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Diving deeper: Mesopelagic fish
biomass estimates comparison
using two different models

Mariana Hill Cruz*, Iris Kriest and Julia Getzlaff

Biogeochemical Modelling Group, Research Division 2: Marine Biogeochemistry, GEOMAR Helmholtz
Centre for Ocean Research Kiel, Kiel, Germany
A growing population on a planet with limited resources demands finding new

sources of protein. Hence, fisheries are turning their perspectives towards

mesopelagic fish, which have, so far, remained relatively unexploited and

poorly studied. Large uncertainties are associated with regards to their

biomass, turn-over rates, susceptibility to environmental forcing and

ecological and biogeochemical role. Models are useful to disentangle sources

of uncertainties and to understand the impact of different processes on the

biomass. In this study, we employed two food-web models – OSMOSE and the

model by Anderson et al. (2019, or A2019) – coupled to a regional physical–

biogeochemical model to simulate mesopelagic fish in the Eastern Tropical

South Pacific ocean. The model by A2019 produced the largest biomass

estimate, 26 to 130% higher than OSMOSE depending on the mortality

parameters used. However, OSMOSE was calibrated to match observations in

the coastal region off Peru and its temporal variability is affected by an explicit life

cycle and food web. In contrast, the model by A2019 is more convenient to

perform uncertainty analysis and it can be easily coupled to a biogeochemical

model to estimate mesopelagic fish biomass. However, it is based on a flow

analysis that had been previously applied to estimate global biomass of

mesopelagic fish but has never been calibrated for the Eastern Tropical South

Pacific. Furthermore, it assumes a steady-state in the energy transfer between

primary production andmesopelagic fish, whichmay be an oversimplification for

this highly dynamic system. OSMOSE is convenient to understand the

interactions of the ecosystem and how including different life stages affects

the model response. The combined strengths of both models allow us to study

mesopelagic fish from a holistic perspective, taking into account energy fluxes

and biomass uncertainties based on primary production, as well as complex

ecological interactions.
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1 Introduction

A growing population on a planet with limited resources faces

the challenge of food security through the sufficient supply of

mankind with carbohydrates, fats and proteins (Prosekov and

Ivanova, 2018). Especially with regard to proteins, fish is of key

importance: for example, small epipelagic fish are used for the

production of fishmeal and fish oil which are used to feed

aquaculture animals, land stocks and to produce nutritional

capsules for human consumption (Shepherd and Jackson, 2013).

The averaged global fishmeal and fish oil production between 2001

and 2006 was 6.3 and 0.95 Mt per year, respectively (Péron et al.,

2010). From these, 1.7 and 0.27 Mt came from small pelagic fish

landed in Peru (Péron et al., 2010). Small epipelagic fish in the

Northern Humboldt Current system (NHCS) –located in the

Eastern Tropical South Pacific Ocean (ETSP)– represent 10% of

the global fish landings (Chavez et al., 2008). However, the

exploitation potential of these coastal stocks is limited (Tarazona

and Arntz, 2001) and they have collapsed in the past due to

overfishing and recruitment failure, impacting the ecosystem

(Duffy, 1983; Tarazona and Arntz, 2001; Herling et al., 2005).

Their susceptibility to high temporal variability in environmental

conditions such as temperature (Chavez et al., 2003) and oxygen

(Bertrand et al., 2011), in combination with the possible impacts of

climate change on the NHCS, bring uncertainty for their

exploitation in the upcoming decades (see Salvatteci et al., 2022).

Alternative fish stocks may be necessary in the coming years to

satisfy the demand for fishmeal and release the pressure on

currently over-exploited epipelagic fish. Hence, fisheries are

turning their perspectives towards mesopelagic fish, which have,

so far, remained relatively unexploited (St. John et al., 2016). These

may be used to support the supply of fishmeal and also as source for

nutraceutical products (St. John et al., 2016). However, exploiting

these resources without prior knowledge on their fundamental

ecological and biogeochemical role poses threats for the

mesopelagic community and, potentially, also for the ocean

health and global climate (St. John et al., 2016; Martin et al., 2020).

