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When addressing the question of variable saturation and density groundwater

flow in coastal zones, the highly nonlinear system of coupled water-salt

equations may deserve more attention. The classical Picard scheme is

associated with slow calculation speeds and low precision, which hardly meet

the actual needs of users. Here, we developed a new numerical solution for

coastal groundwater flow issues based on the Newton scheme and compared

the advantages and disadvantages of different numerical methods by analyzing

the cases of seawater intrusion. The simulation results indicated that the

variable-density effect significantly extends the computation time of the

model, but the Newton scheme still has the advantages of computational

speed and better convergence compared with the Picard scheme, especially in

conditions involving high-frequency and large-amplitude tidal fluctuations,

steep aquifer slopes, and a coarse grid. Furthermore, the Newton-Picard

method, based on the Newton and Picard schemes, improves the robustness

of the Newton solution and optimizes the convergence of the Picard solution.

This study has revealed the computational characteristics of the Newton scheme

in addressing the issues of coastal variable saturation and density groundwater

flow, providing new ideas and insights for numerical solutions to coastal

groundwater flow problems.

KEYWORDS

Newton scheme, Picard scheme, numerical solution, variable density flow, saturated-
unsaturated coastal zones
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1 Introduction

Coastal zones, with their abundant natural resources, scenic

appearance, and convenient transportation, haves nurtured more

than half of the global population and ensured the rapid growth of

the world’s major economies. In recent years, owing to a lack of

environmental awareness, many coastal aquifers have been polluted

by dense pollutants from terrigenous soils and estuaries, such as

leaks from waste disposal sites, agricultural activities, factory

effluents, industrial oil, and combustible ice extraction (Singh

et al., 2016b; Hou et al., 2022). Consequently, a series of marine

environmental geological problems have merged, including the

deterioration of the ecological environment in coastal areas (Shao

et al., 2014), retention of oil on beaches over time (Boufadel et al.,

2019), and intrusion of seawater into coastal aquifers. In these

situations, equations relating to fluid flow and solute transport must

be coupled.

The influence of variable density flow is extremely significant in

some variable saturation regions (e.g., Abdollahi-Nasab et al., 2010;

Boufadel et al., 2011). Through laboratory physics experiments,

(Simmons et al., 2002) investigated the motion of variable density

flow in saturated–unsaturated pore media and determined that

density effect is also a significant driving factor in the groundwater

flow in unsaturated zone pore media. The numerical modelling

method has also been applied to variable-density flow in

unsaturated porous media to analyse the effect of density

drivenground water flow at different stages (Liu et al., 2015; Singh

et al., 2016a; Younes et al., 2022). In simulation the effects of

evaporation and salinity accumulation on riparian freshwater lenses

(America et al., 2020), the simulation representativeness can be

enhanced by taking into account the variable saturation of coupled

flow and transport processes (Li et al., 2008; Geng et al., 2014; Geng

and Boufadel, 2015b). To ensure the authenticity of the model for

seawater intrusion affected by slope, heterogeneity, and evaporative

rainfall, the flow and transport processes must be coupled (Li et al.,

2008; Guo et al., 2012; Qu et al., 2014; Geng and Boufadel, 2015a;

Geng and Boufadel, 2017).

To model the problem of variable saturation and density flow in

coastal zones, solving a nonlinear system using coupled flow and

transport equations is necessary. In such a system, the groundwater

flow is controlled by Richards’ equation (RE), which covers the

nonlinear constitutive relationships among hydraulic conductivity,

water content, and pressure head (Peters and Durner, 2008;

Norambuena-Contreras et al., 2012; Tartakovsky et al., 2020).

And the density variation caused by salt migration further

increases the nonlinearity. Owing to the extreme nonlinearity of

these equations, providing an accurate numerical solution of the RE

requires not only the stability of the algorithm but also its efficiency,

which is an unquestionably difficult task.

Numerical simulations, which generate a nonlinear system by

discretising the governing equations in space and time and solving

the solution at each time step, are decidedly the most valuable

technique for solving challenging problems and comprehending

and foreseeing the contamination propagation in aquifers. The

Newton scheme, which requires a Jacobian matrix, and the Picard

scheme, which does not, are the two primary approaches for solving
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discretised nonlinear systems. The Newton scheme is more stability

and can circumvent problems which the Picard scheme cannot

converge or converges very slowly in problems of variable

saturation groundwater flow (Paniconi and Putti, 1994; Putti and

Paniconi, 1995). (Mehl, 2006) reported that the Picard scheme is a

straightforward and effective method to address the problem of

nonlinear saturated groundwater flow. Numerous numerical

schemes based on the Picard and Newton schemes have been

presented in recent years (Lott et al., 2012; Zha et al., 2017; Su

et al., 2020; Zhang et al., 2021) and have demonstrated reliability

and effectiveness in saturated–unsaturated groundwater flows.

However, when these methods are applied to solve unsaturated

groundwater flow problems in coastal zones, which involve many

nonlinear factors such as beach topography, the variable-density

effect, tidal waves, and seepage faces, the Picard scheme cannot yield

satisfactory results due to its slow calculation speed and

low accuracy.

