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Southeast Asia is home to some of the planet’s most carbon-dense and

biodiverse mangrove ecosystems. There is still much uncertainty with regards

to the timing and magnitude of changes in mangrove cover over the past 50

years. While there are several regional to global maps of mangrove extent in

Southeast Asia over the past two decades, data prior to the mid-1990s is limited

due to the scarcity of Earth Observation (EO) data of sufficient quality and the

historical limitations to publicly available EO. Due to this literature gap and

research demand in Southeast Asia, we conducted a classification of

mangrove extent using Landsat 1-2 MSS Tier 2 data from 1972 to 1977 for

three Southeast Asian countries: Myanmar, Thailand, and Cambodia. Mangrove

extent land cover maps were generated using a Random Forest machine learning

algorithm that effectively mapped a total of 15,420.51 km2. Accuracy

assessments indicated that the classification for the mangrove and non-

mangrove class had a producer’s accuracy of 80% and 98% user’s accuracy of

90% and 96%, and an overall accuracy of 95%. We found a decline of 6,830 km2

between the 1970s and 2020, showing that 44% of the mangrove area in these

countries has been lost in the past 48 years. Most of this loss occurred between

the 1970s and 1996; rates of deforestation declined dramatically after 1996. This

study also elaborated on the nature of mangrove change within the context of

the social and political ecology of each case study country. We urge the remote

sensing community to empathetically consider the local need of those who

depend on mangrove resources when discussing mangrove loss drivers.
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1 Introduction
Mangroves contribute up to 10–15% of global carbon storage

for coastal oceans and up to 10–11% of biogeophysical coastal

carbon cycling (Bouillon et al., 2008; Alongi, 2014; Simard et al.,

2019). This makes them one of the most carbon-rich and carbon-

sequestering forests with the potential to mitigate climate change

and biodiversity loss (Donato et al., 2011; Howard et al., 2017;

Adame et al., 2021). They are also essential to biogeochemical

processes, erosion prevention, sedimentation, protection against

extreme weather events, and support for coastal cultures and

economies (Singh et al., 2005; Brander et al., 2012). Altogether,

the ecosystem services provided by mangroves have been estimated

at $1.6 billion per year (Polidoro et al., 2010). Although land

managers and coastal community members have understood their

value, some studies have estimated a total mangrove carbon stock

decline of 158.4 Mt over the course of 1996 to 2016 (Richards

et al., 2020).

Fortunately, the continuity of satellite data has enabled

important insight on mangrove change dynamics. The Landsat

program provides the most continuous terrestrial remote sensing

records that span the last 50 years (Loveland and Dwyer, 2012;

Wang et al., 2019; Yan and Roy, 2021). The Landsat repository has

proven fundamental to mapping the distribution and change of

mangrove forests around the world (Spalding et al., 2010; Giri et al.,

2011; Hamilton and Casey, 2016; Goldberg et al., 2020; Bunting

et al., 2022; Murray et al., 2022). Globally, the Landsat archive has

recorded an estimated global loss of 20–35% since 1980 (Valiela

et al., 2001; Polidoro et al., 2010) with estimated rates of loss

between −0.16% and −3.4% (Hamilton and Casey, 2016; Bunting

et al., 2022), yet many studies also document high rates of

variability. One study found that various changes were often at

odds with one another: in some cases even the direction of change

was inconsistent among datasets Friess and Webb, 2014. Estimates

of mangrove loss depend on the availability, observation period, and

spatial coverage of mangrove data products (Gibbs et al., 2007;

Friess and Webb, 2014) to reduce this variability. As a result, we

speculate that estimates of historical rates of loss before the turn of

the 21st century are not well-constrained (Everitt and Judd, 1989;

Wang et al., 2019; Lewis andMacDonald, 1972; Lorenzo et al., 1979)

due to four primary reasons: the challenges of working with earlier

EO data (Faundeen et al., 2004; Pasquarella et al., 2016), region-

specific conflicts that reduced the historical capacity for research

(Han et al., 2020; Lekfuangfu and Nakavachara, 2021), the

subsequent lack of remotely sensed mangrove extent data

products (Wulder et al., 2016; Hu et al., 2018), and a resulting

dependence on unreliable reporting of spatial extents (Friess and

Webb, 2014; Wang et al., 2019). As we embark on the UN Decade

on Ecosystem Restoration, we hope to enhance ongoing

conversations on the historical changes of mangrove extent by

filling this research gap in the literature.

The challenge with integrating earlier sensors is related to a

historical lack of accessibility and limitations with the Landsat 1-5
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Multispectral Scanner System (LMSS) (U.S. Geological Survey,

Department 2018) and other remotely sensed observations.