Estimates regarding total standing stock of the mesopelagic

community are scarce and uncertain (Davison et al., 2013; Belcher

et al., 2019). While earlier estimates of the global mesopelagic

biomass were around 1 Gt wet weight (Gjøsæter and Kawaguchi,

1980), a more recent estimate based on large scale echosounder

surveys is an order of magnitude higher (11-25 Gt; Irigoien et al.,

2014); yet, the latter high estimate is currently under debate

(Davison et al., 2015b; Anderson et al., 2019). A different

approach was followed by Anderson et al. (2019) in a flow based

steady state analysis of the mesopelagic food web. They derived an

estimate of 2.4 Gt which is significantly lower compared to recent

estimates by Irigoien et al. (2014). Although the model by Anderson

et al. (2019) derives the fluxes from observations, the food web they

consider includes only the basic fluxes and neglects more complex

interactions that could potentially also have an impact on the

resulting biomass such as predation over different life stages. In

the NHCS, Vinciguerria lucetia, also known as Panama lightfish,

and myctophids, commonly known as lanternfish, have been
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community (Cornejo Urbina and Koppelmann, 2006; Marzloff

et al., 2009). These are vertical migrants whose distribution has

been reported on the upper 50 m depth during the night and

between 200 and 400 m during the day (Cornejo Urbina and

Koppelmann, 2006). Between 2.9 (Castillo Valderrama et al.,

1999) and 11.1 Mt (Castillo Valderrama et al., 1998) of

Vinciguerria sp. have been estimated for the upwelling region off

Peru. Hence, even for this well-studied region, we find a large

uncertainty for the biomass estimate of this group.

Ecosystem and fisheries models are valuable tools to understand

the dynamics of the ecosystems and their potential response under

certain scenarios. Numerous models exist to simulate either single

fisheries or whole ecosystems (see Fulton, 2010; Tittensor et al.,

2018; Tittensor et al., 2021). Ecosystem models tend to focus on

commercially exploited fisheries, especially regarding the epipelagic

community and demersal species (e.g., Rose et al., 2015; Watson

et al., 2015; Carozza et al., 2016; Petrik et al., 2019). In recent years,

the focus has started to shift from a mainly fisheries management

perspective (see Colléter et al., 2015) to also consider the impact of

fish and fisheries on biogeochemistry (e.g., Megrey et al., 2007;

Travers-Trolet et al., 2014b; Getzlaff and Oschlies, 2017; Aumont

et al., 2018; Bianchi et al., 2021). Only few models also consider

mesopelagic organisms, aggregating them as a functional group

(e.g., Ainsworth et al., 2015; Aumont et al., 2018; Anderson et al.,

2019) or simulating individual species (e.g., Travers-Trolet et al.,

2014b). A sustainable exploitation of mesopelagic fish requires not

only to estimate its biomass but also to understand the population’s

vital rates such as recruitment and growth (St. John et al., 2016) and

their ecological and biogeochemical role (Martin et al., 2020).

Hence, understanding the benefits and limitations of current

approaches to model mesopelagic fish is essential to identify

opportunities and requirements for the development of

mesopelagic fish models.

In this study, we provide a new estimate of mesopelagic fish

biomass in the ETSP, a region that is relatively well studied with

regard to observations of fish biomass. To figure out potential

sources of the large uncertainties in biomass estimates, we employ

two different model types for higher trophic levels, which are both

forced by the same physical–biogeochemical model. We explore the

strengths and weaknesses of the two models and how their different

complexities affect the estimates of mesopelagic fish biomass and

their temporal variability. This is a first step towards understanding

the trophic web of the mesopelagic zone and how it can be

modelled. To do so, we coupled the regional physical–

biogeochemical model CROCO–BioEBUS (Coastal and Regional

Ocean COmmunity model, Shchepetkin and McWilliams, 2005;

Biogeochemical model for Eastern Boundary Upwelling Systems,

Gutknecht et al., 2013) with the two ecosystem models to simulate

biomass of mesopleagic fish in the ETSP. The multispecies model

OSMOSE (Object-oriented Simulator of Marine Ecosystems, Shin

and Cury, 2004) is a dynamic individual based model that simulates

the whole life cycle and trophic interactions of nine fish species,

functional groups –such as the mesopelagic fish– and

macroinvertebrates. OSMOSE receives integrated plankton
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estimates by CROCO–BioEBUS as food forcing for the fish. The

second mesopelagic fish model that we used is the flow analysis

model by (Anderson et al 2019, called A2019 in the following). This

model takes primary production as input which, in the case of our

study, is provided by CROCO–BioEBUS. The model calculates the

pathways taken by the biomass, either sinking to the deep water or

being consumed by zooplankton, until it reaches mesopelagic fish.