To further develop the numerical solution schemes for the

coastal groundwater flow problems and accurately characterize

the groundwater flow and solute transport process in the coastal

aquifers, as well as quickly and efficiently solve practical engineering

problems such as seawater intrusion and coastal erosion, we have

proposed a new numerical scheme in this study. Firstly, we applied

the Newton scheme to numerically solve the groundwater flow

problem with variable saturation and density, and combined it with

the variable time step strategy to construct a new numerical scheme

for the coastal groundwater flow problems, as described in Section

2. In Section 3, we explore the computational properties of the

Newton scheme compared to the Picard scheme in three different

seawater intrusion cases. Section 4 summarizes the advantages and

applicability of the Newton scheme in solving coastal groundwater

flow problems, and Section 5 provides the research conclusions of

this paper.
2 Numerical implementation

2.1 Governing equations

The governing equation for groundwater flow in a two-

dimensional heterogeneous and anisotropic aquifer with variable

saturation and density is based on Darcy’s law and the continuous-

flow equation (Philip, 1957), as shown in Eq (1).

bf
∂ S
∂ t

+ bSsS
∂y
∂ t

+ fS
∂ b
∂ t

=
∂

∂ x
bd krKx

∂y
∂ x

� �
+

∂

∂ z
bd krKz

∂y
∂ z

� �

+
∂

∂ z
(b2dkrKz) (1)

where t is time (T); x and z are the horizontal and vertical axes

of the profile of the aquifer respectively; f is the porosity of the

porous medium (-); S is the degree of water saturation (-); Ss is the

specific storage (L-1); y is the pressure head (L); b is the density

ratio (-), defined as b = r
r0
; r and r0 are the groundwater and
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freshwater densities (ML-3), respectively; d is the dynamic viscosity

ratio (L), defined as d = m0
m ; m and m0 are the groundwater and the

freshwater dynamic viscosities [ML-1T-1], respectively; Kx and Kz

are the horizontal and vertical freshwater hydraulic conductivities

in the saturated medium (LT-1), respectively; and kr is the relative

permeability (L). The soil hydraulic parameter model refers to Van

Genuchten (1980)

For y ≥ 0, S = 1:0,   kr = 1:0; (2a)

For y < 0, Se =
S − Sr
1 − Sr

=
1

1 + (a yj j)n
� �(n−1)

n=

, kr

=
ffiffiffiffi
Se

p
½1 − (1 − S1=me )m�2 (2b)

where Se is the effective saturation ratio (L); Sr is the residual

saturation ratio (field moisture capacity) (L); a represents the

characteristic pore size of the medium [L−1]; n represents the

pore uniformity, higher values of n imply a more uniform pore-

size distribution; and m = 1 − 1=n.

The solute transport equation (convection–dispersion

equation) in two-dimensional heterogeneous and anisotropic

aquifers with variable saturation and density flows can be

expressed as

fS
∂ c
∂ t

= b½∇ · (fStDm ∇ c) +∇ · (D∇ c)� − q ·∇c (3)

where c is the solute concentration (salt or tracer) (ML-3);Dm is the

molecular diffusivity (L2T-1); t is pore distortion coefficient of porous

media (L); q = (qx , qz) is the Darcy flux vector (LT
-1), given by Eq. (4);

D represents the physical dispersion tensor (L2T-1), written as Eq. (5).

q = (qx , qz) = −d Kx
∂y
∂ x

, Kz
∂y
∂ z

+ b
� �� �

(4)

D =
1
qk k

aLq
2
x + aTq

2
z (aL − aT)qxqz

(aL − aT )qxqz aTq
2
x + aLq

2
z

 !
(5)

where ‖ q ‖ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x + q2z

p
; aL, and aT represent the longitudinal

and transverse dispersivities (L), respectively. Therefore, in terms of

the pressure head y Eq. (1) is strongly nonlinear, and in terms of

the salinity c, Eq. (3) is strongly nonlinear.
2.2 Numerical discretisation

The Galerkin finite method was used to spatially discretise the

governing equation (Neuman, 1973; Cooley, 1983; Huyakorn et al.,

1984; Voss, 1984; Huyakorn et al., 1986). The solution domain is W
and N represents the nodes; the Ne triangular elements were

generated after subdivision. Therefore, the variables in Eqs. (1)

and (3) were approximated as in Huyakorn (2012).

y (x, z, t) =o
N

i=1
yi(t)Ni(x, z) (6)
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kr(x, z, t) =o
N

i=1
kri (t)Ni(x, z) (7)

b(x, z, t) =o
N

i=1
bi(t)Ni(x, z) (8)

d (x, z, t) =o
N

i=1
di(t)Ni(x, z) (9)

S(x, z, t) =o
N

i=1
Si(t)Ni(x, z) (10)

c(x, z, t) =o
N

i=1
ci(t)Ni(x, z) (11)

where y ,  kr ,  b ,  d ,  S, and c are the fin i t e e l ement

approximations of y ;  kr;  b ,  d ,  S, and c respectively; yi,  kri ,  bi,  di
,  Si,  ci, and Si are the different parameter values at node i (the

vertexes of triangular elements); Ni(x, z) is the linear basis function

for node i, which varies linearly between neighbouring nodes, with 1

at node i and 0 at the other nodes.

