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The ocean’s meso- and submeso-scales (1-100 km, days to weeks) host features

like filaments and eddies that have a key structuring effect on phytoplankton

distribution, but that due to their ephemeral nature, are challenging to observe.

This problem is exacerbated in regions with heavy cloud coverage and/or difficult

access like the Southern Ocean, where observations of phytoplankton distribution

by satellite are sparse, manned campaigns costly, and automated devices limited by

power consumption. Here, we address this issue by considering high-resolution in-

situ data from 18 bio-logging devices deployed on southern elephant seals

(Mirounga leonina) in the Kerguelen Islands between 2018 and 2020. These

devices have submesoscale-resolving capabilities of light profiles due to the high

spatio-temporal frequency of the animals’ dives (on average 1.1 +-0.6 km between

consecutive dives, up to 60 dives per day), but observations of fluorescence are

much coarser due to power constraints. Furthermore, the chlorophyll a

concentrations derived from the (uncalibrated) bio-logging devices’ fluorescence

sensors lack a common benchmark to properly qualify the data and allow

comparisons of observations. By proposing a method based on functional data

analysis, we show that a reliable predictor of chlorophyll a concentration can be

constructed from light profiles (14 686 in our study). The combined use of light

profiles and matchups with satellite ocean-color data enable effective (1)

homogenization then calibration of the bio-logging devices’ fluorescence data

and (2) filling of the spatial gaps in coarse-grained fluorescence sampling. The

developed method improves the spatial resolution of the chlorophyll a field

description from ~30 km to ~12 km. These results open the way to empirical

study of the coupling between physical forcing and biological response at

submesoscale in the Southern Ocean, especially useful in the context of

upcoming high-resolution ocean-circulation satellite missions.

KEYWORDS

Chla fluorescence, Southern Ocean, sensor calibration, submesoscale, southern
elephant seal, bio-logging tag
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1 Introduction

Primary producers are key elements in the structuring of

marine food webs and their distribution in the ocean largely

drives ecosystem dynamics (Lévy et al., 2018; Henley et al., 2020).

Primary production also plays a critical role in biogeochemical

cycles given its involvement in CO2 sequestration through the

process of the biological carbon pump (DeVries et al., 2012;

Siegel et al., 2014; Boyd et al., 2019). Resolving phytoplankton

distribution in the ocean is however a challenging issue due to the

extreme heterogeneity of environmental conditions and the short

time scales of events relative to phytoplankton growth. From the

mesoscale (O(100 km)) to the submesoscale (O(10 km)), the

oceanic landscape is shaped by dynamic processes such as

filaments or eddies which directly impact phytoplankton

distribution (Mahadevan, 2016; Lévy et al., 2018). Complex

shapes and high patchiness, observable from space with ocean-

color radiometry, result from these processes (d’Ovidio et al., 2010;

Lehahn et al., 2018), with consequences on the variability of the

associated biogeochemical processes (Resplandy et al., 2009).

Remote sensing of ocean-color enables monitoring of the

distribution of chlorophyll a (Chla hereafter), a proxy for

phytoplankton biomass, with the advantage of providing a synoptic

view of the processes occurring at the surface of the ocean. Yet the

reflectance signal upcoming from the ocean surface is subject to

obstruction by clouds or masking by sea ice (at high latitudes), which

requires coupling satellite data with in-situ sampling. Furthermore,

the critical need for collecting in-situ data is reinforced by the fact that

the vertical distribution of Chla escapes remote detection. Indeed,

ocean-color measurements are restricted to the near-surface. Satellite

observations consequently only include part of the productive layer

and omit potential subsurface features (e.g. deep chlorophyll maxima,

see Baldry et al., 2020; Cornec et al., 2021).

While the mesoscale is quite well covered by current satellite

observations of physical dynamics coupled with in-situ platforms

sampling biogeochemical variables (McGillicuddy, 2016), recent

missions like the Surface Water and Ocean Topography (SWOT)

mission enable access to spatial scales down to 15-30 km (Morrow

et al., 2019) but there is no in-situ counterpart to support the

remotely-sensed observations (d’Ovidio et al., 2019). Phytoplankton

distribution at submesoscale is hence inadequately resolved due to the

gap between satellite observations and in-situ data.

One region where an enhanced submesoscale observation of

phytoplankton distribution would be particularly valuable is the

Southern Ocean (SO). Considered as a main contributor to global

air-sea CO2 exchange (Ardyna et al., 2017; Bushinsky et al., 2019; De

Vries et al., 2019), the SO hosts a large variety of ecosystems, from

unicellular organisms up to charismatic megafauna, that rely greatly

on ocean biogeochemistry (Deppeler and Davidson, 2017; Henley

et al., 2020). In addition to displaying marked seasonal and regional

features (Blain et al., 2008; Deppeler and Davidson, 2017), the spatio-

temporal variability of phytoplankton concentration in the SO is

subject to the heavy structuring effect of the (sub)mesoscale (Bachman

et al., 2017) and is strongly influenced by sub-seasonal forcings (Prend

et al., 2022). Monitoring the distribution of phytoplankton at such

short spatial and temporal scales is therefore crucial. However the
Frontiers in Marine Science 02
monitoring of primary production in the SO through in-situ sampling

by research vessels is highly limited by harsh meteorological

conditions and by the presence of sea ice. In addition, satellite-based

observations in the SO are frequently restricted by cloud coverage. As

a result, despite the preeminent position of the SO in the Earth’s

climate system and ecosystem functioning, it remains undersampled

compared to other ocean basins.

The limitations associated with research vessel-based sampling

in the SO lead to opting for autonomous measuring platforms like

AUVs (Autonomous Underwater Vehicles). However, both the

large extent and the remoteness of the zone highly constrain any

AUV deployment and recovery. Nonetheless, large efforts have been

made in the past two decades to increase the number of

autonomous platforms monitoring the SO through the

measurement of biogeochemical variables (Chai et al., 2020).

While Biogeochemical-Argo (BGC-Argo) floats enable the

sampling of a region over several years (Claustre et al., 2020),

gliders (Testor et al., 2019) and marine mammals equipped with

bio-logging devices (Blain et al., 2013; Guinet et al., 2013; Treasure

et al., 2017) are more suitable for the observation of short-lived

(sub)mesoscale processes. Gliders are indisputably a powerful tool

for characterizing phytoplankton distribution at these scales due to

the high spatio-temporal density they can achieve in the sampling

(0.5–6 km, 0.5–6 h between 2 vertical profiles, Rudnick et al., 2016;

Testor et al., 2019). However, despite some examples of successful

glider deployments in the SO providing an insight into

phytoplankton distribution at high resolution (e.g. Kahl et al.,

2010), high-frequency data remain rare in the SO because of the

deployment constraints mentioned above. By comparison, bio-

logging devices mounted on deep-diving animals such as

southern elephant seals (Mirounga leonina, SES hereafter) offer

the possibility of acquiring as many as 60 profiles per day at depths

regularly exceeding 500 m (Siegelman et al., 2019b). Bio-logging

devices hence have the potential to address the (sub)mesoscale

sampling issue in zones as remote and turbulent as the SO.

The Satellite Relayed Data Logger (SRDL, see Boehme et al.,

2009) developed by the Sea Mammal Research Unit (SMRU, UK) is

a bio-logging device designed for marine mammals like the SES.

SRDLs commonly include a Conductivity, Temperature and Depth

(CTD) sensor head. Optionally, SRDLs may include a light sensor,

and a fluorometer to measure Chla fluorescence (Fluo hereafter).

SRDLs can also act as high-frequency sampling loggers which need

to be recovered when the SESs are back ashore in order to obtain

access to the data. The present study focuses on SRDLs (referred to

as “tags” hereafter) measuring light (L hereafter) and Fluo.

Although High Pressure Liquid Chromatography (HPLC) is the

reference technique for accurate Chla concentration estimates

([Chla], mg.m-3) (Wright et al., 1991; Ras et al., 2008), it requires

the collection of water samples whereas fluorometers provide a real-

time estimate of in-situ [Chla]. Due to their ease of use and the

relative simplicity of their integration, fluorescence-based sensors

have recently been largely implemented in autonomous platforms.

As a consequence, Fluo has become a universal standard variable for

the estimate of [Chla]. The measurement of Fluo is based on the

optical properties of the Chla photosynthetic pigments present in

the sampled water volume (Lorenzen, 1966; Huot and Babin, 2010;
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Roesler and Barnard, 2013). Fluo is at first order proportional to

[Chla]. However, more precise examinations of the Fluo signal

reveal that the relationship between the observed fluorescence and

the actual phytoplankton biomass can vary according to

phytoplankton community composition, physiological factors or

light conditions (Serôdio and Lavaud, 2011; Xing et al., 2012;

Roesler et al., 2017; Schallenberg et al., 2022). Fluo is hence an

imperfect proxy which does not straightforwardly reflect

phytoplankton concentration, but remains to date the best means

to obtain widespread estimates of in-situ [Chla].