The model provides mesopelagic fish biomass as output. A detailed

description of the models employed in this study is provided in

Section 2. In Section 3, we present the spatial and temporal trends in

the mesopelagic fish estimated by OSMOSE and the model by

A2019. We also explore how an explicit trophic web and life cycle in

OSMOSE may impact its response to temporal variability in the

plankton forcing in contrast to the model by A2019. Section 4

discusses differences and strengths of the two models based on our

results and how they could benefit each other, followed by the

conclusions of the study.
2 Methods

In this study, we calculated the abundance of mesopelagic fish

in the Eastern Tropical South Pacific (ETSP) by using the physical–

biogeochemical model CROCO–BioEBUS (Shchepetkin and

McWilliams, 2005; Gutknecht et al., 2013) coupled to two

different models of higher trophic levels (from now on called fish

models): the simple food-web model by A2019 and the multispecies

individual-based model OSMOSE (Shin and Cury, 2001; Shin and

Cury, 2004). Primary production, phytoplankton and zooplankton

were estimated using the physical–biogeochemical model and these

in turn were used to force the two fish models.
2.1 The physical–biogeochemical model:
CROCO–BioEBUS

We employed the Coastal and Regional Ocean COmmunity

model (CROCO, Shchepetkin and McWilliams, 2005, https://

www.croco-ocean.org/) coupled online with the Biogeochemical

model for Eastern Boundary Upwelling Systems (BioEBUS,

Gutknecht et al., 2013). Details on the simulation setup and

results of CROCO–BioEBUS are provided in José et al. (2019);

Xue et al. (2022), and we here only briefly describe its setup and

structure. The model takes into account the domain between 33° S

to 10° N and 69 to 118° W, where it applies a horizontal resolution

of 1/12 °. The vertical domain is resolved by 32 sigma layers. It is

spun-up for 30 years using the forcing of 1990 and then a hindcast

from 1990 to 2010 is simulated. The model is forced at the

boundaries with temperature, salinity and current velocities from

Simple Ocean Data Assimilation (SODA, Carton et al., 2018),

oxygen and nitrate from monthly climatology CSIRO

(Commonwealth Scientific and Industrial Research Organisation)

Atlas of Regional Seas (CARS, Ridgway et al., 2002) and at the

surface with heat fluxes, humidity, precipitation and temperature

from Climate Forecast System Reanalysis (CFSR, Saha et al., 2010)

and winds from Cross-Calibrated Multi-Platform product (CCMP,
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Atlas et al., 1996). More details on the model forcing are provided

by José et al. (2019).
2.2 The multispecies model: OSMOSE

The output (plankton concentrations) of CROCO–BioEBUS

has recently been used to force the Object-oriented Simulator of

Marine Ecosystems (OSMOSE, Shin and Cury, 2001; Shin and

Cury, 2004, in a configuration for the ETSP by Hill Cruz et al.

(2022). Small and large phyto- and zooplankton produced by

CROCO–BioEBUS are integrated above the oxygen minimum

mum zone (defined by regions with O2 concentrations less than

90 µmol kg−1, Karstensen et al., 2008) and transformed to wet

weight multiplying by the factors: 720, 720, 675 and 1000 mg WW

mmol N–1, respectively (Travers-Trolet et al., 2014a, their Tab. 4).

The maps of plankton provided by CROCO–BioEBUS are

regridded from 1
12

∘ to 1
6
∘ and used as forcing to run OSMOSE.

OSMOSE is spun up for 25 years. During the spin-up, the model is

forced with climatological plankton obtained by averaging the

BioEBUS hindcast over 1990 to 2010. Afterwards, 21 years are

simulated using the plankton hindcast from 1990 to 2010.

OSMOSE is a dynamic multispecies individual-based model

that simulates the whole life cycle of fish (Shin and Cury, 2001; Shin

and Cury, 2004, http://www.osmose-model.org/). It includes

processes of predation, growth, reproduction, harvesting and

mortality. The model groups individuals of the same species and

age class in schools. Every school has several state variables

including age, size, location and number of individuals. Schools

are located in a 2D grid of 1
6
∘ resolution. In every time-step,

organisms move randomly within a given area and prey on other

schools that share the same spatial location. In the set-up for the

ETSP, the model represents nine groups: Peruvian anchovy

(Engraulis ringens), Peruvian hake (Merluccius gayi), Pacific

sardine (Sardinops sagax), Chilean jack mackerel (Trachurus

murphyi), Pacific chub mackerel (Scomber japonicus), squat

lobster (Pleurocondes monodon), Humboldt squid (Dosidicus

gigas), euphausiids and mesopelagic fish. Every species and

functional group can prey on organisms from other schools or

plankton that fall within certain predator-prey size ratio. Since the

model accounts for all life stages, from eggs to adults, smaller

species can also prey on eggs, larvae and juveniles from larger

species as it would happen in the real world (e.g., Köster and

Möllmann, 2000). Despite being a 2D model, OSMOSE allows for

indicating the position in the water column of each group relative to

the others. Only groups that have a depth overlap can prey on each

other. Therefore, in the case of mesopelafic fish, their main predator

is the Humboldt squid (see Appendix), which shares a similar

spatial distribution. Furthermore, while the small scale movement is

random, the large scale distribution of fish is determined by habitat

maps. The habitat niche models used to drive the distribution offish

in our configuration were developed by Oliveros-Ramos (2014).