Because the values of variables of all the nodes on the Dirichlet

boundary are directly given by (y jGg
= y0), separate processing is

not necessary. Only the Neumann boundary Gg is in the solving

domain. Eq. (1) is multiplied by Ni, where i is a node with an

unknown pressure head. Integrating over the entire domain, we

obtained:

Z
W

bf
∂ S
∂ t

+ bSsS
∂y
∂ t

+ fS
∂ b
∂ t

� �
NidW

=
Z
W
½∇ · (bdK ∇ y )�NidW +

Z
W

∂ (b2d krKz)
∂ z

NidW

(12)

K = kr
Kx 0

0 Kz

" #
(13)

The right-end term of Eq. (12) was expanded using Green’s

formula,

−

Z
W
∇Ni · (bdK ∇ y )dW +

Z
∂W

Ni(bdK ∇ y ) ·~nds

−

Z
W

∂Ni

∂ z
b2d krKzdW+

Z
∂W

Nib
2d krKznzds

=
Z
W

bf
∂ S
∂ t

+ bSsS
∂y
∂ t

+ fS
∂ b
∂ t

� �
NidW

(14)

where n! is the normal vector of the boundary Gh, defined as

n! = (nx , nz). The mass lumping technique was used to approximate

the integral of the right-end term (time variables) in the Eq. (14) as

(Neuman, 1973). It has been demonstrated to offer exceptional

stability under the principle of mass conservation and has been

employed in finite-difference algorithms (Celia et al., 1990).
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Z
W

bf
∂ S
∂ t

+ bSsS
∂y
∂ t

+ fS
∂ b
∂ t

� �
NidW

=
Z
W
NidW · bif

∂ Si
∂ t

+ biSsSi
∂yi

∂ t
+ fSi

∂ bi
∂ t

� �
 i = 1, ⋯, N

(15)

At the Newman boundary,

− K
∂H
∂ n

jGh
= − n! · (bdK ∇ y ) − nzb

2dkrKz = q0(x, z, t) (16)

Thus,

Z
∂W

Ni½(bdK ∇ y ) + b2dkrKz� ·~nds

= −bq0(x, z, t)
Z
∂W

Nids i = 1 ;⋯,  N (17)

Eq. (14) was then transferred, leading to the following result:

Z
W
NidW · bif

∂ Si
∂ t

+ biSsSi
∂yi

∂ t
+ fSi

∂ bi
∂ t

� �
+ bq0(x, z, t)

Z
∂W

Nids

+
Z
W
∇Ni · ½(bdK ∇ y ) + b2dkrKz�dW = 0 i = 1 ;⋯,  N

(18)

The function integral over the entire domain was converted into

the sum of the function integrals in each triangular element e.

o
Ne

e=1

ðð
e
∇Ni · ½(bdK ∇ y ) + b2dkr Kz�dxdz +o

NGh

e=1
bq0(x, z, t)

Z
Gh∩e

Nids

+o
Ne

e=1
bif

∂ Si
∂ t

+ biSsSi
∂yi

∂ t
+ fSi

∂ bi
∂ t

� �ðð
e
Nidxdz = 0 i = 1,  ⋯,  N

(19)

At element e, the basic function form of the term y was further

simplified as

y =o
N

i=1
yiNi(x, z) = Ni(x, z)yi + Nj(x, z)yj + Nm(x, z)ym (20)

where i, j, and m are the node IDs at element e; the other

parameters kr;  b ,  d ,  S, and c are similar. Combined with the

backward Euler scheme, Eq. (19) was expressed as a nonlinear

matrix system:

A(Yt+D t)Yt+D t + B(Yt+D t)
Yt+D t −Yt

D t
− q(Yt+D t) = 0 (21)

where Yt+Dt = (y1,  y2,  ⋯,  yN )
T is the nodal head vector at

the next time step; A is the head stiffness matrix; B is the storage or

mass matrix; and the vector q contains the Darcy flow component at

the boundary. Similarly, the solute transport equation and Darcy’s

law can be discretised into the aforementioned finite-dimensional

triangular elements to produce nonlinear and linear systems,

respectively.

D(Y)C + E(C)
Ct+D t − Ct

Dt
= 0 (22)

G(Y)V = H(Y) (23)
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where C is the nodal salinity vector; D is the salinity stiffness

matrix containing the advection-dispersion component; E is the

salinity mass matrix; V is the nodal Darcy velocity; and G is the

velocity stiffness matrix.
2.3 Solution algorithm

The modified Picard scheme (Najem, 1982; Istok, 1989; Celia

et al., 1990; Huang et al., 1996; Huang et al., 1998) is given as

A(Yt+D t,k)Yt+D t,k+1 + B(Yt+D t,k)
Yt+D t,k+1 −Yt

D t
− q(Yt+D t,k)

= 0 (24a)

St+D t,k+1 = St+D t,k +
dSt+D t,k

dY t+D t (Y
t+D t,k+1 −Yt+D t,k) (24b)

where k is the current number of iterations under the current

time step n; St+D t = (S1,  S2,  ⋯,  SN )
T is the nodal water saturated

vector at the next time step. The expansion of St+D t,k+1 in a

truncated Taylor series with respect to Y, about the expansion

point of Yt+Dt,k, was the key to the modified Picard method based

on Celia et al. (1990), as shown in Eq. (24b).

