amplitude distribution of future signals

based on the current amplitude distribution. In essence, it is the

quantification of the complexity and regularity of a sequence. The

algorithm is described in Algorithm 1.
FIGURE 2

Sample length selection algorithm framework.
FIGURE 3

MFCC algorithm flow chart.
FIGURE 4

GFCC algorithm flow chart.
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Fron
Input: Time signal X(i), i = 1, 2, ...,N,

embedding dimension m, threshold value r

Output: SampleEn (m,r)

1 Form a set of vector sequences of dimension m

according to the sequence number,

Xm(1),…,Xm(N – m + 1), where Xm(i) = x(i), x(i

+1),…,x(i + 1),…,x(i + m–1),1≤ i ≤ N–m+1,

and these vectors represent the values of m

consecutive x’s starting from the i-th point. ;

2 Definethe distance between Xm (i) and Xm(j) as

dij, which is the absolute value of the largest

difference between them: dij = d[Xm(i), Xm(j)] =

maxk-0.1,…,m-1[|x(i+k)–x(j+k)|];

3 for m or m+1 do
4 Given Xm(i), count the number of j whose

distance between Xm(i) and Xm(j) is less

than or equal to r and denote it as Bi, define

Bm
i (r) =

1
N−m−1 Bi when 1<i<N–m;

5 Calculate B(m)(r) = 1
N−m BioN−m

i=1 Bm
i (r)

6 end
7 Obtain sample entropy SampleEn(m, r) = lim

N!∞
½−In B(m+1)(r)

B(m)(r)
�

ALGORITHM 1

Sample Entropy.
2.2.2 Dispersion entropy
Dispersion entropy is a metric used to measure the complexity

and irregularity of time series, which is sensitive to the variation of the

frequency, amplitude, and time series’ bandwidth, and it does not

require the sorting of the amplitude values of each embedded vector

Li et al. (2022). Because of the above characteristics, the calculation

efficiency of the dispersion entropy is high. The calculation steps of

dispersion entropy are given in Algorithm 2.
Input: Time signal x(i),i=1,2,…,N, embedding

dimension m, class number c, time delay d

Output: Dispersion Entropy DE(x,m,x,d)

1Usethenormalcumulativedistributionfunction

to map x to y=yj,j = 1,2,…,N,yj ∈ (0,1), using

yj =
1

s
ffiffiffiffi
2p

p
Z xj

−∞
e−

(t−m)2

2s2 dt ;

2 Use a linear transformation to assign y to the

range [1,2, …,c]: zcj = round(c� yj + 0:5);

3 C a l c u l a t e t h e e m b e d d e d v e c t o r

zm,c
i = zci , z

c
i+d ,…, zci+(m−1)d , i = 1, 2,…,N − (m − 1)d;

4 Calculate the dispersion model πv0
,v1,…,vm−1

( v = 1 , 2 , … , c ) , i f zci = v0, zci+(m−1)d = vm−1, t h e

dispersion model corresponding to zm,c
i is πv0

,v1,
…,vm−1;

5 Calculate the probability of each dispersion

model and Nb(πv0
,v1,…,vm−1) is the number of maps

from zm,c
i to pv0,v1,…,vm−1;
ALGORITHM 2

Dispersion Entropy.
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2.2.3 Multi-scale weighted permutation entropy
Permutation entropy (PE) is suitable for time series, because it

measures their randomness and detects their dynamic changes. It can

be obtained at fast speeds through a comparison of neighboring

values. Weighted PE (WPE) is an improved algorithm based on PE,

which fully considers that the amplitude of adjacent vectors of the

same order may be different. PE and WPE are already used in

different fields, such as underwater acoustic signal denoising Li

et al. (2018). The detailed calculation steps are described in

Algorithm 3.
Input : Time signal x(i),i=1,2,…,N, embedding

dimension m, time delay τ

Output: Weighted Permutation Entropy WPE(x, m,

τ)

1 Reconstruct time signal Xi = x(i), x(i+τ),…,x

(i+(m-1)τ),i =1,2,…,N-(m-1) τ;

2 Rearrange Xi elements in increasing order:

X(i) = x(i+(j1-1) τ)≤x(i+(j2-1) τ)≤…≤x(i

+(jm-1) τ). In case of two if the rearranged

elements are equal, then obtain new order:

x(i + (j1-1)τ) ≤ x(i+ (j2-1)τ)(j1 ≤ j2) and

obtain one of the m! symbol sequences in

phase space: S(g) = (j1,j2,…,jm), j = 1,2,…,

k.k ≤m!