This allows, for instance, to concentrate anchovies only in the

coastal region, where they are usually located (Swartzman et al.,

2008), and mesopelagic fish in the deeper open ocean (Castillo

Valderrama et al., 1999). The mechanistic interactions in the model
frontiersin.org
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allow it to generate a food web based on the size structure of all

groups rather than on predator-prey pairs set a priori.

Every fish school in OSMOSE is affected by different sources of

mortality. These include: starvation mortality, predation, fishing

mortality and additional mortality. Since we assumed that

mesopelagic fish is not harvested, we set fishing mortality to zero.

Starvation and predation are calculated by the model based on the

food consumption and predation by other schools. Additional

mortality accounts for sources of mortality that are not explicitly

included in OSMOSE, for instance, predation by species that are not

explicitly simulated and disease.

In our simulation, the additional mortality parameter of

juvenile and adult mesopelagic fish was set to 1.19 y−1, following

the set-up of an earlier configuration of the Peru Upwelling System

by Marzloff et al. (2009). An ECOPATH (Pauly et al., 2000)

simulation by Tam et al. (2008) estimated the non-predatory

mortality of mesopelagic fish, which would be an equivalent to

the additional mortality in OSMOSE, as 1.2 y −1. The additional

mortality applied to eggs and larvae does not come from the

literature since estimates for these life stages are rare. Instead, this

parameter, as well as the accessibility parameter that scales the

plankton available for fish to feed, were calibrated by Hill Cruz et al.

(2022) as it is commonly done in OSMOSE set-ups (e.g., Marzloff

et al., 2009; Travers et al., 2009; Halouani et al., 2016; Bănaru et al.,

2019). These parameters were adjusted to match observations of the

simulated species for the coastal region off Peru. Since the area of

the ETSP covered by the model is larger than the region for which

observations were available, we scaled the mesopelagic fish biomass

simulated by OSMOSE according to the fraction of their habitat

covered by the Exclusive Economic Zone of Peru to compare it

against the observations. A detailed description of the model

configuration used in this study and its calibration is available in

Hill Cruz et al. (2022).

After running the simulation, we calculated the total mortality

rate of juvenile and adult fish as the sum of all mortality rates

experienced by the fish, averaged over the whole simulation:

predation, starvation and additional mortality (Table 1).

Additional mortality is prescribed as an a priori parameter, which

is only subjected to small changes because of OSMOSE’s

stochasticity. In contrast, mortalities due to predation and

starvation depend on the internal dynamics of the model

(abundance of predators or nutritional status of the fish) and are,

therefore, a diagnostic outcome of the model. We then used the

total mortality of juveniles and adults as an input parameter for the

model by A2019 as described in Sect. 2.3.

In an additional sensitivity experiment, we investigated the

effects of OSMOSE’s trophic web on mesopelagic fish. For this

case, all groups except the mesopelagic fish were forced to collapse

by increasing their larval mortality by two to three orders of
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magnitude. As a result, mesopelagic fish was the only higher

trophic level in the simulation. There were no other species

preying on them and they fed exclusively on plankton. This

simulation is denoted as “OSMOSE without trophic web”.
2.3 The mesopelagic fish model by A2019

A2019 proposed a steady-state flow analysis to estimate biomass

of mesopelagic fish. Based on a set of linear equations and on steady

state assumptions, this model differs in many ways from OSMOSE,

among them the lack of differential equations and the linear

dependence of fish biomass on primary production. We here

outline the basic structure of this model, and refer the reader to

the more detailed description and extensive sensitivity analysis by

A2019. The model simulates a food web where organic matter

produced by primary production can either be consumed by

zooplankton in the epipelagic region or is exported as detritus to

the deep water. The model by A2019 parameterizes three groups of

zooplankton: epipelagic zooplankton which solely lives and feeds in

the photic zone, migratory zooplankton which perform dial vertical

migrations and detritivorous zooplankton that lives all the time in

the deep water and feeds exclusively on sinking organic matter.