Previous studies have already shown that Fluo data quality can

be enhanced by the use of concomitant radiometric measurements,

and vice versa (Morel and Maritorena, 2001; Morel et al., 2007; Xing

et al., 2011). These methods rely on the hypothesis that light

absorption in the water column is mainly due to the presence of

phytoplankton. Such a hypothesis is commonly made for oceanic

waters with no direct terrestrial influence, classified as “case 1”

waters (Morel and Prieur, 1977; Morel, 1988). Based on the same

hypothesis but more specifically for inference purposes in the

framework of functional data analysis, it has been proved that the

vertical diffuse attenuation coefficient for L (KL hereafter) can be a

good predictor for Fluo (Bayle et al., 2015). In the present study we

propose to exploit the predictive capabilities of a linear functional

model (LFM) similar to the one described by Bayle et al. (2015)

(who limited their analysis to the inference of low resolution Fluo

data) to adjust the (uncalibrated) Fluo data provided by multiple

tags (18 in our study). The tags’ intercalibration does not resolve the

issue of the absolute Fluo to [Chla] conversion. Consequently,

following the merging of all the intercalibrated tags, we have

selected [Chla] estimated by ocean-color radiometry as the

benchmark to carry out absolute Fluo calibration.

Another key issue regarding Fluo measurements in the context

of bio-logging is related to energy consumption. Not only is energy

consumption a major concern for autonomous platforms in general

but Fluo measurements are also particularly energy-demanding as

they rely on an active optical sensor. The issue is especially critical

for bio-logging tags due to the reduced size of such loggers and

therefore the highly limited volume of their batteries. A trade-off

between the vertical and temporal resolutions of the acquisitions is
Frontiers in Marine Science 03
necessary to best optimize battery lifetime. As a consequence,

despite the high sampling resolution of the tags enabled by SES

diving behavior (up to ~60 dives per day), suitable for the

observation of submesoscale processes, the spatial resolution of

the SRDL’s Fluo measurements was reduced (~4 profiles per day)

and becomes insufficient for a proper description of phytopankton

distribution at that scale. To address this observation gap, a LFM

was designed to infer [Chla] from KL and increase the resolution of

the [Chla] field description towards the submesoscale.

To summarize, the method developed in the present study aims

at enhancing the quality of the [Chla] estimates provided by a set of

multiple SRDLs in terms of accuracy and horizontal resolution

through the use of KL derived from vertical light profiles, combined

with satellite estimates of [Chla]. The objective of the present study

is to propose and to validate a method based on bio-logging SRDL

data to retrieve (1) a calibrated measurement of in-situ [Chla] (2) at

submesoscale (O(10 km)). The main steps of the method described

in the present study are summarized in Figure 1. An application of

the method is presented with the data from two tags deployed in the

Kerguelen Islands region.
2 Material and methods

2.1 Tag data

The present analysis is based on the data from 18 tags deployed

on female SESs in the Kerguelen Islands region. The study area is

located in the Indian sector of the SO and extends from 43°S to 62°S

and from 35°E to 101°E. The 18 tags were deployed during the SESs’

post-breeding foraging trip, which occurs from October of yearN to

January of year N + 1. In the present study, post-breeding

deployments from years 2018 to 2020 were analyzed, totaling 89

197 vertical profiles (for detailed metadata per tag, see

supplementary material, Table S1).

The tags were glued on the fur of the SESs’ head using a two

component industrial epoxy (see McMahon et al., 2008; Boehme

et al., 2009 for animal capture and tag attachment details). After

their post-breeding foraging trip, the female SESs were located,
FIGURE 1

Flowchart summarizing the main steps of the method described in the present study. The method aims at enhancing the quality of the in-situ [Chla]
estimates provided by a set of multiple bio-logging devices (SRDLs) in terms of accuracy and horizontal resolution. Based on SRDL data (Fluo and L
in-situ measurements, blue boxes) combined with concomitant satellite estimates of [Chla] ([ChlaSat], purple box), the method firstly enables the
constitution of calibrated datasets of in-situ [Chla] estimates ([ChlaFluo], green box). The method then extends the description of the [Chla] field to
(sub)mesoscale ([ChlaLFM], gray box) through the use of KL as a predictor for [Chla].
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recaptured and the tags were retrieved. The tags measure and record

pressure (dbar), temperature (°C), salinity (dimensionless), L (mmol

quanta.m-2.s-1) and Fluo (mg.m-3) at 0.5 Hz (note that the different

variables used in this study and their associated symbols, definitions

and units are detailed in Table 1). The tags’ sensor data were

continuously sampled during the SESs’ trip, with the exception of

the Fluo sensor, which was intermittently switched off to save

battery power (see details in Section 2.2.3). The archived time

series were processed to produce only one vertical profile per

dive, corresponding to the ascent phase of the dive, starting from

the deepest part of the dive (down to ~1000 m depth), up to the

surface. The SRDL data were interpolated at 1 m resolution. The

vertical resolution of 1 m is consistent with the sampling rate of the

tags (0.5 Hz) and the vertical speed of the SES during the ascent

(~1.5 m.s-1, see Richard et al., 2014; McGovern et al., 2019).

For each surfacing phase (i.e. each time the animal emerges to

breathe), when available, the location of the animal was recorded,

using by default the Argos satellite system, operated by Collecte

Localisation Satellites (CLS). When no positioning was transmitted,

the location was a posteriori estimated by linearly interpolating the

trajectory of the animal. During the interpolation process, the

horizontal speed of the animal was taken into account to ensure

the spatio-temporal coherency of the location data. Ten of the

studied SESs were also equipped with a biometric sonar and

movement tag (DTAG). The DTAG placed on the animal’s head

picks up the GPS position using the Snapshot GPS acquisition

algorithm (Goulet et al., 2019) and enables a more accurate GPS

positioning of the profiles than with the Argos system. The

positioning accuracy is 2-3 km for Argos, ~50 m for GPS (see

Dragon et al., 2012; Irvine et al., 2020).

To avoid the influence of coastal waters and specifically focus on

open-ocean so-called case 1 waters (Morel and Prieur, 1977; Morel,

1988), only profiles for which the seabed was deeper than -1 500 m

were kept. The ocean bathymetry data was based on ETOPO1 1

Arc-Minute Global Relief Model data from NOAA National

Centers for Environmental Information and downloaded from

https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/data/.

Following the filtering of the profiles according to the bathymetry

criterion, the analysis included 63 791 light profiles and 4 404 Fluo

profiles (see Table 2 for a summary of the number of

selected profiles).
2.2 Data processing

2.2.1 Light profiles and derived quantities
The light sensor embedded in the SRDL is a Hamamatsu S1227-

1010BR photodiode (340-1000 nm spectral response range, 100

mm2 effective photosensitive area). The photodiode points to the

right side of the animal with a 90° angle compared to the frontward

axis of the animal. The SRDL light sensor provides an estimate of

the diffused light level in the animal’s environment (L, expressed in

mmol quanta.m-2.s-1). The vertical profiles of light ranged from the

maximum diving depth of the animal up to the surface. The
Frontiers in Marine Science 04
TABLE 1 Acronyms, definitions and units.