The Newton scheme (Paniconi and Putti, 1994; Putti and

Paniconi, 1995; Bergamaschi and Putti, 1999) is expressed as:

F(Yt+D t,k) =

f1

f2

⋮

fn

0
BBBBB@

1
CCCCCA

Y=Yt+D t,k

= A(Yt+D t,k)Yt+D t,k + B(Yt+D t,k)
Yt+D t,k −Yt

D t

− q(Yt+D t,k) (25a)

Yt+D t,k+1 = Yt+D t,k − J−1(Yt+D t,k)F(Yt+D t,k) (25b)

J(Yt+D t,k) =

∂ f1
∂y1

∂ f1
∂y2

⋯ ∂ f1
∂yn

∂ f2
∂y1

∂ f2
∂y2

⋯ ∂ f2
∂yn

⋮ ⋮ ⋱ ⋮
∂ fn
∂y1

∂ fn
∂y2

⋯ ∂ fn
∂yn

2
6666664

3
7777775

(25c)

where J is the Jacob matrix.

The variable time step strategy was used (Kavetski et al., 2002;

D'Haese et al., 2007; Zha et al., 2017). If iteration does not converge

within the maximum number of times (maxit), Dn
t decreases by a

factor of tmin and the solution is recomputed (back stepping). If

iteration converges within the minimum number of times (minit),

Dn
t increase by a factor of tmag . Simultaneously, the Courant number

(Cr) is used to restrict Dn+1
t as shown in Eq.(26d) (Wang et al.,

2012).

If iter > maxit,  Dn+1
t = tmin D

n
t (26a)
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elseif iter < minit,  Dn+1
t = tmag D

n
t ; (26b)

else Dn+1
t = Dn

t (26c)

Cr = v Dn+1
t =D l ≤ 0:95 (26d)

where iter is the total number of iterations in the current time

step; n is the current calculation time step; v is the nodal Darcy

velocity; and D l is the space step.
2.4 Numerical solution

A modified Galerkin finite element method was applied to solve

the flow and transport equations of the model (Kees et al., 2008;

Choo, 2018). Additionally, backward Euler scheme with variable

time steps strategy was employed, which has been demonstrated to

be effective in the case of wet-dry soil (Zha et al., 2017). The

modified Picard method enable the use of large time step, resulting

in significantly improves computational efficiency (Celia et al.,

1990). At each time step, the flow equation is iterated using the

Newton/Picard scheme until convergence, whereas the transport

equation is iterated only once using the Picard scheme. The spatial

distribution of the solutes was gradually corrected through flow

calculations. This avoids non-convergence behaviour for solving

transport equations and saves considerable CPU and computational

memory. The detail iteration is shown in Figure 1.
3 Numerical experiments

This study compares the computational properties of the

Newton method for solving seawater intrusion problems in three
Frontiers in Marine Science 05
different scenarios after first verifying its accuracy in two

conventional cases by the following indices: total CPU time, total

iterations, time step size, computation time, iterations head and

salinity errors at each time step level ( ‖Yt −Yt−Dt ‖∞,   ‖ ct −
ct−Dt ‖∞ ), and submarine groundwater discharge. The application

characteristics Newton’s Method for resolving groundwater

problems in coastal zones with variable saturations and density-

dependent flows were summarised. All the numerical examples in

this study were completed using the numerical code MARUN on a

workstation Windows 10; and its reliability has been proven for

groundwater flow calculations (Boufadel et al., 1999a; Boufadel

et al., 1999b; Boufadel et al., 1999c; Li and Boufadel, 2010; Geng and

Boufadel, 2015b; Xiao et al., 2019; Yu et al., 2022a; Yu et al., 2023).

The MARUN code was developed based on the numerical

calculation theory described in Section 2.

When calculating the model, the following conditions were

considered: the initial condition was a simple (such as the aquifer is

completely saturated and salinity is 0) or complex (according to the

MARUN Manual) value; the head convergence standard was set to

d = 1×10–5 or 1×10–10; the grad subdivision size was 0.02 or 0.01 m;

the soil hydraulic parameters model (Van Genuchten, 1980)

parameters were set to a = 2.0, 5.0, or 40.0 m–1 and n = 2.0, 4.0

or 7.0; the tides were Hsea = 0.8 + 0.2cos(pt/6), 0.85 + 0.15cos(pt/6),
0.9 + 0.1cos(pt/6), 0.9 + 0.1cos(pt/5), or 0.9 + 0.1cos(pt/4) m; and

beach slope were tanq = 0.1, 0.5, or +∞. The iteration methods used

were Newton, Picard, and Newton–Picard (NP), which follows both

the Newton and Picard schemes (Putti and Paniconi, 1995):

If  Yn+1,k+1 −Yn+1,k
�� ��

∞< d 0, useEq : (24) (27)

else use Eq. (25).

where d 0 denotes the first head convergence tolerance. If the

Picard method is slower than the Newton or NP methods, the

Newton scheme is deemed effective for the discussion.
FIGURE 1

The iteration execution process.
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3.1 Case validation: typical soil seepage
problem and modified Henry problem

Case 1 followed Cooley (1983) and considered a soil freshwater

seepage problem in an unsaturated zone, as shown in Figure 2A.