3 If the probability distribution of the symbol

sequence is P1, P2,…, Pk, obtain the permutation

entropy: Hp(m) = −(In(m ! )−1ok
g=1Pg In Pg;

4 Calculate the weights wi of all adjacent

v e c t o r s Xi :wj =om
k=1½xj + (k − 1)T − �Xm, T

j �2),
�Xm,T
j = 1

mom
k=1xk+(k+1)T;

5 Calculate the weighted relative frequency:

pw(pm :T
i = oj ≤ N

1
u : type(u)=pi (�X

m,T
j

)wj

oj ≤ N
1
u : type(u)∈P

(�Xm,T
j

)wj

);
6 Obtain WPE: WPE(x,m, d) = −oi : pm,T
i ∈P pw(p

m,T
i ) In

pw(pm,T
i ).
ALGORITHM 3

Weighted Permutation Entropy.

The multi-scale analysis algorithm is developed by Costa, and can

be used to estimate the complexity of the original data at different

scales Chen et al. (2019). Based on the concept of multi-scale analysis,

multi-scale permutation entropy (MPE) is proposed by Aziz and Arif

(2005). The MPE algorithm is divided into two steps. The first step is

the application of a coarse-grained procedure to obtain multi-scale

time series from the original time series. The second step is the

calculation of the WPE at each coarse-grained time series. The details

of the algorithm are shown in Algorithm 4.
Input: Time signal x(i),i = 1,2,…,N, embedding

dimension m, time delay τ, scale factor s

Output: Dispersion Entropy MWPE(x,s,m, τ)
frontiersin.org
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1 Construct coarse-grained time series ysj at a

scale factor of s: s : ysj =
1
soj s

i=(j−1)s+1xi, 1 ≤ j ≤
N
s
;;

2 Calculate the WPE of each coarse-grained time

series through Algorithm 3.;

3 Obtain MWPE: MW P E(x, s, m, τ) = [WPE(1),…,

WPE(s).
ALGORITHM 4

Multi-scale Weighted Permutation Entropy.
2.3 Experimental results

In the ship-radiated noise generated by the four types of ships, we

randomly selected 64 samples for each type, used 200 of the 256

samples as the training set and 56 as the test set for classification, and

analyzed the classification results under different sample lengths.

Support vector machine can achieve good classification results in a

short time in the case of fewer samples and manual feature extraction.

We used MFCC, GFCC, MWPE, SE, and DE to express different

characteristics of signals for feature extraction, and the corresponding

features are independently input into the SVM classifier, starting from

a sample length of 100 sampling points and up to 2,500 sampling

points at an interval of 100 sampling points.

Figure 5 shows the classification results for the above-mentioned

features. In classification using MFCC, 256 or 512 sampling points are

usually used as a frame when framing. We selected 256 sampling

points as a basic frame. The algorithm cannot work when the

sampling length is less than two basic frames, the classification rate

is 0 when the sampling length is less than 500 sampling points. When

the sample length increases, the classification accuracy of each feature

also improves. At this time, the sample length has a greater impact on

classification. The classification rate tends stabilize when the sample

length is about 1,600 sampling points. We concluded that the ship-

radiated noise sample at this time already contained enough
tiers in Marine Science 06
information for classification. In a CNN, the time complexity of a

single convolutional layer is TimeO(M2 K2 CinCout), where M is the

side length of the convolution kernel; K is the side length of the

convolution kernel; Cin is the number of input channels; Cout is the

number of output channels; and the size of the output feature mapM

itself is determined by four parameters, the input matrix size X, the

size of the convolution kernel K, Padding, and Stride, which are

expressed asM=(X−K+2∗Padding)/Stride+1. The space complexity of

the CNN is determined by the total parameter amount and the feature

map output by each layer as follows: Space ∼ O(oD
l=1K

2l · Cl−1 ·

 Cl +oD
l=1M

2 · Cl) .The total parameter amount is only related to

the size of the convolution kernel K, the number of channels C, and

the number of layers D; it has nothing to do with the size of the input

data. The space occupation of the output feature map is related to the

space size M and the number of channels C. In other words, the

performances of the network are closely related to the input size. The

sampling length we selected after a comprehensive analysis of

multiple features is 1,600 sampling points. A sample of this size can

not only reduce the time and space complexity of the network but also

obtain results efficiently and prevent overfitting.
3 1-DDCGAN for ship-radiated noise
data augmentation

When training deep neural networks, too few training samples

results in limited features learned by the network, making it difficult

to perform more complex classification tasks. We used 1-DDCGAN

to enhance the data and analyze the generated samples.