Symbol Explicit description unit

BGC Biogeochemical

Chla Chlorophyll a

[Chla] Chlorophyll a concentration mg.m-3

[ChlaFluo] [Chla] derived from fluorescence measurement,
satellite-corrected

mg.m-3

[ChlaLFM] LFM prediction of [ChlaFluo] mg.m-3

[ChlaSat] [Chla] derived from satellite measurement mg.m-3

CTD Conductivity, Temperature, Depth

darkFluo Fluorescence dark signal mg.m-3

darkKL Vertical diffuse attenuation coefficient for the dark
signal of L

m-1

[FFluo] Smoothed, dark- and NPQ-corrected signal of Fluo mg.m-3

[F] LFM-calibrated signal of [FFluo] mg.m-3

[FLFM] LFM prediction of [FFluo] mg.m-3

Fluo Chla fluorescence mg.m-3

G LFM
e LFM-derived Fluo calibration coefficient for tag e

G Sat Satellite-derived Fluo calibration coefficient

HPLC High Pressure Liquid Chromatography

KL Vertical diffuse attenuation coefficient for L m-1

L Light mmol
quanta.m-

2.s-1

LFM Linear Functional Model

NPQ Non-Photochemical Quenching

S Salinity

SES Southern Elephant Seal

SO Southern Ocean

SRDL Satellite Relayed Data Logger

SWOT Surface Water and Ocean Topography

T Temperature °C

<V> Water-column integrated content of variable V,
calculated from z=Zinf to the surface (z=0)

mg.m-2

V(z) Value of variable V at depth z mg.m-3

Vmax Maximum value of variable V between z=Zinf and
the surface (z=0)

mg.m-3

Vsurf Surface value of variable V, computed as the mean
between z=Zpd and the surface (z=0)

mg.m-3

Zeu Euphotic Depth m

ZFluo
max

Depth of the maximum value of [ChlaFluo] m

Zinf Deeper bound of the LFM predictions m

ZLFM
max Depth of the maximum value of [ChlaLFM] m

(Continued)
fro
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processing steps of the raw vertical profiles of light include (for

detailed description of the processing steps and graphical support,

see supplementary material, Text S1 and Figure S1): detection of the

dark depth; dark-offset correction; removal of saturated values at

the surface; application of a piecewise cubic polynomial fit. The

applied piecewise polynomial fit is constrained, so that L

monotonously decreases with depth. The vertical diffuse

attenuation coefficient for L (KL, m
-1) was derived from the

processed light profiles. Vertical profiles of KL were defined with

the same vertical resolution as light profiles (i.e. 1 m) and computed

as follows:

KL(z) =
d
dz

(log(L(z))) (1)

where z refers to the depth of the measurement.

The present analysis focuses on daylight periods only.

According to the location and time of each profile, the solar angle

was computed and only light profiles with positive solar angle (i.e.

above the horizon) were retained. Profiles with no location available

(23%) were still examined to recover the day/night information

from the mean surface values of L. This was enabled by the

significant difference observed in the mean surface values of L

between day (35 mmol quanta.m-2.s-1 +-14) and night (0.65 mmol

quanta.m-2.s-1 +-3.7). As a result, 39 395 day profiles (62%) were

retained after the filtering of the light profiles based on the daylight

period criterion (see Table 2).

Following the processing of the raw light profiles, the euphotic

depth (Zeu) and the penetration depth (Zpd) were computed. Zeu is

defined as the depth at which L is reduced to 1% of its value just

below the surface. Zeu was only computed for light profiles with no

sensor saturation in the surface layer. Zpd (also called first optical

depth) characterizes the thickness of the superficial layer of the

ocean “seen” by satellites and was defined as Zeu/4.6 (Gordon and

McCluney, 1975; Morel, 1988).
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2.2.2 Temperature, salinity and mixed layer depth
SRDLs carry a Conductivity, Temperature and Depth (CTD)

sensor head. Temperature (T) and salinity (S) profiles, defined from

the maximum diving depth of the animal up to the ocean surface,

were quality controlled and corrected to prevent density inversions

according to the algorithm proposed in Siegelman et al. (2019b).

Density profiles were computed based on temperature and salinity

profiles. The mixed layer depth (ZMLD) was computed using a

density threshold of 0.03 kg.m-3 with respect to a near-surface value

at 10 m depth (de Boyer Montégut, 2004).
2.2.3 Fluorescence profiles and
derived quantities

SRDLs also include a fluorometer (Valeport Hyperion 470 nm/

696 nm emission/reception) that sample Fluo at 0.5 Hz. However,

to optimize tags’s energy consumption, their Fluo sampling

resolution was reduced so that the onset of the fluorescence

sensor was triggered only every ~15 dives and Fluo was only

sampled during the ascending phase of the dives from Zinf = 200

m to the surface. Accordingly, the SRDLs performed around four

fluorescence profiles every 24 hours. The processing steps of the raw

vertical profiles of Fluo include (for detailed description of the

processing steps and graphical support, see supplementary material,

Text S2 and Figure S2): dark-offset correction; Non-Photochemical

Quenching (NPQ) correction; spikes smoothing with a piecewise

cubic polynomial fit. Finally, the smoothed, dark- and NPQ-

corrected Fluo data (hereafter denoted [FFluo]) were converted

into [Chla]. The actual Chla concentration derived from [FFluo]

([ChlaFluo] hereafter), was obtained by applying a calibration

coefficient to the [FFluo] data. A specific calibration coefficient was

computed for each tag, based on both KL and the comparison of in-

situ data with concomitant satellite-based [Chla] observations (see

details in Section 2.4).

A series of metrics was computed from the vertical profiles of

[ChlaFluo]. Defined for each profile, the metrics were (see Figure 2):

- <ChlaFluo>, the water-column integrated value of [ChlaFluo]

defined as

〈ChlaFluo 〉 =
Z 0

Zinf

½ChlaFluo�(z)dz (2)

- [ChlaFluo]max, the maximum value of [ChlaFluo]

- ZFluo
max , the depth where [ChlaFluo] (z) = [ChlaFluo]max,

- [ChlaFluo]surf, the surface value of [Chla
Fluo] defined as

½ChlaFluo�surf = ½ChlaFluo� 0⩽z⩽Zpd
(3)

Additionally, the percentage of Chla within the mixed layer was

defined as

〈ChlaFluo 〉%ML =
100

〈ChlaFluo 〉
 
Z 0

ZMLD

½ChlaFluo�(z)dz (4)

When relevant, the same metrics were computed for any other

variable defined on the vertical in the present study (e.g. [FFluo])

with the same notations.
TABLE 1 Continued

Symbol Explicit description unit

ZMLD Mixed Layer Depth m

ZNPQ “NPQ-layer” depth m

Zpd Penetration Depth m

Zsup Shallower bound of the LFM predictions m
TABLE 2 Dataset selection criteria and number of selected PAR profiles.

Filtering criterion Number of profiles

All profiles 89 197

Bathymetry > 1 500 m 63 791

Day profiles 39 595

Depth interval ([Zinf; Zsup]) 14 686

Concomitant L + Fluo 1387
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2.3 Linear Functional Model principle

The Linear Functional Model (LFM) developed in the present

study is a statistical model based on Functional Data Analysis

(Ramsay and Silverman, 1997). The LFM was used as an

inference tool to predict [Chla] from KL. The model is

constructed from a statistical sample composed of concomitant

vertical profiles of KL (predictor) and [Chla] (observations),

following the method described in Bayle et al. (2015). With the

statistical sample at hand, the LFM is designed to minimize the

error between model predictions and observations. The functional

approach, by handling the vertical profiles as functional variables

(i.e. curves), presents the advantage of integrating the shape of the

profiles in the analysis (for detailed information about the

construction of the model, see Bayle et al. , 2015 and

supplementary material, Text S4 and Figures S4-S5).

The statistical sample was composed of vertical profiles

continuously defined on a depth interval ranging at least from

Zsup = 5 m to Zinf = 200 m. The predicted profiles were defined on

the same depth interval. The main limiting factor for the

determination of Zsup was the recurrent saturation of the light

sensor at the surface (39% of the light profiles were saturated down

to at least 5 m depth, see Table 2 and supplementary material,

Figure S1). The choice of Zinf was determined by the maximum
Frontiers in Marine Science 06
depth of the Fluo measurements. For a proper interpretation of the

results, the values in the upper 0-5 m layer of the predicted profiles

were extrapolated from z = Zsup to the surface with their value at z =

Zsup. [F
Fluo] and [ChlaFluo] values issued from Fluo measurements

in the 0-Zsup layer, meanwhile, were generally available. Following

the filtering of the profiles based on the depth-interval criterion, the

dataset contains 14 686 light profiles (from which KL is derived, see

equation 1), which includes 1 387 concomitant L and Fluo (i.e.

[FFluo] or [ChlaFluo]) profiles. The number of L profiles following

the application of the successive selection criteria is summarized

in Table 2.

In the present study, the LFM approach was used to predict

either [FFluo] or [ChlaFluo] from KL, with different objectives,

described hereafter (see Sections 2.4 and 2.5).
2.4 Fluo calibration

The calibration procedure applied to the in-situ [FFluo] data

aims at ensuring (1) the interoperability of the tags through the

intercalibration of the Fluo sensors and (2) the consistency of the

outputs of the model developed in the present study in terms of

absolute values of in-situ [Chla] compared to satellite estimates.

Thi s two-s tep sequence i s descr ibed herea f t e r ( see

flowchart, Figure 1).