Individual use of Landsat imagery was severely limited until

Landsat transitioned to a free and open data policy in 2008

(Pasquarella et al., 2016; Zhu et al., 2019). The high demand for

Landsat data has led to improvements in calibration and corrections

across various sensors, but only 49% of this satellite repository has

been corrected to its highest level of precision and terrain

processing (L1TP) which is characterized by its well-adjusted

radiometry and inter-sensor capacity for calibration (U.S.

Geological Survey, Department 2018; Yan and Roy, 2021). The

remaining images in the archive have been processed to the lower

L1G level of correction given the lack of elevation data and ground

control references that the Level 1 Product Generation System

requires (Devaraj and Shah, 2014; U.S. Geological Survey

Department, 2018). Radiometric calibration that meets research

standards is critical to developing the modeling methodologies that

can be applied consistently over different scenes and image dates

when conducting mangrove mapping projects.

As a result, most global and regional mangrove mapping efforts

only date back to 2000, with a few extending into the 1990s

(Bunting et al., 2022; Murillo-Sandoval et al., 2022; Hamilton and

Stankwitz, 2012), which can influence conservation decision

making and outcomes (Friess and Webb, 2014; Hamilton et al.,

2018; Dahdouh-Guebas and Cannicci, 2021). One such study

(Dahdouh-Guebas and Cannicci, 2021) made the distinction that

a variety of rehabilitation and restoration targets on mangrove

health assessments rely on the earliest available earth observation or

past vegetation dataset to establish which areas can be sustainably

rejuvenated and which are a restoration priority (Wang et al., 2019;

Dahdouh-Guebas and Cannicci, 2021). Although mangrove remote

sensing can be traced back to the 1970s (Kuenzer et al., 2011), they

are few, the majority were completed without accuracy assessments,

or were restricted to sub-regional spatial coverages (Lorenzo et al.,

1979; Lewis and MacDonald, 1972; Everitt and Judd, 1989; Islam

et al., 2019; Wang et al., 2019). Albeit one of the more extensive

mapping efforts executed by Giri et al. (2008) were able to map

country-wide mangrove changes for the tsunami affected regions of

Asia (including Thailand and Myanmar) at three epochs over the

course of 1975 to 2005. Furthermore, by 2018, over 435 publications

had been completed enumerating the extent of mangrove

ecosystems, but literature gaps remained from 1972 to 1995

(Kuenzer et al., 2011; Wang et al., 2019) with little to none of the

publications utilizing wall to wall LMSS coverage for regions in

Southeast Asia (Lorenzo et al., 1979; Reddy et al., 2007; Rahman,

2012; Li et al., 2013; Son et al., 2014; Islam et al., 2019).

As a consequence, our understanding of mangrove rates of

change before the 1990s are variable. According to multiple

comprehensive reviews on the remote sensing of mangrove extent

and change (Hu et al., 2018; Friess et al., 2019; Wang et al., 2019),

there is high uncertainty in both regional and global estimates.

Historical and predicted estimates of change over time can therefore

result in conflicting deforestation and afforestation trends

depending on the datasets used in the models (Friess and Webb,
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2014). Detailed reporting on mangrove area approximations are

error-prone due to their dependence on coarse resolution surveys

and inconsistent methods (Hu et al., 2018; Friess et al., 2019). As

such, there is a need to utilize the full capacity of EO to more

accurately observe mangrove forests earlier in the satellite record,

particularly those with historically high and uncertain rates

of deforestation.

Southeast Asia contains the greatest proportion of mangrove

area (34%) in the world (Thomas et al., 2017; Bunting et al., 2022),

but aquaculture, mining, agriculture, and urban expansion

threaten these mangroves (Worthington and Spalding, 2018;

Richards and Friess, 2016; DeFries et al., 2010; Webb et al.,

2014; Friess et al., 2016). To the best of our knowledge, there

are little to no studies using LMSS L1T Tier 2 Collection 1 Level 1

Raw DN observations to both map and report on the extent of

mangroves for Thailand, Myanmar, and Cambodia in the 1970s.