The aquifer domain was divided into 2601 nodes and 5000 2 m ×

2 m triangle elements. Its steady-state groundwater flow field is

shown in Figure 2B. Case 2 referenced (Putti and Paniconi, 1995;

Boufadel et al., 1999b) and studied a saline water seepage problem

in the saturated zone, as shown in Figure 2C. The aquifer domain

was divided into 20301 nodes and 40000 0.01 m × 0.01 m right

triangle elements. Its steady-state groundwater flow field is shown

in Figure 2D. The hydrogeological parameters are listed in Table 1,

and a comparison of the calculation speeds of different methods is

shown in Table 2.

The result for Case 1 is the same as that of Cooley (1983). The

simulation stabilised in approximately 5 h, and the groundwater

was discharged from 20 m below the right boundary. According to

Case 1 in Table 2, the CPU time indicated that the calculation speed
Frontiers in Marine Science 06
under complex initial conditions was significantly faster than that

under simple initial conditions because the head and salinity were

closer to the real value. The calculation speed of the Newton scheme

was faster than that of the Picard scheme in any setting, up to 17

times with a head convergence standard of 1×10–10 and a complex

initial value.

In Case 2, seawater was found to have invaded as far as x=0.5m

as shown in Figure 2D. After approximately16 h, the simulation

reached a steady state. According to Case 2 in Table 2, the CPU time

showed that the calculation speed of the coarse mesh generation

was significantly faster than that of the fine mesh generation

because the size of the nonlinear system decreased with fewer

nodes and the calculation amount also decreased. Only when the

mesh was finely divided was the Newton scheme 1.23 times faster

than the Picard scheme, with a head convergence standard of 10–10.

The model’s overall calculation time increases when salt is involved.

The Newton scheme was mainly used to solve the flow equation; if

the solution of the solute transport equation cannot improved, the

calculation speed cannot be reliably guaranteed.
A B

D

C

FIGURE 2

Schematic descriptions of the (A) typical soil seepage and (C) modified Henry problems, and their flow fields, (B) and (D), respectively, following
stabilisation. The white dashed line represents the boundary between the saturated and unsaturated zones, while the red solid line represents the
contour lines of salinity, as indicated throughout.
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3.2 Seawater intrusion in
unconfined aquifers

In Cases 1 and 2, the benefits of the Newton method for solving

variable saturation and density flow models in terms of calculation

speed and accuracy were demonstrated. Case 3 referenced to a

modified Henry problem. As illustrated in Figure 3A, the right

boundary was modified to the Dirichlet boundary of 0.8 m seawater,

but the other conditions remained the same. The hydrogeological

parameters are listed in Table 1, and the steady state of the

groundwater flow field is shown in Figure 3B.

The simulated results in Figure 3B show that after mixing with

freshwater, seawater is discharged into the ocean from the upper-

right boundary, with an intrusion distance of up to 1.2 m. The

simulation stabilized after 5 h, generating a salt wedge in the lower-

right corner. The entire area had a head distribution ranging from

0.80 to 0.82 m, small hydraulic gradient, slow flow velocity, and a

submarine groundwater discharge (SGD) of 5.75×10–5 m2/s.
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Case 3 in Table 3 compares computational speeds of the NP,

Picard, and Newton methods for solving various seawater intrusion

problems in unconfined aquifers. The calculation speed of the

Newton scheme was slightly faster than that of the Picard scheme

and was mainly controlled by the soil hydraulic model parameters a
and n. Their calculation speeds diverged by more than two times

when the soil water distribution in the unsaturated zone was

discontinuous. If salinity was included in the model, the

calculation of the Newton method would be 1.02 times faster

than that of the Picard method. In contrast, the calculation using

the Newton method was four times faster than that using the Picard

method without salinity. Therefore, salinity slows down the

calculation speed of groundwater modelling in an unsaturated zone.

Figures 4A–C depict the evolution of time step size Dt versus
time step level j for several seawater intrusion scenarios simulated

using three methods. The time step size Dt was only subjected to the
iterations at each time step level in the model without salinity

involved. As long as iter< 6, Dt increases until the output control

condition is encountered. Generally, the Newton scheme is effective

in resolving seawater intrusion in unconfined aquifers. However, it

consumes much CPU time to adjust Dt when the initial value is

poor. The NP method in this process saves time, as shown in

Figures 4A, C. Based on the result with a = 40.0, n = 7.0, the Newton

scheme is more dependent on the initial value than the Picard

scheme. In the simulation of dry soil wetting, where a = 40.0 and n

= 7.0 was direr than a = 40.0 and n = 2.0 and the characteristic

curve of moisture content was more nonlinear, the bad initial value

failed to reach convergence and induced the oscillation. In this case,

the NP method appeared to have greater advantages and could save

considerable time during the initial value adjustment process,

making it faster than the Picard and Newton methods. However,

the calculation speed was completely limited by the Courant

number; hence, Dt remained unchanged once salinity was

factored into the model, as shown in Figure 4D. Additionally, the

total calculation time of the model increased by about 100 times.

Figure 5 shows the evolution of the head error versus time step

level j for different seawater intrusion scenarios simulated using

three methods. In Figure 5A, the Newton and NP methods both
TABLE 1 Basic hydrogeological parameters of models inspired from
(Putti and Paniconi, 1995) and (Boufadel et al., 1999b).