Step 1: LFM-based (relative) calibration

The predictive capabilities of the LFM approach were first

exploited to intercalibrate the Fluo sensors. The LFM-based

intercalibration step consists in predicting [FFluo] from KL with a

model that merges observations from all the tags. The predicted

variable is hereafter denoted [FLFM]. Within this step, the focus is

not on the reconstruction of vertical profiles of [FFluo] but the

intended goal is to examine and quantify the relative biases between

the Fluo sensors. Consequently, rather than retrieving the

parametric definition of the KL-to-[F
Fluo] functional relationship,

the comparison between <FLFM> (predictions) and <FFluo>

(observations) enables derivation of a correction factor, proper to

each tag, that addresses inter-tag variability, with KL as a common

benchmark. The choice of <FLFM> (i.e. indirectly, KL) as the

reference variable for Fluo intercalibration is discussed further

(see Section 4.1). The [FFluo] data of Tag e were re-calibrated with

the correction factor G LFM
e so that

< F >= G LFM
e : < FFluo > (5)

where <F> is the re-calibrated <FFluo> data and e refers to the tag

number (see list of tags by tag number in supplementary material,

Table S1).

In practical terms, the coefficient G LFM
e (unitless) is the slope of

the linear regression between the values of <FFluo> and the

corresponding predicted values of <FLFM> for Tag e. To compute

the G LFM
e coefficients, the sample of concomitant [FFluo] and KL

observations was merged and randomly split into two subsets: 70% of

the profiles were used to construct the LFM (970 profiles). The

remaining 30% (417 profiles) were used to evaluate the G LFM
e

coefficients. The sample used to evaluate the G LFM
e coefficients was

hence independent from the statistical sample used to construct the
FIGURE 2

Graphical representation of the metrics defined on a vertical profile

of [ChlaFluo]: <ChlaFluo>, [ChlaFluo]max, Z
Fluo
max , [Chla

Fluo]surf (see Section
2.2.3). The solid green line represents the [ChlaFluo] data (for detailed
information about the Fluo data processing, see Section 2.2.3 and
supplementary material, Text S2 and Figure S2). The gray area
represents <ChlaFluo>, the vertically-integrated amount of Chla. The
dashed blue line represents ZMLD. The dashed area materializes
<ChlaFluo>%ML, the proportion of <ChlaFluo> located above ZMLD. The
red dotted line represents the corresponding predicted [ChlaLFM]
profile (see Section 2.5). When necessary, the metrics were
identically computed on the vertical profiles of [FFluo], [F], [FLFM] and
[ChlaLFM].
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model. A bootstrap procedure was performed to gain robustness in

the determination of the calibration coefficients: the LFM-based

calibration was repeated one thousand times with a different

random sampling at each iteration. At each iteration, a G LFM
e

calibration coefficient was calculated. Finally, the G LFM
e calibration

coefficient retained for Tag e corresponds to the median value of the

G LFM
e coefficients iteratively calculated for Tag e.

Step 2: Satellite-based (absolute) calibration

In a second phase of the calibration procedure, a single

calibration factor G Sat common to all tags was computed. G Sat

was based on ocean-color data as a benchmark to convert [F] into

[ChlaFluo]. Surface measurements of in-situ [F] ([F]surf) of all the

tags were merged and compared to the corresponding satellite-

derived estimates of surface [Chla] ([ChlaSat]surf).

Matchups between satellite and in-situ data were performed

following the procedure described in Bailey and Werdell (2006)

using normalized satellite remote sensing reflectance (Rrs) daily

Level-3 (L3) products frommultiple sensors, with a 4 km resolution.

The use of more stringent matchup protocols improves the quality

of the matchup exercise (Concha et al., 2021), but critically

decreases the number of matchups (Haëntjens et al., 2017; Xi

et al., 2020; Terrats et al., 2020), especially in the SO where cloud

cover is a strong limiting factor. The narrow time window defined

in Bailey andWerdell (2006) (+-3 h) was widened to a 24-hour time

window (corresponding to the maximum temporal resolution of L3

ocean-color products). Haëntjens et al. (2017) show that expanding

the temporal window from +-3 h to a 24-hour window increases the

number of matchups, without significantly impacting the quality of

the matchups. Accordingly, the matchup protocol used in the

present study was based on the averaged data of a 3 x 3 pixel box

centered on in-situ measurement with a 1-day time window.

Satellite-derived estimates of surface [Chla] were obtained from

the Copernicus Marine Service’s GlobColour data archive (http://

www.globcolour.info/). The coefficient G Sat was defined as the slope

of the linear regression between [F]surf and [ChlaSat]surf. Finally, the

satellite-corrected data [ChlaFluo] was defined as follows

½ChlaFluo� = G Sat :½F� (6)
2.5 [Chla] prediction

Following the calibration procedure described in the previous

section, the LFM approach was applied for inference purposes. A new

LFM was designed to infer [ChlaFluo] from KL. Being constructed

with [ChlaFluo] profiles, the resulting LFM model hence inherently

contains the calibration of the [FFluo] data (i.e. G LFM
e and G Sat

coefficients). The output variable is denoted [ChlaLFM] (see

flowchart, Figure 1). The objective of the prediction phase is to

increase the spatial resolution of the [ChlaFluo] field description with

[ChlaLFM]. The prediction is made on the basis of the 14 686 available

light profiles (see Table 2). Prior to the retrieval of the [ChlaFluo] field

at (sub)mesoscale, the performance of the LFM was assessed.

Performance assessment

The sample of concomitant [ChlaFluo] and KL observations was

likewise randomly split into two subsets: 70% of the profiles for the
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construction of the LFM (970 profiles) and 30% to assess the

performance of the LFM (validation sample, 417 profiles).

Assessments regarding LFM prediction error and model

performance were carried out on the validation sample by

comparing the metrics previously defined for [ChlaFluo] (see

Section 2.2.3) with the same metrics derived from the predicted

[ChlaLFM] profiles, namely <ChlaLFM>, [ChlaLFM]surf, [Chla
LFM]max,

and ZLFM
max .

(Sub)mesoscale prediction

Following the assessment of the model itself via the analysis

performed on the validation sample, the LFM was constructed with

the entire sample of concomitant [ChlaFluo] and KL profiles (1 387

profiles, see Table 2). Subsequently, a prediction exercise was

carried out with the 14 686 available KL profiles (i.e. including KL

profiles which were not associated with any [ChlaFluo] data). The

aim of the prediction exercise is to predict [Chla] at (sub)mesoscale.
2.6 Spectrum analysis

To further assess the improvement brought by the LFM in terms of

spatial resolution, the variance spectra of the tags signals were analyzed.

For a surface tracer measured with variable V (e.g. <ChlaFluo>), the

variance spectrum is calculated as the Fourier transform of the squared

spatial anomaly of V. As a result, the power spectrum for variable V

along the trajectory of an equipped animal depicts the energy of the

signal as a function of the spatial frequency in the horizontal plane

defined by the ocean surface. The variable on the horizontal axis of the

computed power spectra is called wave number (m-1). Increasing wave

numbers correspond to smaller spatial scales.

In the present study, the variance spectra of <ChlaFluo> and

<ChlaLFM> were computed for each tag and compared. An

additional variable (hereafter denoted darkKL) was included in the

spectrum analysis, defined as the vertical diffuse attenuation

coefficient for L, restricted only to the dark signal of L (see

Section 2.2.1 and supplementary material, Text S1 and Figure S1).

For each profile, darkKL corresponds to the mean vertical diffuse

attenuation coefficient for L (i.e. the derivative of the log-

transformed light profile) from the dark depth to the bottom of

the dive. While darkKL contains no useful information for the

inference of <Chla>, it was included in the spectrum analysis as a

benchmark in terms of spectral behavior. Since darkKL is computed

from dark noise, the corresponding power spectrum theoretically

depicts the behavior of pure instrumental noise. The comparison

with darkKL offers a means to determine if the observed tracers

(<ChlaFluo> or <ChlaLFM>) indeed contain useful signals and depict

coherent structures, or conversely, behave like noise.
3 Results

3.1 Calibration

Step 1: LFM-based tag intercalibration

The LFM-based tag intercalibration was performed based on

the comparison of <FFluo> and <FLFM> for the validation
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sample. The calibration coefficients were obtained after one

thousand iterations of the LFM-based calibration procedure

(see Section 2.4). An illustration of one iteration is presented

in Figure 3. Graphical examination of the residuals reveals that

they are organized and persistent for a given tag, thus

confirming the relevance of the intercalibration method. G LFM
e

values ranged from 0.29 for Tag 2 to 1.55 for Tag 17 (see

complete list of G LFM
e values in supplementary material, Table

S2). Small samples have the highest variability because they are

not always well represented with the random sampling.

Essentially, gaining robustness in the determination of the

coefficient is the reason for performing a bootstrap procedure

with one thousand iterations of the random sampling. The

LFM-based calibration procedure enables computing of the

[F] data, which ensures the interoperability of all the tags.
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Step 2: Satellite-based calibration

The satellite-based calibration procedure was performed after

the inter-tag calibration and by merging the [F] data of all the tags.

