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Introduction

Shrimp aquaculture is witnessing production losses due to several emerging diseases in

Penaeus vannamei farming both at hatchery and grow-out stages. Diseases are caused due

to multiple factors, which include biotic, abiotic and managemental factors (Alavandi et al.,

2019; Millard et al., 2021) and in many cases, the etiology is unknown. One such disease

commonly observed in hatcheries is zoea-2 syndrome.

Zoea-2 syndrome (ZS) reported since 1990 has become a significant challenge to shrimp

larviculture. Recently in India, especially after the introduction of P. vannamei, Zoea-2

syndrome has emerged as a serious threat and severely affected the shrimp larval production.

This syndrome is characterized by reduced feeding and impaired metamorphosis and causes

delayed molting and mass mortality. Zoea-2 syndrome affected larvae observed to stop

feeding suddenly after 36-48 hrs of zoea I stage, then exhibit clinical symptoms and mortality.

The clinical signs of Zoea-2 syndrome include loss of appetite, empty gut with no fecal

strands, arrested peristaltic movement of gut, inflammation in the intestinal epithelium and

white balls or white spheres like structures in the gut. The loss due to zoea-2 syndrome in a

100 million nauplii stocking capacity hatchery was reported to be approximately ₹ 1.2 to 4.0

million Indian rupees in 2016 (Sathish Kumar et al., 2017). So far, incidences of zoea-2

syndrome were only associated with Vibrio harveyi and Vibrio alginolyticus (Vandenberghe

et al., 1999). In our earlier study, among other vibrio isolates V. alginolyticus was found to be
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significantly associated and no known pathogen was found to be

causally associated with this syndrome (Sathish Kumar et al., 2017).

Thus, etiology and pathology of zoea 2 syndrome endure to be

unresolved for almost three decades. Eventually, this syndrome

results in mass mortality with a pattern of gradual, progressive

manner increasing with day-by-day stocking to the maximum of

70-90%.

Another important disease of grow-out ponds that has become

a concern in recent years is white feces syndrome (WFS) which

affects the juvenile and adult stages of shrimp in aquaculture farms.

Reduced feeding, growth retardation, white gut and loose carapace

with floating white feces on the surface of the pond are the

symptoms of WFS (Tang et al., 2016). The disease occurs

commonly after 30-40 days of culture which may also be

accompanied by mortality of animals (Sriurairatana et al., 2014).

WFS occurrences were reported to be associated with aggregated

transformed microvilli (ATM) structures resembling gregarine

worms, vibriosis, Enterocytozoon hepatopenaei (EHP), blue-green

algae, and fungi (Sathish Kumar et al., 2022). Disease manifestations

are noticed even in the absence of these agents (Wang et al., 2020).

Studies on intestinal bacterial communities of WFS shrimp

indicated less diverse (Hou et al., 2018), more abundant V.

sinaloensis and V. parahaemolyticus (Wang et al., 2020) and other

potential role of pathogenic bacteria (Zeng et al., 2020).

The 16s rRNA amplicon sequencing offers to provide diversity

and dynamics of both culturable and unculturable microorganisms

of a habitat, which is not possible through traditional laboratory

approaches (Martıńez-Porchas and Vargas-Albores, 2017). In this

study, 16s rRNA amplicon sequencing was carried out for ZS and

WFS which affect hatcheries and grow-out ponds, respectively. This

is the first report on the 16s amplicon sequencing data of zoea-2

syndrome and the recovered sample profiles of white feces

Syndrome. The sequencing information generated from this study

is useful for understanding microbial communities associated with

two important diseases and forms basis for possible future

designing of preventives and treatments.
Materials and methods

Sample collection

The Zoea-II syndrome samples were obtained from hatcheries

located near Marakkanam Tamilnadu, India (12.19° N, 79.92° E).

The larvae of zoea stage 1 (50 zoeas per sample) displaying the

clinical symptoms as stated above were collected at 2-, 4-, 6- and 8-

days post-infection (ZIIS2, ZIIS4, ZIIS6 and ZIIS8). The control

group is devoid of ZS infection (ZIISZN). With regard to white feces

syndrome, a total of five samples, comprising two diseased (D1 and

D2), two recovered (R1 and R2) and one healthy sample (C1) were

collected from the shrimp farms located near Nellore of Andhra

Pradesh India (14.47° N, 80.09° E). The samples were identified

based on the symptoms displayed for each condition, and collected

at 45 to 80 days of culture, covering different stages of infection.