3.1 1-DDCGAN structure

GANs provide a way to learn deep representations without

extensive annotated training data by using backpropagation

through a competitive process involving a pair of networks. GANs

are used in a variety of applications, including image synthesis,

semantic image editing, style transfer, image super-resolution, and

classification Arniriparian et al. (2018); Pan et al. (2019). GANs are

inspired by the game theory, where the generator and discriminator
FIGURE 6

GAN architecture in general.

FIGURE 5

Classification results of different features.
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will compete with each other to achieve a Nash equilibrium during

training. The architecture of GAN is shown in Figure 6.

The function of generator G is to generate fake data to fool the

discriminator as much as possible, while the discriminator D is

trained to distinguish real data samples from synthesized samples.

The input of the generator is a random noise vector z. The noise is

mapped to a new data space through generator G to obtain a fake

sample G(z), which is a multi-dimensional vector. Then, the

discriminator D, which is a binary classifier, accepts either real data

or fake data from generator G as an input and outputs the probability

of the input being true and false. Then, the training process continues

until the discriminator D cannot determine whether the data comes

from the real dataset or fromG. Finally, we obtained a modelG, which

can generate data that are similar to the real data. In prior work Ian

et al. (2014), the discriminator D is defined as a binary classifier,

whose loss function is represented by the cross entropy as follows:

J (D) = −
1
2
Ex∼pdata log D(x) −

1
2
Ezlog(1 − D(G(z))), (3)

where x is the real sample, z is the random noise vector, G(z) are

the data generated by the generator G, and E is the expectation. D(G

(z)) indicates the probability that discriminator D determines the data

are generated by G. The goal of D is for D(G(z)) to approach 0, while

G aims to bring it closer to 1. Therefore, the loss of the generator can

be derived via the discriminator D: f(G)=-f(D)

For the above reasons, the optimization problem of GANs is

transformed into the minimax game as shown below:

min
G

max
D

 V (D,G)

= Ex∼pdata log D(x) + Ez∼p(z) log (1 − D(G(z))) (4)

The whole process of the algorithm is roughly as follows:

1. update the discriminator by ascending its stochastic gradient:

∇ qdo
m

i=1
½logD(x(i)) + log1 − D(G(z(i)))� (5)

2. Sample mini-batch of m noise samples z(1), z(2), …,z(m);

3. Update the generator by descending its stochastic gradient:

∇ qd
1
mo

m

i=1
+ log 1 − D(G(z(i))) (6)
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These training sessions are then alternated until equilibrium

is achieved.

The performance of the GAN is basically determined by its

structure. Due to the deficiencies of the original GANs, various

derived GANs models have been proposed. DCGAN Radford et al.

(2015) is based on the use of a CNN; it is regarded as an effective

network model of supervised learning, and is the most common

generator and discriminator structure. The general two-dimensional

convolution kernel is mainly used to process images, and it is difficult

to directly process the one-dimensional ship-radiated noise signal.

We use a one-dimensional convolution filter to fit ship-radiated noise.

The structure is illustrated in Figure 7.
3.2 Generated sample results analysis

Due to the non-linear, non-Gaussian and non-stationary

characteristics of ship-radiated noise, it is difficult to evaluate the

quality of the generated data with traditional amplitude and

frequency characteristics. We used the statistical distribution

characteristics of the generated data, such as Mutual information

(MI) and correlation coefficient (CC), to conduct a preliminary

similarity analysis of the generated samples. MI is a measure of the

degree of interdependence between variables:

MI(X;Y)o
y∈Y

o
x∈Y

p(x, y)log(
p(x, y)
p(x)p(y)

) (7)

We obtained MI between the generated samples and the original

samples to measure the correlation between the samples. CC is the

coefficient of correlation between different statistics:

CC(X,Y) =
Cov(X,Y)

sxsy
(8)

where Cov(X,Y) is the covariance, and s is the standard deviation.