The merging of the tags after the intercalibration step strengthens

the power of the satellite-based calibration. Among the 5 791 [F]

profiles available, 1 332 successful matchups (23%) were achieved

(Figure 4). G Sat = 5.9 was obtained from the slope of the linear

regression between [F]surf and [ChlaSat]surf. The regression had a

satisfactory significance level (F-test, p-value < 10-15).

3.2 LFM assessment

Following the conversion of the homogenized variable [F] into

[ChlaFluo] with the G Sat correction factor (equation 6), a new LFM

model was constructed on the basis of concomitant [ChlaFluo] and
A

B

FIGURE 3

Comparison between <FFluo> and <FLFM > (A) before the LFM-based intercalibration step (B) after the LFM-based intercalibration step. Three tags are
highlighted (red triangle, green dots and blue squares, for tags 8, 15 and 17, respectively). Data from all other tags are displayed by gray dots. The
black dashed line represents the 1:1 reference line.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1122822
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Le Ster et al. 10.3389/fmars.2023.1122822
KL profiles, with [ChlaLFM] as the output variable. For assessment

purposes, the statistical sample of 1 387 concomitant [ChlaFluo] and

KL profiles was randomly split (see Section 2.5), so that the LFM was

constructed with 70% of the statistical sample and assessed with the

remaining 30% (validation sample). The performance of the model

was assessed on the validation sample through examination of the

metrics defined in Section 2.2.3 (see Figure 2), for both [ChlaFluo]

and [ChlaLFM] (Figures 5A-D).

<Chla>

The predicted <ChlaLFM> differs very little from the targeted

<ChlaFluo> (on average 0.9% +- 21.1). Within a factor G Sat , the

performance of the model in predicting <ChlaFluo> both in terms of

accuracy and precision is exemplified in Figure 3. The sound

agreement between <FFluo> and <FLFM> observed in the

intercalibration phase firstly confirms the inference capabilities of

the model in terms of accuracy (Figure 3A). Additionally, by

correcting the inter-tag variability, the LFM-based calibration

procedure (equation 5) inherently increases the precision of the

predictions regarding the estimation of the water-column

integrated Chla biomass (Figure 3B). Finally, no further change in

terms of accuracy and precision is implied by applying the G Sat factor,

common to all tags, to obtain [ChlaFluo] from [F] (equation 6).

<Chla>%ML

The distribution of the Chla biomass in the vertical is further

investigated with the variable <Chla>%ML. <Chla>%ML represents

the ratio between the Chla content in the 0-ZMLD layer and the total

Chla content in the water column (<Chla>). The slope of the linear

regression between <ChlaLFM>%ML and <ChlaFluo>%ML reveals that
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the model renders, with a satisfactory preciseness, the proportion of

the vertically-integrated Chla amount located above and below

ZMLD (slope = 0.92, R2 = 0.89). On average, the LFM

underestimates <Chla>%ML by only 4.8% (+-7.2).

[Chla]surf, [Chla]max and Zmax

The ability of the model to retrieve the exact vertical

distribution of Chla is examined with variables [Chla]surf, [Chla]

max and Zmax. [Chla
LFM]surf and [ChlaLFM]max are compliant with

the corresponding observations of [ChlaFluo]surf and [ChlaFluo]max,

although slightly underestimated (Figures 5B,C). The retrieval of

Zmax (Figure 5D) is however not satisfying and in some way reveals

the limits of the LFM. The poor correlation between ZFluo
max and ZLFM

max

highlights the weak accuracy of the LFM for retrieving the exact

vertical structure of the [Chla] profile.

These results of the model assessment lead to the conclusion

that the LFM performs quite well in detecting the amount of Chla in

a given profile. The rough vertical distribution of [Chla] in relation

to the location of ZMLD is also well achieved by the model. However

metrics on the vertical such as Zmax are not accurately rendered and

present high variability.
3.3 Validation with satellite data

Following the assessment of the LFM performance, the model

was constructed with all available profiles of [ChlaFluo] and KL (1

387 profiles, see Table 2). A prediction exercise was then carried out

with all the available KL profiles (derived from the 14 686

light profiles).

The validity of the LFM predictions was tested through

examination of the satellite matchups corresponding to the

predicted [ChlaLFM] profiles (see Section 2.4 for the matchup

procedure), i.e. by comparing [ChlaLFM]surf with the co-located

[ChlaSat]surf estimates. In total, 3 320 successful matchups were

achieved (23%). As a direct consequence of the calibration

procedure previously performed on the [FFluo] data (see Section

3.2), the slope factor of the linear regression of [ChlaLFM]surf with

[ChlaSat]surf (slope = 1.01) confirms the consistency of the model

outputs in relation to satellite-derived estimates of [Chla] (Figure 6).

The compliance of the predicted values with the corresponding

[ChlaSat]surf estimates validates the LFM predictions. However, a

clear divergence is noticeable for low values of [ChlaLFM]surf
([ChlaLFM]surf < 0.1 mg.m-3). To further investigate the validity of

the low values of [ChlaLFM]surf, the available concomitant values of

[ChlaFluo]surf were examined and compared to [ChlaSat]surf (the 14 686

KL profiles of the prediction exercise include the sample of

concomitant [ChlaFluo] and KL profiles, i.e. 1 387 [ChlaLFM] profiles

with an available concomitant value of [ChlaFluo]). The comparison of

[ChlaFluo]surf values with the corresponding [ChlaSat]surf estimates (N

= 329 successful matchups), also represented in Figure 6, reveals a

similar divergence to that observed for [ChlaLFM] below ~ 0.1 mg.m-3.

The difference between low values of [ChlaLFM]surf and the

corresponding [ChlaSat]surf estimates is therefore attributable to the

discrepancy between in-situ and satellite measurements of [Chla]

(discussed further, see Sections 4.2 and 4.3.2) rather than to a model
frontiersin.or
FIGURE 4

Illustration of the second step of the [FFluo] data calibration (see
Section 2.4). Estimates of surface [Chla] derived from intercalibrated
[F] data ([F]surf) compared to satellite estimates of surface [Chla]
([ChlaSat]surf). The black circles represent the sample points (in total:
1 332 matchups are displayed) and the black line materializes the
linear regression of all the sample points (slope = 5.95; R2 = 0.45; N
= 1 332 matchups).
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deviation. Low values of [ChlaLFM]surf are hence valid in the sense that

they match with the targeted [ChlaFluo]surf.
3.4 Application: (sub)mesoscale retrieval

3.4.1 Transect of a SES equipped in Kerguelen
A subset of the SES dataset corresponding to a single individual

transect (Tag 3) is shown in Figure 7. The transect is 5 746 km long

and covers 70 days at sea, between 25-Oct-2019 and 02-Jan-2020

(Figure 7A). The transect comprises 234 profiles of [ChlaFluo] and

879 light profiles. One notable detail regarding the transect of Tag 3

is the malfunctioning of the fluorescence sensor during a certain

period of the deployment. As a consequence, no Fluo data were

available for the time interval extending from 09-Nov-2019 to 02-

Dec-2019 (over the same period, 342 T, S and light profiles were

sampled by the SRDL).

The comparison of <ChlaFluo> and <ChlaLFM> along the

animal’s trajectory clearly reveals that the <Chla> signal is well
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captured by the model. KL-based LFM predictions faithfully

reproduce [ChlaFluo] observations at water-column level.

Additionally, as previously observed when merging all the tags

(Figure 6) the general strong correlation between [ChlaSat]surf and

[ChlaLFM]surf (Figure 7B) confirms the validity of the LFM

predictions. [ChlaLFM] data are especially valuable during the

period for which no Fluo data were available due to the

malfunctioning of the fluorescence sensor: the missing block (23-

days long) of [ChlaFluo] data was retrieved thanks to the [ChlaLFM]

predictions. Inversely, [ChlaFluo] estimates are available at night

when no [ChlaLFM] profiles could be derived from variable L (see

inset in Figure 7C). Both situations emphasize the complementary

assets of [ChlaFluo] and [ChlaLFM] estimates. Due to the fact that

<ChlaLFM> estimates are available at a higher spatial resolution than

that of <ChlaFluo> (see inset in Figure 7C) during daylight periods,

LFM predictions performed between two consecutive [ChlaFluo]

profiles enable the scale of the observations to be refined. The gain

relative to the spatial resolution of <ChlaLFM> estimates compared

to <ChlaFluo> is examined hereafter.
A B

C D

FIGURE 5

Assessment of the LFM performance on the validation sample. Values in the horizontal axis are metrics derived from the observations ([Chlafluo]).
Values in the vertical axis are metrics derived from the predictions ([ChlaLFM]). The metrics examined to assess the performance of the LFM are
(A) [ChlaFluo]%ML, the percentage of Chla in the mixed layer (B) the surface value of [Chla], [ChlaFluo]surf (C) the maximum value of [Chla], [ChlaFluo]max

and (D) ZFluo
max , the depth of the maximum value of [Chla]. The dashed black lines in each plot represent the 1:1 reference line. The metrics (R2, slope)

associated with the linear regression performed between model predictions and observations are indicated in each plot.
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3.4.2 Variance spectra
The variance spectra of <ChlaFluo> and <ChlaLFM> were

computed for each tag included in the present study (see Section

2.6). A specific focus was placed on Tag 11 for which the recordings

of both Fluo and L were continuous (uninterrupted) during the

studied transect. The variance spectrum of darkKL for Tag 11 was

also computed. The highlighted transect corresponding to Tag 11 is

2 231 km long and covers 43 days at sea (between 19-Oct-2018 and

30-Nov-2018). The transect comprises 209 profiles of [ChlaFluo] and

851 light profiles.