Parameter Symbol Value and unit

Hydraulic conductivity Kx, Kz 0.01 m/s

Porosity f 0.35 (-)

Residual water content Sr 0.03 (-)

Specific storage Ss 0.001 m–1

Characteristic pore size a 2.0 m–1

Uniformity of pores n 4.0 (-)

Coefficient of longitudinal dispersion aL 0.01 m

Coefficient of transverse dispersion aT 0.001 m

Coefficient of molecular diffusivity Dm 1.886×10–5 m2/s

Concentration (density) constant ϵ 7.143×10–4 L/g

Viscosity constant d -1.551×10–3 (-)
TABLE 2 Comparison of the computational speed of Newton methods for solving the typical soil seepage (Cooley, 1983) and modified Henry
problems (Putti and Paniconi, 1995; Boufadel et al., 1999b).

Case Mesh
subdivision

Initial
condition Time (h) Head convergence tolerance

CPU time (s)
Calculate speed ratio

Newton Picard NP

Case 1 2601; 5000

simple

5

10–5 127.73 173.64 126.7 1.37

10–10 173.7 946.3 170.7 5.54

complex
10–5 18.29 41.82 20.60 2.28

10–10 29.68 508.6 51.28 17.1

Case 2

20301; 40000

simple 16

10–5 3137 3146 3016 1.04

10–10 4874 5738 4663 1.23

5151; 10000
10–5 828.45 827.75 829.75 1.00

10–10 1215 1194 1236 0.98
*Calculate speed ratio = Picard CPU time/min (Newton CPU time, NP CPU time), represents the ratio of calculation speed between the Picard and the Newton schemes.
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converge to 10–15, while the Picard method only converges to 10–12.

The convergence speed of the Newton and NP methods was higher

than that of the Picard methods for a = 40.0 and n = 7.0, and a =

30.0 and n = 4.0, as shown in Figures 5B, C. Based on this, the

Newton scheme is more convergent than the Picard scheme in

certain cases.
3.3 Seawater intrusion by tidal action

According to previous studies (Li et al., 2008; Li and Boufadel,

2010; Geng et al., 2015; Geng et al., 2016; Xiao et al., 2017; Yu et al.,

2022b), tides are a major factor affecting groundwater flow and

solute transport in coastal zones. Based on Case 4 (Figure 6A),the

right boundary is the set of tides of varying amplitudes and

frequencies. The hydrogeological parameters are provided in

Table 1, and the average groundwater flow field diagram for one

tidal period following stabilisation is shown in Figure 6B. The

groundwater flow fields at the high tide and low tide levels are

shown in Figures 6C, D, respectively.
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As shown in Figure 6B, the seawater intrusion distance reached

up to 1.52 m. The entire area has a head distribution ranging from

0.80 to 0.84 m, a large hydraulic gradient, a fast flow velocity, and an

SGD of 5.75 × 10–5 m2/s. The seawater invaded zone (i.e., the shadow

part) gradually shrank with the tide level dropping as shown in

Figures 6C, D. Case 4 in Table 3 compares of the computational

speeds of the NP, Picard, and Newton methods for solving seawater

intrusion with different tides. The higher the tidal frequency, the

stronger the hydrodynamic conditions in an unsaturated soil zone,

leading to a more complex microscopic pore flow. Additionally, a

larger tidal amplitude results in a larger unsaturated zone. As a

consequence, the Newton scheme offers more noticeable advantages

in terms of calculation speed. For instance, when the tidal frequency

rises from p/6 and p/5 to p/4, the calculated speed ratio changes from
1.24 and 1.28 to 1.35, respectively. And the calculated speed ratio

changes from 1.24 and 1.27 to 1.32 as the tidal amplitude increases

from 0.1 and 0.15 to 0.2 m, respectively.

Furthermore, as the tidal amplitude and frequency increased,

more triangular elements alternating between wet and dry states were

exposed in the near-surface unsaturated zone, increasing
A

B

FIGURE 3

Schematic description of (A) seawater intrusions in unconfined aquifers and the (B) flow field following stabilisation.
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computation time for the entire model. Due to the salinity involved in

the model, Dt was limited by the Courant number and was

maintained at a constant value at different time step levels. This is

similar to Figure 5D; therefore, it is not shown here. If the iterations at

different time steps are the same, the calculation speed of the Newton
Frontiers in Marine Science 09
(or NP)methodmay be lower than that of the Picard method because

of the high CPU consumption of the Newton scheme.

The evolution of the head and salinity errors versus time step

level j using the Picard, Newton, and NP methods is essentially the

same, as shown in Figure 7. The relative errors of the head or salt
TABLE 3 Comparison of the computational speeds of Newton methods for solving different seawater intrusion problems.

Case Soil hydraulic parameters
a; n Salt Tides (m) Time (h) Tanq

CPU time (s)
Calculate speed ratio

Newton Picard NP

Case 3

40; 7.0 0

0.8

24 – 60.4 140 67.0 2.32

40; 2.0 0 24 – 409.1 320 39.25 8.15

30; 4.0 0 24 – 394 333.7 71.95 4.64

40; 7.0 1 6 – 5435 5398 5358 1.01

40; 2.0 1 6 – 5038 5153 5058 1.02

Case 4 40; 2.0

1 0.9 + 0.1cos(pt/6)

24 –

678 838 763 1.24

1 0.85 + 0.15cos(pt/6) 663 843 739 1.27

1 0.8 + 0.2cos(pt/6) 643 849 668 1.32

1 0.9 + 0.1cos(pt/5) 800 949 743 1.28

1 0.9 + 0.1cos(pt/4) 909 1227 1074 1.35

Case 5 40; 7.0

1 0.8 + 0.2cos(pt/6)