Pooled gut contents from three biological replicates were collected

from each sample, representing all three selected health/disease
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were stored at -80°C for further analysis.
DNA extraction and sequencing

Samples were subject to CTAB and Phenol: chloroform method

followed by RNase A treatment to isolate the total DNA and the

quality was checked using NanoDrop 2000 (Thermo Scientific,

Brea, CA, United States) followed by 16s rRNA gene

amplification. The primers targeting the 16s V3-V4 regions (F

-GCCTACGGGNGGCWGCAG; R- ACTACHVGGGTAT

CTAATCC) designed by Eurofins (Bisht et al., 2018) were used

for PCR amplification, and 3 µl of the PCR product was checked

using 1.2% agarose gel. This was followed by library preparation

using the amplicon library preparation kit Nextera XT Index by

Illumina Inc. (San Diego, CA, United States) in accordance with the

16s metagenomic Sequencing Library preparation guide Part

#15044223 Rv. B. The amplicon libraries were purified by

AMPure XP beads quantified using Qubit Fluorometer and

analyzed using the Agilent 4200 TapeStation (Santa Clara, CA,

United States) with D1000 Screen tape. The libraries were subject to

2x300 paired ends sequencing using the Illumina MiSeq platform

(San Diego, CA, United States).
Read quality control

The quality of the raw reads was assessed using the FastQC

v.0.11.8 tool (https://www.bioinformatics.babraham.ac.uk/projects/

fastqc ). Further, the raw reads with inadequate quality standards

were filtered using Trimmomatic ver. 0.39 (Bolger et al., 2014). The

adapters were removed with ILLUMINACLIP option using built-in

NextEra PE adapter file, and the low-quality bases were trimmed

using the SLIDINGWINDOW option with a phred score threshold

of 25 for every 5 bases. Finally, the MINLEN option was used to

remove all the sequences that had a length below 50 bases.
Taxonomic profiling and diversity analysis

The 16s amplicon sequence analyses of the samples were

performed using the Quantitative Insights Into Microbial Ecology

(QIIME) software, an open source microbiome analysis pipeline

(Caporaso et al., 2010). The trimmed high-quality data were

subjected to sequence preprocessing such as joining paired ends,

converting from fastq to fasta files and combining the sequence with

QIIME identifiable label. The pre-processed sequences were further

subjected to OTU classification (operational taxonomic units) with

open referencing method against the SILVA v132 database using

default parameters. Further, taxonomy summarization of the OTU

table was carried out followed by alpha and beta diversity analysis

(https://github.com/biocore/qiime). The calculated alpha diversity

indices include Shannon, Chao1, Simpson’s diversity and evenness,

fisher alpha and goods coverage, while the beta diversity indices

include the weighted and unweighted unifrac distances

(Supplementary Figures 1, 2).
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Functional analysis

The function prediction was carried out using the PICRUSt

(Phylogenetic Investigation of Communities by Reconstruction of

Unobserved States, Langille et al., 2013) tool in three steps. The

PICRUSt predictions were based on the OTUs generated using

closed referencing method with default parameters (Supplementary

Table 5). At first, the OTU table is normalized based on copy

number abundance, while the second step involves prediction of

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and

Goto, 2000) and Cluster of Orthologues Groups (COG) (Tatusov

et al., 2003) functional groups. Finally, the categorization of KEGG

and COG functions at different levels was carried out (https://

github.com/picrust/picrust). The results of QIIME and PICRUSt

pipelines are tabulated and visualized using vegan, ggplot2,

reshape2, RColorBrewer, and vennDiagram libraries of R

(Oksanen, 2007; Wickham, 2007; Chen and Boutros, 2011;

Neuwirth and Neuwirth, 2014; Wickham, 2016). Heatmaps on

KEGG annotations of PICRUSt are generated using the online

tool Morpheus (https://software.broadinstitute.org/morpheus/)
Results and discussions

Read quality control

An average of 418 K and 205 K paired-end reads were obtained for

ZS andWFS respectively. On trimming, these were reduced to 341 K and

180K. Finally, high quality reads of 81.16% - 82.31% for ZS and 87.03% –

88.83% for WFS are retained from the raw reads. The Q30 stats for ZS

andWFS samples were observed to be in the ranges of 95.65 - 95.71 and

95.19 - 95.44 percentages respectively (Supplementary Table 1).
Taxonomic profiling and diversity analysis

Amplicon sequence analysis results revealed an average read

classifications of 87100 and 190371 for WFS and ZS respectively.

The taxonomic profile revealed that all the samples were dominated

by Proteobacteria and Firmicutes irrespective of disease state and

life stages. In addition, the phyla Bacteroidetes and Actinobacteria
Frontiers in Marine Science 03
were found to be high in ZS samples, while Tenericutes, and

Cyanobacteria were high in WFS samples.

Family level abundances revealed a dominance of Planococcaceae,

Moraxellaceae, Flavobacteriaceae and Rhodobacteraceae in ZS, while

Mycoplasmataceae, Vibrionaceae, and Pirellulaceae were found to be

predominant in all WFS samples. In addition, Streptococcaceae and

Enterococcaceae were observed to be high in recovered and healthy

samples of WFS respectively.

Psychrobacter, Planomicrobium, Pedobacter, and Glutamicibacter

are found to be predominant genera of ZS samples, whereas

Candidatus Bacilloplasma, Photobacterium, Lactococcus,

Enterococcus, and Vibrio were predominant in WFS (Figure 1).