Fifty pairs of samples are randomly selected from the original samples

and the generated samples, and the average values of the MI and CC

are calculated. The specific results are shown in Tables 2, 3.

MI and CC are indices used to evaluate the similarity between two

variables and for both indices, higher values correspond to a greater

similarity between the variables. We see from the tables that MI and
FIGURE 7

One-dimensional DCGAN architecture.
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CC between samples of the same type, such as Sample 1 and Gsample

1, are higher than those between other samples. However, the gap

between classes is not very obvious. To further verify the reliability of

the generated samples, we used the DE, which is more suitable for

nonlinear signal analysis, to compare the generated samples with the

original samples. Similarly, we selected 50 samples of each kind and

calculated the average value. The results are shown in Table 4.

As shown in Table 4, the DE values of the generated samples of

types 2, 3, and 4 are very close to the original samples, which indicates

that the samples generated by GAN are consistent with the original

samples, and there is diversity among samples. However, the DE

values of type 2 and 4 are also relatively close, which is also one of the

difficulties in the classification of ship-radiated noise. The DE values

of type 1 had some gaps, but CC and MI performed better, and this

also verifies the diversity of the generated samples. The generated

samples could be therefore be used to form a new training dataset for

training a ship-radiated noise classifier.
4 Classification based on deep learning

Given the connection between different network layers, deep neural

networks extract signal features for classification inherently.

Convolutional neural networks are a traditional type of deep neural

network. Compared with SVMs, they require more data to ensure that

the network will not be overfitted, but they perform better on

unprocessed data. Deep networks with better performance have

emerged with the continuous development of deep learning. ResNet
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He et al. (2015) uses direct mapping to connect different layers, solves

the problem of gradient disappearance or gradient explosion problems,

and greatly improves the model fitting capability than networks

without this module. In this study, we used the sample length of

1,600 sampling points selected in Section 2 as the input size of the

network for model construction, and the samples generated in Section 3

are used to mix with the original samples in different proportions to

construct a new dataset as the training dataset of the network.

To observe the impact of generated samples on the final

classification, we set up five training sets with different proportions

of the original samples and the generated samples as follows: only 400

original samples, 400 original samples and 100 generated samples,

400 original samples and 200 generated samples, 400 original samples

and 400 generated samples, and 400 original samples and 800

generated samples. The number of original samples in the test set is

set according to the 10% ratio of the training set. The structure of the

CNN is similar to the GAN discriminator, with the last dense

classification layer changed to a layer using a four-way Softmax

activation function, and the structure is shown in Figure 8. The

parameters of three 1D-convolution layers are (64,3,2), (128,3,2), and

(256,3,1). The first parameter is the number of convolution kernels;

the second parameter is the kernel size; the last parameter is stride;

and the value of padding is set to same, which means that it

complements 0 uniformly during the sliding process of the

convolution kernel. The parameter in the dense layer is set to (4,

softmax), which means that the CNN used Softmax as the activation

function for the four classifications. The structure of ResNet is shown

in Figure 9. The parameters of the 1D-convolution layers before the

residual modules are (64,3,1) and (64,3,1); the parameters of the 1D-
TABLE 3 Correlation coefficient results.

CC GSample 1 GSample 2 GSample 3 Gsample 4

Sample 1 0.1151 0.0085 0.0775 0.0446

Sample 2 0.0045 0.0825 0.0026 0.0162

Sample 3 0.0095 0.0095 0.1438 0.0126

Sample 4 0.0130 0.0046 0.0142 0.0402
TABLE 2 Mutual information results.

MI GSample 1 GSample 2 GSample 3 Gsample 4

Sample 1 2.8937 2.3979 2.4599 2.2281

Sample 2 2.2112 2.2814 1.8438 1.8728

Sample 3 2.1499 2.4278 3.1285 2.2975

Sample 4 2.2590 2.2396 1.9204 2.6094
TABLE 4 Dispersion entropy results.

Sample name GSample 1 GSample 2 GSample 3 GSample 4

DE 3.2164 4.5132 2.5607 4.5823

Sample name Sample 1 Sample 2 Sample 3 Sample 4

DE 2.6951 4.3608 2.5028 4.4172
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convolution layer in the first batch of residual modules are (16,1,1),

(16,3,1), and (64,1,1); and the parameters of the next 1D-convolution

layer are (128,3,1). The parameters of the 1D-convolution layer in the

first batch of residual modules are (32,1,1), (32,3,1), and (128,1,1).