The variance spectra of both observations and predictions of

<Chla> along the transect of Tag 11 were compared (Figure 8). The

extension of the <ChlaLFM> signal towards the (sub)mesoscale is

clearly visible through comparison of the variance spectra of

<ChlaFluo> and <ChlaLFM>. While the smallest spatial scale

reached with [ChlaFluo] observations is ~21 km in the example of

Tag 11, the spectrum of the LFM predictions extends to a spatial

scale of ~2 km.

On the interval where both signals are defined, a clear energy

decay is visible in the variance spectra of <ChlaFluo> and

<ChlaLFM>, following a power-law behavior in k-a (where k is

the wave number, and -a the spectral slope on a log-log plot). For

scales larger than ~21 km, the spectral slope of the <ChlaLFM>

signal (k-1.17) is in line with the spectral slope of <ChlaFluo> (k-

1.22), attesting to the good agreement between observations and

model predictions (for interpretation of the spectral slopes, see

Section 4.3.4). From ~21 km to ~7 km, the <ChlaLFM> signal

similarly follows a power-law behavior with a spectral slope equal
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to -2.3 (i.e. a steeper decrease than at larger spatial scales). From

~7 km down to ~2 km the spectral slope is -5.2, but this part of the

spectrum appears to be much noisier.

The spectrum of darkKL derived from the dark noise of L,

computed for Tag 11 (see Section 2.6), was added in Figure 8 to

illustrate the spectral characteristics of dark noise. The variance

spectrum of darkKL is almost flat for wave numbers smaller than ~3

10-4 m-1, meaning that all spatial frequencies larger than ~3 km are

equally represented within the darkKL signal. Such a spectrum is

coherent with the definition of pure noise and contrasts with the

power-law behavior of <ChlaFluo> and <ChlaLFM>.

For spatial scales smaller than ~21 km, where only <ChlaLFM> is

defined, two distinct wave number intervals are clearly discernible,

separated by a pronounced drop in the energy of the signal, located at

around ~7 km in the case of Tag 11. The signal gets much noisier

after the energy drop. A similar behavior was observed for every tag

included in the present study, namely a pronounced energy drop

materializing a spatial scale threshold below which the spectrum

follows a power-law behavior, and above which the signal loses

coherency (i.e. gets much noisier). It is consequently reasonable to

consider that the interpretations of the structures depicted by the

<ChlaLFM> signal are valid up to the scale of the energy-drop

threshold and should be discarded for higher spatial frequencies. In

the case of Tag 11 (specifically highlighted in Figure 8), the spatial

resolution of the observations hence extends from ~21 km with Fluo

to at least ~7 km with LFM predictions. The energy-drop threshold

was different for each tag. The shaded gray area in Figure 8 represents

the envelope of the <ChlaLFM> spectra, encompassing the minimum

and the maximum variances per waveband obtained in the dataset of

the 18 SES tags included in the present study. The envelope of the

<ChlaLFM> spectra reveals that the spatial scale of the energy drop

spreads from ~30 km to ~4 km (corresponding to wave numbers of

~3 10-5 m-1 and ~2.5 10-4 m-1, respectively).

Similarly, a comparable energy drop was observed in the

<ChlaFluo> spectrum for some, though not all, of the tags

included in the present study (see green shaded area in Figure 8).

The energy drop in the <ChlaFluo> spectra occurred at larger spatial

scales than in the <ChlaLFM> spectra, starting from ~45 km.
4 Discussion

4.1 Exploiting light-Fluo synergies
through LFM: Data intercalibration
and homogenization

Including data from multiple tags in a study raises the issue of

the intercalibration of the fluorescence sensors, a critical point when

[Chla] estimates are to be derived from Fluo measurements.

Evidences of inter-sensor variability have already been pointed

out for different fluorometer models (e.g. Guinet et al., 2013; Xing

et al., 2014; Keates et al., 2020), emphasizing the necessity of

homogenizing the Fluo data from one tag to another before any

further analysis. A common benchmark which provides an absolute

Fluo to [Chla] conversion theoretically resolves the inter-tag

calibration issue. However, the fluorescence sensors embedded in
FIGURE 6

Estimates of surface [Chla] derived from LFM predictions ([ChlaLFM]surf)
compared to satellite estimates of surface [Chla] ([ChlaSat]surf). The
color of the pixels represent the density of the points in the plot (in
total: 3 320 matchups are displayed). The dashed black line
materializes the linear regression including all matched samples of
[ChlaLFM]surf and [ChlaSat]surf (slope = 1.01; R2 = 0.47; N = 3 320
matchups). The black circles represent the available concomitant
values of [ChlaFluo]surf (N = 329 successful matchups within the 1 387
[ChlaFluo] profiles used to construct the model, see Section 3.3).
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the tags examined in the present study did not undergo any in-situ

calibration process and not all of them could be successfully

independently calibrated with concomitant satellite estimates of

[Chla] (see Section 4.2).

The lack of any direct comparative benchmark for Fluo led to an

investigation of the in-situ data concomitantly sampled by the

SRDLs in order to best take advantage of them. Accordingly, the

first step of the Fluo calibration procedure relies on variable KL as a

common variable to all the tags and exploits the predictive assets of

the LFM to intercalibrate the Fluo sensors. It has been previously

demonstrated (Morel, 1988; Morel and Maritorena, 2001) that the

optical properties of open-ocean waters (so-called case 1 waters) are

essentially driven by their phytoplankton content (depicted by the

concentration in Chla) and their associated living or inanimate

materials (heterotrophic organisms, including bacteria; various

debris; and excreted organic matter). Such relationships

between the water-column algal content and optical properties

have also been used to deeper examine the data acquired by

electronic tags deployed on pelagic animals (Teo et al., 2009;
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Jaud et al., 2012; Bayle et al., 2015). Here, we further exploit the

synergy between KL and Fluo by proposing a method to make the

Fluo data from different (and not intercalibrated) tags inter-

comparable. As KL depicts gradients (derivative) of light in the

water column rather than absolute light levels, it is much less

dependent on the light sensor design, calibration or drift (e.g.

biofouling). Therefore, KL is a highly robust measurement that

can potentially serve as a reference measurement for long-term

observations like those obtained via autonomous platforms (floats,

gliders) or animals.

In this context, a method based on an analytical relationship

linking the diffuse attenuation for downward irradiance Kd to

[Chla] (Morel and Maritorena, 2001) was first proposed in Xing

et al. (2011) to take advantage of fluoresence profiles acquired by

BGC-Argo floats simultaneously with radiometric profiles of

downward irradiance. The relationship between [Chla] and

downward irradiance is investigated at three specific wavelengths

and enables the calibration of Fluo data in terms of [Chla] as well as

the handling of any potential drift of the Fluo sensor over time. In
A B

C

FIGURE 7

Transect of a SES equipped in Kerguelen in October 2019 with SRDL referred to as Tag 3 including (A) a map of the trajectory described by the SES
from 25-Oct-2019 to 02-Jan-2020 departed from- and arrived at Kerguelen (B) comparison of [ChlaLFM]surf with [ChlaSat]surf for Tag 3 and
(C) <Chla> as measured (<ChlaFluo>) and predicted (<ChlaLFM>) along the transect of Tag 3, where green (blue) squares represent the <ChlaFluo> data
measured during the day (night) and black circles represent <ChlaLFM>. The inset in (C) highlights the data on a section of the animal transect (~200
km). The red star in (A) and (C) represents the furthest location from Kerguelen in the trajectory of the animal equipped with Tag 3. Light gray dots in
(A) and (B) represent the data of all the other tags included in the present study. The dashed black line in (B) represents the 1:1 reference line. The
background map in (A) is the climatology of [ChlaSat]surf derived from GlobColour computed for each pixel as the mean value of [ChlaSat]surf during
the month of November 2019.
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our study, the SRDL provides a measurement on a large spectral

interval (340 to 1000 nm, see Section 2.2.1). Additionally the quality

of the radiometric measurements performed with the SRDL is not

comparable to those of BGC-Argo floats, for which the verticality of

the sensor as well at the exact time of the sampling are monitored to

optimize the quality of the radiometry data (see Xing et al., 2011;

Organelli et al., 2016). As a consequence, we judged relevant to

adopt a less strictly analytical method for the matching between KL

and [Chla] but instead, encompass the variability in the entire

visible spectrum with a shape-based approach (LFM). The LFM

imposes no a priori model regarding the relationship between KL

and [Chla] during the construction of the model, leaving the

calibration of Fluo in terms of [Chla] for a later stage of the

procedure. Accordingly, the first step of the Fluo calibration

procedure solely relies on variable KL as a common variable to all

the tags and exploits the predictive assets of the LFM to

intercalibrate the Fluo sensors.