24

0.1 4148 4499 4205 1.08

1 0.8 + 0.2cos(pt/6) 0.25 7000 7275 7004 1.04

1 0.8 + 0.2cos(pt/6) 0.5 5824 7597 5874 1.30
*The meshes of Case 3 and 4 were divided into 5151 nodes and 10000 triangular elements, and the meshes of Case 5 was divided into 10251 nodes and 20000 triangular elements. The initial value
was complex and the head convergence tolerance was d = 1×10–10. Other hydrogeological parameters are listed in Table 1. Salt = 1 implies that salinity is involved in the model, whereas Salt = 0
does not.
A B

DC

FIGURE 4

Evolution of time step size Dt versus time step level j for different seawater intrusion scenarios simulated using the Picard, Newton, and NP methods:
(A) a = 40.0, n = 2.0, and Salt = 0; (B) a = 40.0, n = 7.0, and Salt = 0; (C) a = 30.0, n = 4.0, and Salt = 0; (D) a = 40.0, n = 2.0, and Salt = 1.
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were the largest around the middle tidal line, where the water level

changes most sharply, and the least near the high and low tidal lines,

where the water level varies most slowly. That is, the error increases

and then decreases during ebb and high tides, respectively.
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Moreover, a bigger frequency and amplitude will account for

more head and salinity inaccuracies, that is, 10–5< yerror< × 10–3,

5.3 × 10–2< cerror< 1.9 when Hsea= 0.9 + 0.1cos(pt/6), but 10–5<

yerror< 10–2, 0.2< cerror< 19.9 when Hsea= 0.8 + 0.2cos(2pt).
A B

DC

FIGURE 5

Evolution of head error ‖Y n+1 −Y n+1 ‖∞ versus time step level j for different seawater intrusion scenarios simulated using the Picard, Newton, and NP
methods: (A) a = 40.0 and n = 2.0; (B) a = 40.0 and n = 7.0; (C) a = 30.0 and n = 4.0; (D) a = 40.0, n = 2.0, and Salt = 1.
A B

DC

FIGURE 6

Schematic descriptions of a (A) seawater intrusion tide, 0.8 + 0.2cos(pt/6); the (B) average groundwater flow field of one tidal period following
stabilization; the (C, D) groundwater flow fields at high tide and low tide levels.
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3.4 Seawater intrusion on a slope beach

The surfaces of coastal aquifers typically feature a slope that can

alter the paths of porewater and effectively prevent seawater

intrusion (Li et al., 2008). Here, a sloped and narrow intertidal

zone (tanq = 0.1) on the upper surface was consideration on the

basis of Section 3.3, as shown in Figure 8A. The hydrogeological

parameters are listed in Table 1, and the average groundwater flow

field diagram for one tidal period cycle following stabilisation is

shown in Figure 8B. The groundwater flow field at the high tide and

low tide levels is shown in Figures 8C, D, respectively.

The seawater intrusion distance was up 1.94 m and the entire

area had a head distribution ranging from 0.72 to 0.88 m, as shown

in Figure 8B. As the hydraulic gradient increased, the flow velocity

also increased with an SGD of 3.53 × 10–5 m2/s. Figures 8C, D show

that the freshwater discharge ports (the blue arrows) moved down

with the seawater level. Case 5 in Table 3 compares the

computational speed of NP, Picard and Newton methods for

solving seawater intrusion with a sloping aquifer. The slope of the

aquifer and the total CPU time of the Picard method were smaller.

The greater the aquifer slope, the greater the hydraulic gradient, and

the faster the groundwater flow, which results in a smaller time step
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size based on the Courant number and a slower overall

computation. Furthermore, the Newton scheme offer the most

obvious advantages for the terrain with the largest slope. The

more triangular elements alternate between wet and dry

conditions and are exposed in the near-surface unsaturated zone

caused by tidal fluctuations, the worse the continuity of pore flow

affected by topography, and the longer the water retention time.

Figure 9 shows the evolution of different factors versus the time

step level j of the seawater intrusion problem with a sloping aquifer

simulated using three methods. Although the iterations at each time

step level were always fewer than six times in Figure 9A, the time

step size of the three methods was always bounded to 2 s by the

Courant number, as shown in Figure 9B. The computation time at

each time step level of the Picard scheme was greater than that of

the Newton scheme (Figure 9C); therefore, the total CPU time of

the Picard method was approximately 3000 s less than that of the

Newton method, as shown in Figure 9D. The head and salinity

calculation errors for the seawater intrusion problem with a sloping

aquifer were simulated using different methods. The evolution of

head and salinity errors versus time step level j showed periodic

changes with the ebb and flow of the sea tide, which are essentially

consistent with those in Section 3.3 and are not shown here.
A

B

D

E

FC

FIGURE 7

Evolution of head and salinity errors versus time step level j of different seawater intrusion scenarios simulated using the Picard, Newton and NP
methods. (A, D) Hsea = 0.8 + 0.2cos(pt/6); (B, E) Hsea = 0.9 + 0.1cos(pt/6); (C, F) Hsea = 0.8 + 0.2cos(2pt).
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4 Summary and discussion