These groups are consumed by carnivorous zooplankton,

representing organisms such as chaetognaths, amphipods and

jellyfish. Mesopelagic fish are at the top of the food chain

consuming all zooplankton groups. The model assumes that one

fraction of mesopelagic fish performs vertical migrations, hence

feeding also on epipelagic zooplankton, and the rest remains

permanently in the deep water. Metabolic losses are subtracted

from the feeding flux. The resulting net growth of mesopelagic fish

is then divided by a mortality rate to obtain the standing stock of

mesopelagic fish. Given the linear dependency of fish biomass on

(the inverse of) mortality rate, it is clear that the value of this

parameter is of paramount importance, and we discuss the choices

for this parameter value further down below.

The model by A2019 was designed to simulate meopelagic fish

in the global ocean between 40° and 40°N. Therefore, it is

reasonable to apply this model in the ETSP. To adapt the model

specifically to the ETSP, we forced the model by A2019 with

spatially resolved primary production extracted from the

BioEBUS hindcast from 1990 to 2010 (see Section 4.1). We

consider the mesopelagial as the vertical domain between 200 and

1000 m depth. To account for the restriction of this domain in

regions shallower than 1000 m, we masked and scaled the primary

production linearly for regions where the water depth is between

200 and 1000 m depth. For regions where the topography is

shallower than 200 m, no primary production is extracted since
TABLE 1 Mortality rates (y–1) of mesopelagic fish for different sources of mortality diagnosed by OSMOSE averaged after spin-up.

Predation Starvation Additional Total

juveniles 1.75 0.1 1.17 3.02

adults 0.16 0.3 1.19 1.65
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we assume that no mesopelagic fish live in this region. Where the

depth is 1000 m or deeper, we account for all integrated primary

production. The resulting 2-dimensional output is used as spatially

resolved forcing for the model by A2019.

OSMOSE and the model by A2019 are structurally different and

there are two aspects that can be compared: the underlying forcing

(as plankton or primary production) and the mortality. All other

processes are set up in a completely different way. The additional

mortality in OSMOSE is set to 1.19 y–1 and, in addition to this, the

mesopelagic fish are also subjected to predation and starvation

mortality. In the model by A2019, the mortality is assumed to be

much smaller and set to 0.67 y–1, based on observational estimates

of fish longevity. A2019 classified mortality as one of the most

uncertain parameters in their model. Therefore, they carried out a

sensitivity analysis adding +/- 75% to the parameter which resulted

in a range of 0.17 to 1.17 y–1. The upper boundary of this mortality

range is close to the additional mortality value that we applied to

OSMOSE (1.19 y–1). However, the justification of the mortality in

the model by A2019 does not account for processes such as

starvation and predation explicitly. Since the mortality rate

calculated by OSMOSE already accounts for the explicit impact of
Frontiers in Marine Science 05
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A2019. In addition, the model by A2019 does not account for

different life stages of mesopelagic fish. We see in Table 1 that, in

OSMOSE, the mortality of juveniles is almost twice as high as the

mortality of adults, mostly due to the increased predation. To

investigate the potential impact of accounting for the loss of

juvenile fish (by mortality), we performed two sensitivity

simulations: (i) applying the total mortality of adult mesopelagic

fish as given by OSMOSE of 1.65 y–1 to the model by A2019 and (ii)

applying the total mortality of juvenile mesopelagic fish of 3.02 y–1

to the model by A2019.
3 Results

The spatial distribution of the mesopelagic fish simulated with

OSMOSE and with the model by A2019 using BioEBUS primary

production is similar (Figure 1). The mesopelagic fish are absent in

the coastal shallow water, which, for the model by A2019, was

masked from the primary production input (Section 4.3), and their

largest concentration is present off Peru. Independent of the choice
FIGURE 1

Mesopelagic fish simulated by OSMOSE (top-left and bottom-black) and the model by A2019 (top-middle, top-right and bottom-red), both models
using input by CROCO–BioEBUS. The top row shows the averaged output in grams of wet weight per square meter (g WW m−2) from 1990 to 2010
and the bottom shows the total biomass over the domain for the same time period. The top row also gives the spatially integrated total primary
production (PP), the total mesopelagic fish biomass (BF) and the mortality rate applied to the model by A2019 (mF; see Table 1).
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of the mortality value, the model by A2019 produces a larger

biomass than OSMOSE (Figure 1 top). Applying the larger

mortality of 3.02 y–1 to the model by A2019 (Figure 1 top

middle), the resulting total biomass is about 26% larger than the

biomass in OSMOSE, whereas applying the lower mortality of 1.65

y–1 (Figure 1 top right) results in a total biomass that is about 130%

larger than in OSMOSE (0.0208, 0.0262 and 0.0476 Gt WW of

biomass estimated by OSMOSE, A2019 with high mortality and

A2019 with low mortality respectively, Figure 1). The results

indicate that the representation of different life stages of

mesopelagic fish is likely to impact the resulting biomass. In our

case, the comparatively large mortality of the juvenile fish in

OSMOSE seems to play an important role and needs to be taken

into account by the flux representations of the model by A2019. In

the following we analyze the simulation with the higher mortality

only (3.02 y–1), which is closer to the output from OSMOSE.