The complete taxonomic profile for both the sample groups are

provided in Supplementary Tables 2 and 3 for ZS and WFS

respectively. Additionally, sample-wise microbial profiles are

depicted in the form of krona charts and are made available in

Supplementary Data Sheets 1 and 2. The diversity analysis results

revealed high diversity indices for healthy groups than diseased

groups for ZS and WFS samples (Supplementary Table 4). Among

the diversity indices calculated for ZS, richness and the fisher’s alpha

indices, were high in control sample and gradually declined with the

increase in days after infection. However, a sudden rise in diversity

was noticed on the 8th day of infection (Supplementary Figure 1A).

The richness and fisher alpha indices depicted for WFS samples

clearly indicated the higher diversity of healthy and recovered

samples compared to diseased samples (Supplementary Figure 1B).

In concurrence with earlier studies, genus Candidatus

Bacilloplasma and Photobacterium were observed to be high in

the diseased samples and Lactococcus were high in recovered

sample group of WFS.

Candidatus Bacilloplasma is a lineage of the Mollicutes which

are identified as opportunistic pathogens and have earlier been

reported to be high in shrimp affected with WFS (Hou et al., 2018).

Candidatus Bacilloplasma was first described by Kostanjsek et al.

(2007) colonising the cuticular surface of the terrestrial isopod

Porcellio scaber (Crustacea: Isopoda), but it had also been found in

several marine species. In the Chinese mitten crab Eriocheir

sinensis, Candidatus Bacilloplasma was the dominant genus in the

midgut (Dong et al., 2018). As this is where food digestion primarily

occurs, the presence of Candidatus Bacilloplasma suggests a

possible relationship with the function of the digestive tract. In
A B

FIGURE 1

Taxonomic classifications at genus for (A) ZS and (B) WFS.
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general, Mollicutes represent a common bacterium class in the

intestinal tract of arthropods which is beneficial to the host, with

some species associated with an increased performance in the

adaptive response to food-limiting conditions. Therefore, the

increase in abundance of Candidatus Bacilloplasma in diseased

crustaceans may represent a compensatory strategy to enhance the

absorption of nutrients when they stop feeding.

On the other hand, many species of Vibrio are commensal

microorganisms and are involved in the digestion of a wide range of

recalcitrant biopolymers, such as chitin, cellulose and alga-derived

compounds, as well as lipids and carbohydrates (Gatesoupe et al.,

1997). But also, many species of Vibrio are opportunistic pathogens

that impact the physiology and health of their hosts.

Similarly, Photobacterium damselae was found to be associated

with many marine animal diseases (Terceti et al., 2018). While,

Lactococcus was reported to be among the healthy animals’ gut

contents which indicates the recovering health status of the shrimps

(Piamsomboon and Han, 2022). In the ZS samples, the genus

Psychrobacter was consistently high irrespective of the disease

stage, in an earlier study Psychrobacter has been reported to have

evolved from a pathobiont ancestor (Welter et al., 2021). This genus

has been observed in marine mammals’ skin, respiratory, and gut

and has also been reported to cause opportunistic infection in

mammals (Welter et al., 2021).
Functional analysis

The Functional analysis revealed the abundant KEGG

categories related to cellular processes, environmental information

and processing, metabolism and organismal system in both WFS

and ZS samples (Supplementary Table 6). In case of WFS samples,

the functional pathways were highly abundant in the recovered
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samples (Supplementary Table 6). Similar observations have been

made in earlier studies where the pathways, especially the ones

related to metabolism and biological processes, were high in healthy

samples and low in disease-affected samples (Wang et al., 2019).

Similar trend was observed for ZS with an exception at 8 days

post-infection.

KEGG ontology terms (level2) for all the samples of both the

diseases are depicted in Figure 2. Though there is no clear trend

observed with regard abundance of functional categories with disease

progression, eight days after infection in case of Zoea II syndrome

and recovered samples in case of white feces syndrome have reveled

higher abundances. The abundant functional categories of previously

mentioned disease stages include Carbohydrate Metabolism, Amino

Acid Metabolism, Energy Metabolism, Replication and Repair and

Membrane Transport. Among the sub-functional classes’ (level 3)

transporters, ABC transporters, DNA repair and recombination

proteins, purine metabolism and ribosomes are found to be

commonly observed in both the diseases with a variation in the

abundances. (Supplementary Figures 3, 4).
Conclusion

Emerging diseases are major concern in P. vannamei hatcheries

and grow-out ponds. Here we report microbial profiling of ZS and

WFS for which the exact causative agents are still unknown and

affect hatcheries and grow-out ponds respectively. This is the first

16s amplicon report on Zoea-2 syndrome. In addition, 16s

amplicon sequence data from WFS recovered samples are new

addition to the existing datasets of WFS. The 16s amplicon data

generated from this study are useful for future attempts on

designing preventives and treatment for the reported diseases.
A B

FIGURE 2

Identified KEGG ontology terms (Level 2) for (A) Zoea II syndrome and (B) White feces syndrome.
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