Then, the parameter of the first dense layer is (2048, relu), which

means that the dimension of the output is 2,048, and the dense layer

used the ReLU function as the activation function to fully connect the

data. The parameter of the second dense layer is (4,softmax), and the

function is same to the dense layer in CNN. The results are shown in

Figures 10, 11.

The images on the left are the training accuracy results, while the

images on the right are the training loss results. Figures 10A and 11A

show 400 original samples of 4 categories, including 100 samples in

each category. They are then input into the traditional CNN and one-

dimensional ResNet for classification.

The rest of the figures are the classification results obtained from the

datasets formed when the ratio of original to generated samples is 4:1 in

Figure 10B, 2:1 in Figure 10C, 1:1 in Figure 10D, and 1:2 in Figure 10E,

respectively. In Figures 10, 11, the lines “train-acc” and “train-loss” are the

results obtained in the training set, and “val-acc” and “val-loss” are the

results obtained in the testing set.

The classification accuracy of the CNN using the dataset with only

original samples is 79% in Figure 10A. When 100 generated samples

are added to the dataset, the classification rate significantly improved,

reaching 85.6% in Figure 10B. Adding another 100 generated samples

to the dataset caused the classification accuracy to reach 86.68% in

Figure 10C, with a 2:1 ratio of the original to generated samples.
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When the ratio is 1:1, the accuracy rose to 89.5% in Figure 10D.

However, when the ratio is 1:2, the accuracy reached 90% in

Figure 10E and did not increase significantly.

At this point, the sample size already met the requirements of the

network structure, and the accuracy reached convergence, which also

verifies the validity of the generated samples. ResNet has more network

layers than a traditional CNN, and thus more training epochs are

required. Therefore, the epoch number is set to 150. As shown in

Figure 11, when we used the original dataset, the accuracy and loss

converged slowly, and the accuracy only reached an eventual value of

87.5% in Figure 11A. As the number of samples increased, the accuracy

gradually improved. After adding 100 samples into the dataset, the

accuracy reached 92.5% in Figure 11B, but it is not stable and there are

still some problems with overfitting.

Then, another 100 generated samples are added to the dataset, and the

accuracy reached 98.33% in Figure 11C. The accuracy reached 97.5% in

Figure11Dwhentheratioof theoriginal sample to thenumberofgenerated

samples is 1:1. Finally, the accuracy reached 99.17% inFigure 11Ewhen the

ratio is 1:2. In theprocess ofnetworkmodel training and testing, eachepoch

took about 16 seconds. The number of epochs needed for convergence is

reduced from 150 to 50 on testing set, and the convergence time is reduced

from40minutes to13.3minutes.Afternetwork training iscompleted,when

the new ship-radiated noise data are obtained, we only needed to perform

sample segmentation and input them into the network directly without

complex signal decomposition and manual feature extraction for

classification. A classification result with an accuracy of 99% could be

obtained within a few minutes.
FIGURE 8

CNN structure.
FIGURE 9

ResNet structure.
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5 Conclusion

In this paper, a 1-DDCGAN based on GAN is applied to extend

ship-radiated noise under small sample size conditions. Deep neural

network can extract sufficiently deep and essential features through
Frontiers in Marine Science 10
the network structure when the sample size is large enough, and these

features are used as a basis for classification. One-dimensional CNN

and ResNet are designed for data analysis. And the accuracy is

improved from 79% to 90% in CNN, from 87.5% to 99.17% in

ResNet as the sample size increases.
B

C

D

E

A

FIGURE 11

ResNet classification results. (A) Results of ResNet on the original dataset. (B) Results of ResNet at 4:1 dataset. (C) Results of ResNet at 2:1 dataset. (D)
Results of ResNet at 1:1 dataset. (E) Results of ResNet at 1:2 dataset.
B

C

D

E

A

FIGURE 10

CNN classification results. (A) Results of the CNN on the original dataset. (B) Results of the CNN at 4:1 dataset. (C) Results of the CNN at 2:1 dataset. (D)
Results of the CNN at 1:1 dataset. (E) Results of the CNN at 1:2 dataset.
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