The seasonal cycle in both higher trophic level models has the

same frequency, but the amplitude of the mesopelagic fish biomass

is much larger in the model by A2019 compared to the one in

OSMOSE (Figure 1 bottom). In the model by A2019, mesopelagic

fish biomass is a linear function of primary production, hence the

anomaly of the interannual variability of the mesopelagic fish

biomass in the model by A2019 is identical to the anomaly of the

interannual variability of BioEBUS’ primary production (Figure 2).

In contrast to that, we find that the amplitude of the seasonal cycle

in OSMOSE is muted whereas the amplitude of its interannual

variability is larger compared to the one in the model by A2019 and

does not follow the same trend as the plankton input (Figure 2). In

addition, the anomaly in mesopelagic fish biomass simulated by

OSMOSE does not seem to follow the trend observed in BioEBUS’

plankton biomass. The decoupling is indicated by a weak cross

correlation of maximal 0.197 (see Appendix).

While the temporal variability in the model by A2019 is solely

driven by the primary production, in OSMOSE it originates from

the interplay of many other factors. These include the explicit life

cycle of the fish, the trophic interactions with predators and

different sources of prey, the spatial distribution of the fish and

the variability in different sources of mortality. The main predator
Frontiers in Marine Science 06
of mesopelagic fish in OSMOSE is the Humboldt squid. The main

prey of mesopelagic fish are euphausiids and then large

zooplankton. Removing all fish groups from the OSMOSE

configuration except for the mesopelagics (Figure 2, pink line)

resulted in a decrease in the amplitude of the interannual

anomaly of mesopelagic fish biomass. In this simulation, there is

a maximum cross correlation of 0.65 between the 12-month

running means of plankton forcing and mesopelagic biomass with

a lag of 8 months (see Appendix). The lag indicates that the fish

biomass responds to changes in plankton forcing after about 8

months. This points to an impact of simulating a complex life cycle

in OSMOSE, including egg production, by delaying the biomass

response to plankton abundance. In summary, both the model by

A2019 and OSMOSE show a similar seasonal cycle following the

trend of the plankton and primary production. However, the

interannual variability in OSMOSE is stronger and follows a

different pattern even if mesopelagic fish are the only group

present in this model.
4 Discussion

In our study, we observed a higher biomass in the model by

A2019 than in OSMOSE of about 26 to 130%, depending on the

mortality used. In general, mortality in numerical models is a highly

uncertain parameter. As seen in this study, depending on the

underlying assumptions, anticipate the mortality of juveniles or

that of adult, the resulting biomass of mesopelagic fish can

differ substantially.

OSMOSE model was calibrated to match observed biomasses of

mesopelagic fish off Peru between 2000 and 2008 provided by the

Instituto del Mar del Peru (IMARPE) as described in Hill Cruz et al.

(2022). Nonetheless, acoustic estimates of mesopelagic fish are

prone to high uncertainty (Marzloff et al., 2009; Davison et al.,

2015a; Davison et al., 2015b). In addition, observations by IMARPE

are done within the Exclusive Economic Zone of Peru (maximum

distance to the coast of 100 to 200 nautical miles, see Castillo

Valderrama and Gutiérrez Torero, 2001; Castillo Valderrama et al.,
FIGURE 2

Anomaly of the 12-month running mean of total mesopelagic fish biomass calculated by OSMOSE and the model by A2019, primary production
used as input for the model by A2019, total plankton biomass used to force OSMOSE and OSMOSE mesopelagic fish when all other fish groups
were collapsed (see Section 2.2).
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2004; Castillo Valderrama et al., 2009a; Castillo Valderrama et al.,

2009b; Castillo Valderrama et al., 2009c). Castillo Valderrama et al.

(1999) suggest that the abundance of Vinciguerria lucetia might be

underestimated in a case where the transects were done closer to the

shore since this is an oceanic species. Hence, the somewhat high

mortality of mesopelagic fish could stem from the low bias of

observations against which OSMOSE was calibrated.