Finally, it is worth noting that the power and robustness of the

LFM depend on the size of the statistical sample used to construct

the model (for results regarding the robustness of the model in

relation to the composition of the statistical sample used to

construct the model, see supplementary material, Text S5 and

Figure S6). The amount of data available to feed the model is

limited by the fact that KL is only exploitable during daytime (in the

present study, only light profiles associated with a positive solar

angle were selected). During daytime, the determination of KL is

partially influenced by the solar angle (Morel et al., 2007).

Nevertheless, the model’s accuracy appears not to be influenced

by solar angle as the prediction error presented a similar dispersion
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for all positive values of the solar angle (see supplementary material,

Text S6 and Figure S7).
4.2 Matching in-situ and satellite
measurements for absolute calibration

A per-tag satellite-based calibration procedure comparing

surface measurements of Fluo with concomitant satellite estimates

of [Chla] is an alternative way to convert [FFluo] into actual [Chla]

(e.g. Lavigne et al., 2012; Terrats et al., 2020), in particular when no

pre-deployment HPLC [Chla] data are available for the calibration

of the tags. However, although surface Fluo measurements could be

quite successfully matched with satellite data for some of the tags,

others critically lacked sufficient satellite coverage to permit

trustworthy calibration. The per-tag satellite matchup procedure

hence could not be generalized to all the tags. Therefore the LFM-

based step discussed above was an essential requirement to correct

for inter-tag variability and to render all the [FFluo] data

interoperable, thus constituting a homogeneous data base from

which absolute calibration (i.e. conversion from [F] into [Chla], see

flowchart, Figure 1) could subsequently be established. The merging

of all the intercalibrated tags indeed reinforces the quality of the

comparison with satellite data and increases the robustness of the

calibration procedure.

The second step of the Fluo calibration therefore converts the

fluorescence signal into an estimate of [Chla], based on

concomitant satellite measurements. Satellite-based ocean-color

algorithms for the retrieval of [Chla] do not perform equally in
FIGURE 8

Variance spectrum of <Chla> from observations and model predictions along the trajectory of Tag 11. Increasing wave numbers correspond to
smaller spatial scales (see Section 2.6). The green (black) solid line represents the variance per waveband of the <ChlaFluo> (<ChlaLFM>) signal. The
blue solid line represents the variance spectrum of darkKL. The green (gray) shaded area represents the envelope of the <ChlaFluo> (<ChlaLFM>)
spectra. The envelope encompasses the minimum and the maximum variances per waveband obtained in the dataset of the 18 SES tags included in
the present study. The green (black) dashed line represents the linear regression of the variance spectra of <ChlaFluo> (<ChlaLFM>) on the spatial scale
interval between ~2 000 km and ~21 km, with a spectral slope equal to -1.22 (-1.17). The dashed (dotted) red line represents the linear regression of
the variance spectrum of <ChlaLFM> on the spatial scale interval between ~21 km and ~7 km (~7 km and ~2 km). The exact corresponding wave
numbers are 5 10-7 m-1 (~2 000 km), 4.7 10-5 m-1 (~21 km), 1.4 10-4 m-1 (~7 km) and 5 10-4 m-1 (~2 km). (For the determination of the thresholds
used for the piecewise linear regressions calculated on the variance spectra of <ChlaFluo> and <ChlaLFM>, see supplementary material, Text S7 and
Figures S8-S9).
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all regions of the globe (Szeto et al., 2011). Specifically for the SO,

the need for having regionally-tuned algorithms is a matter of

debate, with some arguing that satellite-derived [Chla] is

underestimated by a 2-3 factor (Guinet et al., 2013; Johnson et al.,

2013), while others reporting that standard algorithms for the

global ocean perform well (Haëntjens et al., 2017). The standard

satellite [Chla] product used here (namely, the Copernicus Marine

Service’s GlobColour ocean-color data) is a global scale product

which we consider to be adapted in the context of the main study

purposes. Furthermore, merging all the tags’ data prior to the

satellite calibration was relevant because all the tags were

deployed in the same region, namely the Kerguelen Islands,

which reinforces the interoperable nature of the various

tag observations.
4.3 Assessment of the method

4.3.1 Retrieval of the vertical distribution of Chla
Following the constitution of calibrated [Chla] datasets, the

LFM was developed such that the modeled [ChlaLFM] matched as

closely as possible the targeted [ChlaFluo]. The retrieval of

<ChlaFluo> was generally well achieved with the LFM predictions

(see Section 3.2). The model however lacks accuracy along the

vertical dimension. In the SO, ZMLD is a major driver in the vertical

distribution of Chla. For a large majority of profiles, the mixed layer

contains most of the Chla biomass and [Chla] is homogeneous

within this layer (Cornec et al., 2021). Yet a remainder of the

vertically-integrated Chla can be present below ZMLD. Since the

model also proved to successfully estimate <ChlaLFM>%ML

(Figure 5A), an estimate of this remainder is achievable. Here, we

make the hypothesis that this remainder may not be present deeper

than 1.5 times Zeu. As a consequence, by associating <ChlaLFM>

predictions with <ChlaLFM>%ML, ZMLD and Zeu, an insight into the

distribution of Chla in the vertical is still achievable even in the

absence of properly reconstructed vertical profiles.

4.3.2 Fluo uncertainty
The LFM is based on estimates derived from fluorescence

measurements, with the aim of reproducing them. Nevertheless,

uncertainties exist regarding the algal biomass estimates derived

from fluorescence measurements. The relationship between Chla

fluorescence and actual Chla concentration is in particular governed

by the fluorescence quantum yield (expressed as: mole emitted

photons (mole of absorbed photons)-1) which depends on many

factors, including phytoplankton community composition, photo-

physiological as well as nutrient status (Roesler et al., 2017;

Schallenberg et al., 2022). The tags included in the present study

were all deployed from the Kerguelen Islands, but the trajectories of

the equipped animals spread in the ocean from East to West of the

Kerguelen Plateau. The Kerguelen plateau region is highly

contrasted between the iron-limited western part and the iron-

fertilized eastward zone (Blain et al., 2008). The merging of [FFluo]

data of all the tags as part of the Fluo calibration procedure could

thus be in some ways questionable. However, the intercalibration

coefficients derived from the LFM predictions were examined and
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no significant difference was observed between East and West of the

Kerguelen Plateau (Mann-Whitney-Wilcoxon test, p-value of 0.63).

4.3.3 Model - observation discrepancies
The LFM is based on the assumption that the presence of

phytoplankton is the main source of light attenuation in the water

column, as commonly hypothesized when studying oceanic case 1

waters. Accordingly, a minimum bathymetry criterion was fixed to

avoid dealing with coastal waters (depth > 1 500 m). However,

persistent overestimates of the Chla content are observed in some

short portions of the predicted signal (Figure 7C). Such deviations

are of special interest for analyzing specific issues or limitations

regarding the LFM. Generally however, locally persistent deviations

may result from small-scale variations in the bio-optical properties

of the corresponding water masses. These could be due the presence

of other covarying substances contributing to light attenuation and/

or affecting the fluorescence signal (Bricaud et al., 1998; Loisel et al.,

2002; Bellacicco et al., 2019). Such small-scale variations were

however not investigated in the present study.