The coupled system of groundwater flow and solute transport in

coastal aquifer with variable saturation and density contains several

nonlinear terms, that can only be resolved using numerical
Frontiers in Marine Science 12
methods. Numerical methods for solving such large-scale

nonlinear problems must employ an efficient (ensuring the

optimal utilisation of CPU and storage resources to achieve the

desired accuracy of the solution) and robust (showing acceptable

convergence in a wide range of simulation scenarios) algorithm.
A B

DC

FIGURE 9

Evolutions of different factors versus time step level j of the seawater intrusion problem with a sloping aquifer simulated using the Picard, Newton,
and NP methods: (A) iterations at each time step level; (B) time step size Dt; (C) CPU time at each time step level; and (D) sum of CPU time until
current time step level.
A B

DC

FIGURE 8

Schematic descriptions of (A) seawater intrusion with a sloping aquifer; the (B) average groundwater flow field of one tidal period cycle following
stabilisation; the (C, D) groundwater flow fields at high tide and low tide levels.
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Although the Newton iterative scheme have been applied to

solve a series of groundwater flow problems in porous media with

variable saturation, including 1D, 2D, and 3D steady and unsteady

flows, these did not consider the influence of many nonlinear

factors special to the coastal zone on the Newton iterative

calculation. This study presented the finite element numerical

discrete form of groundwater flow and solute transport equation

in the coastal zone, the Picard and Newton iterative framework, and

a new numerical solution. The reliability of the numerical solution

was demonstrated by resolving a typical soil water seepage problem

and a modified Henry problem. This was then applied to three

different scenarios to solve the seawater intrusion problem.

The computational advantages and disadvantages of different

solutions are compared, which revealed that several factors affect

the speed of solving the problem of coastal groundwater flow,

including the initial values of the model, the soil hydraulic model,

tidal changes, slope effects, and the size of the grid. Tidal action

represents the strong hydrological conditions at the surface, while

slope effects and soil hydraulic model represent the hydraulic

characteristics of the aquifer. These factors first affect the

groundwater flow and solute transport processes in the shallow

aquifer, especially in the unsaturated soil zone, thereby affecting the

nonlinearity of the flow equation and ultimately affecting the speed

of model calculation. The size of the grid directly determines the

order of the equation group after numerical discretisation. The

higher the order, the greater the required hardware storage and

computational resources, directly affecting the model calculation

time. Once the model considers salinity, the calculation speed will

be limited by the Courant number, which directly affects the

model’s calculation time. Finally, the initial values directly

determine the convergence speed of the equation group, and also

play a key role in determining whether the Newton-Picard method

can outperform the Picard method. A single iteration calculation of

the Newton method takes more time than the Picard method,

making it necessary to use fewer iterations than the Picard method

to exchange for a greater computational advantage.

If the grid is relatively coarse (the order of the nonlinear matrix

equation is lower) and the soil hydraulic model parameters a is

large and n is small (the nonlinearity of the flow equation increases),

then the Newton scheme has higher convergence accuracy and

faster computational speed than the Picard scheme. In case 2, the

computational speed of the Newton method can be as fast as 17

times that of the Picard method. In case 1, the computational

accuracy of the Newton method is three orders of magnitude higher

than that of the Picard method.

If the frequency and amplitude of the sea level fluctuation are

high and the slope of the aquifer is steep, the local flow in the

unsaturated zone becomes more complex, and the computational

advantage of the Newton method is present. In Cases 4 and 5, the

computational speed of the Newton iteration scheme can reach

about 1.3 times that of the Picard scheme (e.g., the tidal wave

amplitude increases to 0.3 m, the tidal wave frequency is 6.28 rad/h,

or the slope of the tilted beach is tanq = 0.5).

Overall, compared with the classical Picard scheme, the Newton

scheme has advantages in computing speed and better convergence,
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but it increases the hardware cost of the computer. Therefore,

additional optimisation methods should be considered during the

actual calculation process, and multiple simulations should be

attempted to determine the most effective numerical algorithm

for different problems.
5 Conclusions

In this study, a new derived numerical solution of the coastal

groundwater flow problem based on the Newton scheme was

constructed, and the FORTRAN codes of the Newton and NP

methods were written for the use of the relevant personnel. Their

calculation effects in solving different numerical models (including

two typical cases and three seawater intrusion models) were

compared and analyzed. The following conclusions were drawn:

i. The variable-density effect caused by salinity significantly

slowed the overall calculation of the model, but the main reason for

the great difference in calculation speed of different solutions is still

the variable saturation.

ii. The calculation speed of the Newton scheme is influenced by

the initial value, soil hydrodynamic model parameters, tidal

fluctuations, and slope effect. If the frequency and amplitude of the

tidal fluctuations is larger, the slope of the aquifer is larger, and the

soil hydraulic model parameter a is larger and n is smaller, the local

flow in unsaturated zone will be more complex, and the nonlinear

flow equation will be stronger. Compared with the Picard scheme, the

Newton scheme has higher convergence accuracy and faster

calculation speed.

iii. Among Newton, Picard and NP methods, the NP method

can improve the robustness of the solution and overcome the

sensitivity of the solution process to the initial value estimation

compared with the Newton method. The NP method optimizes the

convergence of the solution and can achieve higher convergence

accuracy through fewer iterations under the condition of relatively

appropriate initial values in compared with the Picard method.
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