Determining mortality rate M, and its sources, of fish species

in the ocean is not straightforward. A2019 derived the value of

M = 0:67 y–1 by calculating the inverse of a 1.5 year longevity (tmax

). While using longevity to estimate natural mortality is a

convenient method when limited information is available, it

might be an oversimplification and has been discouraged when

more advanced methods are available (Kenchington, 2014). Often,

longevity is determined from otoliths of caught fish (Takagi et al.,

2006; Hosseini-Shekarabi et al., 2015). This reflects the age of the

fish that survived until they were captured and provide

information on how long a fish may live under certain

circumstances, but does not distinguish between different

processes such as predation, disease or starvation. There are a

number of different methods to determine the natural mortality

that involve longevity (see Kenchington, 2014; Then et al., 2014).

The so called rule of thumb is also a function of longevity and

estimates mortality as M ≈ 3=tmax(Hewitt and Hoenig, 2005;

Maunder and Wong, 2011). Applying this rule of thumb to

mesopelagic fish, assuming a longevity of 1.5 years as in A2019,

would result in a mortality of 2 y–1, which is larger compared to

the value of 0.67 y–1 used in A2019. Then et al. (2014) derived a

different relation between mortality and longevity based on

information from more than 200 fish species: M = 4:899t−0:916max

that yields a mortality of 3.38 y–1 for our particular case. This is

closer to our 3.02 y–1 value estimated by OSMOSE for juvenile

fish. Other approaches provide even higher values. For instance,

the estimator by Hoenig (1983) for fish (M = 6:99t−1:22max , see

Kenchington, 2014) applied to mesopelagic fish results in a

mortality of 4.26 y–1. In summary, our results suggest that the

mortality estimated by OSMOSE is within the range of mortality

estimates obtained with other methods based on longevity.

Therefore, mortality rates diagnosed from OSMOSE can support

the parameterization of less complex food web models since its

higher complexity includes explicit and dynamic sources of

mortality including starvation and predation for different life

stages of the fish.

Both OSMOSE and the model by A2019 offer advantages and

disadvantages. The model by A2019 represents the mass transfer

from nutrients over plankton to mesopelagic fish in a

strainghtforward way. Its simplicity allows us to carry out many

sensitivity experiments that address the effects of a changing

biogeochemistry on fish.

The comprehensive parameter uncertainty analysis carried out

by A2019 provided low and high boundaries for the integrated

biomass estimates between 40°N and 40°S. Such an approach

becomes more complicated with OSMOSE since running this

individual-based model requires higher computational resources;

also the model species may collapse under certain conditions (see

Supplement to Hill Cruz et al., 2022). Therefore, for unconstrained
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regions, especially in the high seas, the model by A2019 can be used

for providing first estimates of potential mesopelagic fish biomass.

Nevertheless, the model by A2019 does not explicitly simulate life

cycles or a trophic web but only represents the (linear) biomass

transfer from primary production to mesopelagic fish as a steady

state. This might be an oversimplification for a highly dynamic

region such as the ETSP where environmental variability has been

seen to have strong impacts on small pelagic fish (Chavez et al.,

2003; Alheit and Niquen, 2004). A dynamic model is necessary to

study potential responses of this type in mesopelagic fish and to

estimate a population growth rate and recruitment based on

life traits.

The individual-based model OSMOSE represents the whole life

cycle of several fish and macroinvertebrate species. Since this is a

dynamic model, it is a good alternative for representing non-linear

changes in fish populations triggered by different pressures such as

environmental variability. Our results show that the non-linearity

affects how mesopelagic fish respond to variability in their food,

which is produced by environmental changes. As a multispecies

model, OSMOSE is also useful for exploring fishing strategies in an

ecosystem-based fisheries management context (Briton et al., 2019;

Fu et al., 2019; Guo et al., 2019; Fu et al., 2020). There is growing

evidence of the importance of mesopelagic fish in deep water food

chains (Mann, 1984; Davison et al., 2015a; Saunders et al., 2019). In

our study, the main predator of mesopelagic fish is the Humboldt

squid (see Appendix). This is a species of economic importance

(Gilly et al., 2013) that feeds mainly on mesopelagic fish (Markaida

and Sosa-Nishizaki, 2003). Therefore, any prospect on the

exploitation of mesopelagic fish in the ETSP should consider the

potential impacts on this species. Likewise, changes in the

exploitation on the Humboldt squid should consider potential

cascading effects on the mesopelagic fish and lower trophic levels.