4.3.4 Towards filling [Chla] observational gaps at
the (sub)mesoscale

One of the potentially interesting outcomes of the development

of the present method is that it becomes obvious that measurements

of light rather than fluorescence represent a cost-effective

alternative for filling [Chla] observational gaps. The observation

gap originates from the limitations relative to the power

consumption of SRDLs mounted on SESs, which impedes Fluo

sampling at a scale compatible with (sub)mesoscale observations.

By contrast, measurements of light require less energy and can be

performed at much higher spatio-temporal resolution. Comparing

the variance spectra of both observations and predictions (Figure 8)

corroborates the gain brought by the LFM in terms of spatial

resolution. The gain in terms of spatial resolution is also visible

on the transect presented in Figure 7C. In the case of the SRDLs,

<ChlaLFM> is the only variable defined at (sub)mesoscale and higher

to describe phytoplankton dynamics, opening up a new way to fill

the (sub)mesoscale observational gap.

The analysis of the variance spectrum of <ChlaLFM> was further

used as a means to validate the consistency of the predictions at

different spatial scales. At spatial scales where both the measured

(<ChlaFluo>) and the predicted (<ChlaLFM>) signals were available

(e.g. from ~2 000 km to ~21 km in the case of Tag 11), the

predictions were validated by the similarity between the spectral

slopes of <ChlaFluo> and <ChlaLFM> (Section 3.4.2). At spatial scales

where <ChlaFluo> was not defined (e.g. smaller than ~21 km in the

case of Tag 11), the variance spectra of darkKL and <ChlaLFM>

resulted in clearly distinct shapes (Figure 8), hence ensuring that

<ChlaLFM> predictions did not result from pure observational noise.

The predicted signal therefore constitutes a useful signal with a

coherent energy decrease across the observed spatial scales. From

large-scale (~2 000 km) to (sub)mesoscale (O(10-100 km)), the

energy decay of the spatial variance observing a power-law

behavior in k-a (for the definition of wave number k and spectral

slope -a, see Section 3.4.2) is consistent with the expected behavior of

a tracer such as [Chla] (Bracco et al., 2009; Lévy et al., 2018).
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Furthermore, spectral slopes become more negative as the wave

number increases (i.e. the spectrum has a steeper decrease at

smaller spatial scales), from ~k-1 at mesoscale to ~k-2 at

submesoscale (see Section 3.4.2). These slopes are highly consistent

with the expected decay slopes of a signal depicting phytoplankton

distribution at (sub)mesoscale (Martin and Srokosz, 2002; Callies and

Ferrari, 2013; van Gennip et al., 2016).

The energy-drop threshold materializing the validity domain of

the predictions (see Section 3.4.2) corresponded for each tag to

twice the mean spatial frequency of the tags’ light measurements

(for detailed theoretical interpretation of the validity domain, see

supplementary material, Text S7 and Figures S8-S9). The energy-

drop threshold is hence directly dependent on the inherent

properties of the corresponding transect. In the dataset of the 18

SES tags included in the present study, the mean distance between

two valid consecutive Fluo profiles is 14.9 km +- 4.1, whereas for

light profiles this distance is reduced to 5.9 km +- 3.1. As a result,

while on average the SRDL Fluo measurements enable observation

of phytoplankton dynamics at spatial scales up to ~30 km, LFM

predictions extend the spatial scale of the observations up to ~12

km. In the present study, the gain enabled by the use of <ChlaLFM>

as a proxy for <ChlaFluo> is on average a factor 2.8 +- 0.9 towards

finer observation scales.

Although light measurements are obviously restricted to the

daytime period it is worth noting that in high-latitude

environments with extended day lengths during the productive

season, light measurements provided by SES tags might represent a

unique tool to better address (sub)mesoscale coupling between

physical forcing and biological response. However, independently

of the bio-physical processes occurring along the transect of the tag,

the spatial resolution of the light measurements performed by the tag

directly depends on the horizontal speed of the SES (i.e. the distance

between the consecutive dives of the SES, see previous paragraph),

and also quite frequently, on the quality and validity of the

measurements. For example, in the present study, the saturation

issue (see Section 2.2.1 and supplementary material, Figure S1) clearly

lowers the spatial resolution achieved by the light measurements.

Therefore, our recommendation regarding SRDLs is to implement a

less sensitive light sensor to limit sensor saturation under high light

levels (mainly occurring around noon, in the surface layer).

Theoretically, if the light sensor is free from the saturation issue

and all daylight profiles can hence be included in the LFM, the gain in

terms of spatial resolution could potentially reach a factor 9, meaning

that the method developed in the present study would enable

observation of phytoplankton dynamics at a scale of ~3-4 km.
5 Conclusion and perspectives

The present study highlights the benefits of using the LFM both to

homogenize the Fluo data from different sensors and to infer the Chla

content in the water column. The interest of a model such as the LFM

using KL to describe the dynamics of Chla along the trajectory of an

equipped SES stands out especially for a device with severe power

consumption constraints such as the SRDL. The substantially low

mean error associated with LFM predictions (see Section 3.2)
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emphasizes the accuracy of the LFM-based method for retrieving the

variability of the <Chla> field and extending the spatio-temporal scale

of observations (see Section 4.3.4). While the sole use of fluorescence

measurements might not be sufficient to access (sub)mesoscale

processes, the finer horizontal resolution achievable with LFM

predictions unlocks the (sub)mesoscale observation gap of SRDLs.

Examples of SES foraging behavior being influenced by the

environmental oceanographic conditions at (sub)mesoscale have

already been described (Campagna et al., 2006; Della Penna et al.,

2015; Siegelman et al., 2019a). In parallel, while recent missions like

SWOT aim at describing the ocean surface dynamics at an

unprecedented resolution (15-30 km, see Morrow et al., 2019), the

use of <ChlaLFM> as a proxy for <ChlaFluo> enables the resolution of

in-situ biological tracers to be aligned with the spatial scales targeted in

such recent missions. Because primary production is largely driven by

ephemeral physical processes occurring from the mesoscale (O(100

km)) to the submesoscale (O(10 km)), in-situ information at such

scales is critical to describe phytoplankton dynamics (Mahadevan,

2016; McGillicuddy, 2016; Lévy et al., 2018). The improvements

brought by the LFM in terms of spatial scales hence contribute key

elements for deepening study of the coupling between phytoplankton

distribution and the ocean’s physical structure at (sub)mesoscale

(including Lagrangian studies, Lehahn et al., 2018), and also provide

novel data for studying SES behavior and the horizontal exploration of

the ocean by such marine predators.

In this way, the dynamics of phytoplankton along the trajectories

of SESs are optimally described by merging satellite-calibrated

[ChlaFluo] data derived from the tags’ fluorescence measurements

(covering both day and night periods) with [ChlaLFM] estimates (only

available during daylight hours), which improves the spatio-temporal

resolution of the data. In the present study, the data from tag

deployment campaigns performed between 2018 and 2020 were

included. The predictive capabilities of the LFM can possibly be

extended towards a larger range of tags, e.g. tags deployed in the past

measuring light but not Fluo. Indeed, bio-logging data have proved to

be a considerable source of in-situ data at (sub)mesoscale in the SO in

the past two decades. Every light profile, despite not providing truly

reliable metrics on the vertical, is useful, under the method developed

in the present study, to feed biogeochemical models with an estimate

of the vertically-integrated Chla amount and the proportion of the

Chla amount present within the mixed layer. Datasets comprising

hundreds of thousands of in-situ vertical profiles sampled by

equipped animals in the SO hence constitute a possible insight into

the ocean subsurface to extend the quasi-synoptic - but surface-only -

vision provided by satellite data. These numerous profiles are

potentially highly valuable data for developing our knowledge

about [Chla] variability at different spatio-temporal scales in the

under-sampled SO, from short-lived processes to decadal variability.
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#21375)” and the Comité Pour l’Environnement Polaire des

Terres Australes et Antarctiques Françaises.
Author contributions

Conceived and designed the study, LLS, HC, and CG; BP helped

with the processing of the MEOP data. LLS and DN conceived the

functional model and analyzed themodel performance. LLS, HC, Fd’O,

and CG wrote the manuscript. HC, Fd’O, and CG helped with

analyzing the results. LLS, HC, Fd’O, DN, BP, and CG reviewed the

manuscript. All authors contributed to the article and approved the

submitted version.
Funding

This work was partly funded by the CNES and REFINE

(European Research Council, Grant agreement 834177) project.
Frontiers in Marine Science 16
LLS is supported by a joint CNES-CNRS doctoral grant. The

elephant seal work was supported as part of the SNO-MEMO and

by the CNES-TOSCA project Elephant seals as Oceanographic

Samplers of submesoscale features led by C. Guinet with support of

the French Polar Institute (programmes 109 and 1201). This research

was carried out, in part, at the Centre d’Études Biologiques de Chizé,
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