Furthermore, while the spatial distribution offshore in the model by

A2019 was fully dependent on the primary production, in OSMOSE

the distribution of fish schools is forced by habitat niche models.

These maps vary in time and can be used to simulate horizontal

migrations (see Grüss et al., 2014; Oliveros-Ramos, 2014) allowing

for further refinement in the distribution of fish when this

information is available. Nevertheless, our results show a similar

spatial pattern in both OSMOSE and the model by A2019. This

indicates that the food source has a strong impact on the

distribution of mesopelagic fish. Hence, the approach used in the

model by A2019 can provide a first idea of the distribution of

mesopelagic fish where observations and habitat niche models are

not available, for instance in a global setting.

Both OSMOSE and the model by A2019 lack a vertical

dimension of fish distribution, but parameterize its effect on the

trophic web. In the case of OSMOSE, this is done through a

predatory accessibility matrix which constrains which fish groups

can feed on others based on their hypothetical position in the water

column. The model by A2019 goes a step further by also

parameterizing vertical migrations of mesopelagic fish. It assumes

in its trophic chain that migrant fish feed on epipelagic zooplankton

for half of the day and on migrating zooplankton all day [A2019].

Vertical migrations are especially important in the context of

mesopelagic fish due to their role in the active transport of
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organic matter to the deep ocean (Davison et al., 2013; Belcher et al.,

2019; Hernández-León et al., 2019) and its implications for carbon

capture, oxygen loss and nutrient cycles. However, vertical

migrations are only implicitly represented in the model by A2019.

A full coupling of the model by A2019 to the biogeochemical model

would be necessary to capture the impact of vertical migrations on

biogeochemical cycles.
5 Conclusions

Depending on the mortality rates applied, the biomass

estimated by the model by A2019 was more or less (26% with

high mortality and 130% with low mortality) higher than in

OSMOSE. In both cases, the mortalities calculated by OSMOSE

were larger than the original mortality estimated as the inverse of

longevity by A2019. Although OSMOSE has been calibrated to

match the limited amount of observations available for the coastal

region of the ETSP, uncertainties are large with respect to the open

ocean where mesopelagic fish are abundant. To reduce this

uncertainty, more reliable estimates of mesopelagic fish biomass

in the open ocean would be beneficial. OSMOSE exhibits a weaker

seasonal cycle but a stronger interannual variability. On the

contrary, the model by A2019 follows the same temporal pattern

as the primary production forcing due to its linear nature. Looking

ahead, both models have strengths and disadvantages. OSMOSE

provides a richer representation of the life cycle and trophic

interactions of the fish community. This is crucial for studies

steered towards implementations of fisheries management. The

strength of the model by A2019 lies in the direct, computationally

efficient link between the biogeochemistry and the fish

representation, which is useful for understanding potential

boundaries for the available biomass of mesopelagic fish given

certain biogeochemical conditions. The most comprehensive

representation of the ecosystem could combine the strengths of

both models. Being the most simple and computationally efficient

approach, the model by A2019 could provide a first estimate for

regions where data are limited, such as in the global ocean and the

high seas. OSMOSE simulates a more comprehensive food web and

is the preferred approach when observational data are available to

calibrate the model. With its more detailed resolution of food web

and ecological processes, it can also aid the validation of parameters

in simpler models that do not have a direct observational

counterpart such as mortality. In addition, model results can be

assessed against many other quantities such as stomach content,

trophic level, size structure and catches to provide a more accurate

representation of the ecosystem.
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Appendix

Figure A1 shows the position of mesopelagic fish in the

modelled trophic web. The main prey of mesopelagic fish is

euphausiids followed by plankton and their main predator is the

Humboldt squid.
FIGURE A1 Monthly consumption by (left) and of (right)

mesopelagic fish.
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Figure A2 shows a higher absolute cross correlation in the

OSMOSE simulation that only has mesopelagic fish, between these

fish and the plankton forcing, than in the simulation that includes

the whole food web (see Section 2.2).
FIGURE A2 Cross correlation between the yearly running

means of plankton forcing and mesopelagic fish biomass in

OSMOSE simulations with monthly time-steps.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1121569
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	Diving deeper: Mesopelagic fish biomass estimates comparison using two different models
	1 Introduction
	2 Methods
	2.1 The physical–biogeochemical model: CROCO–BioEBUS
	2.2 The multispecies model: OSMOSE
	2.3 The mesopelagic fish model by A2019

	3 Results
	4 Discussion
	5 Conclusions
	Data availability statement
	Author contributions
	Acknowledgments
	References
	Appendix



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