This means that national and international reporting on the net

losses of mangrove extent rely on estimates from the Food and

Agriculture Organization (2007; Friess et al., 2019) which

contribute to contradictory deforestation rates in the mainland

of Southeast Asia. For Thailand and Myanmar, studies report rates

of change with a range of 7.08 ± 42.99 km2 yr−1 and −60.61 ± 49.74

km2yr−1 over the course of 1960 to 2010 and 1972 to 2010 (Friess

and Webb, 2014). This is just one example of how high levels of

uncertainty can be attributed to the use of small amounts of

mangrove loss projections (Friess et al., 2019) causing them to be

skewed (Ruiz-Luna et al., 2008; Kovacs et al., 2010; Friess and

Webb, 2014). These case study countries were therefore selected

because South Asia, Southeast Asia, and Asia-Pacific contain

approximately 46% of the world’s mangrove ecosystems, yet is a

global hotspot of change (Gandhi and Jones, 2019). Furthermore,

the study by Gandhi and Jones (2019) found that Myanmar was

the primary hotspot with losses in excess of 35% from 1975 to

2005 and 28% over the course of 2000 to 2014. This study

therefore chose to assess historical rates of mangrove change in

the mainland of Southeast Asia where LMSS scenes were available

and of sufficient quality. An older and effective mangrove extent

baseline would supplement management activities with updated

baselines when reporting on mangrove change dynamics

(Kodikara et al., 2017; Chakraborty et al., 2019; Dahdouh-

Guebas and Cannicci, 2021). Although the work of updating

mangrove extent baselines will need additional studies to not

run the risk of skewing future mangrove change projections

In this study, we systematically evaluate regional losses related

to mangrove extent in three Southeast Asian countries to address

the lack of earlier mangrove extent baselines: Myanmar, Thailand,

and Cambodia. We generated a map of mangrove extent utilizing

LMSS scenes that met our research criteria and was compared to

existing mangrove extent data from 1996, 2007, 2010, 2016, and

2020 (Bunting et al., 2022). The implications of the new mangrove

extent baseline for the 1970s is further discussed within the context

of the study area’s political, ecological, and economic progress and

demonstrate the nuances of change specifically in these case study

countries. We hope that this study can work to better inform

conversations on mangrove extent and change at longer time

scales and reduce the lack of data products before the 1990s.
Frontiers in Marine Science 03
2 Data and methods

2.1 Study area

Our region of interest (ROI) consists of three countries:

Myanmar, Thailand, and Cambodia. Vietnam was originally

included in the workflow, but due to the low quality and quantity

of observations, the results were excluded in the study. The ROI

resides within a tropical monsoon and rainforest climatic zone with

temperatures above 25°C throughout the year (Peel et al., 2007).

Mangrove forests are composed of trees and shrubs that are adapted

to the saline and brackish conditions of the ROI coastline. They are

taxonomically diverse plant species and occupy 42% of each

coastline in the ROI (Bunting et al., 2022). Mangroves in

Thailand are found consistently along muddy tidal flats or at the

base of river mouths along the southern and eastern coasts, with a

two-story forest structure (Pumijumnong, 2014), and at higher

densities around the Gulf of Thailand and Andaman Sea. The

lower story of mangroves in Thailand grow more than 20 m and are

dominated by species from the Rhizophora, Herritiera, and

Xylocarpus genera. The upper story mangrove species of Thailand

include the Bruguiera and the Ceriops genera, with some of these

species like the Bruguiera gymnorrhiza growing more than 40 m

above the forest and with trunks as thick as 2 m (Aksornkoae, 2012;

Pumijumnong, 2014). Myanmar hosts an array of mangrove species

just as numerous and diverse from the Rhizophora, Avicennia,

Bruguiera, Ceriops, and Xylocarpus (Zöckler and Aung, 2019)

genera and are primarily found in the Rakhine, Ayeyarwady, and

Tanintharyi divisions (Zöckler and Aung, 2019). Mangrove forests

in Cambodia are found primarily in four provinces, Koh Kong,

Sihanoukville, Kampot, and Kep (Nop et al., 2017; Kozhikkodan

Veettil and Quang, 2019). The most found species in Cambodia are

from the Rhizophora, Nypa, Bruguiera, Ceriops, Lumnitzera,

Heritiera, Xylocarpus, Hibiscus, Phoenix, and Acrostichum genera.
2.2 Pre-processing and classification

The methodology (Figure 1) used to produce the historical

extent maps was divided into six steps – delineation of the ROI,

evaluation and selection of Landsat 1-2 MSS (LMSS) Collection 1

Tier 2 DN, processing and correction of LMSS, generation of a

1970s mangrove map, assessment of accuracy, and a comparison of

the baseline to Global Mangrove Watch (GMW) mangrove extents

(Bunting et al., 2022). All processing and analyses were carried out

using the Google Earth Engine Platform, ArcGIS Pro, and R.

Figure 2 displays the coastal mask used to delineate the region of

interest, pixels assigned with a value of zero due to no Landsat

observations, the Landsat scene WR-1 path and row, and the 1970s

mangrove extent. The final LMSS composite and the 1970s

mangrove classification can also be referred to in Figures 1, 3.

Step one in our workflow included data filtering and selection

followed by a series of pre-processing steps. To delineate coastal

areas and subset the LMSS data needed for processing, a coastal

mask was generated to include all potential mangrove areas. The
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mask included: the known extent of more current mangroves and

coastal wetlands based on the global Wetland Extent Map (Mcowen

et al., 2017) and the GMW dataset (Bunting et al., 2022), areas

within 10 km of the shoreline, based on the global shorelines data

(Sayre et al., 2019) and areas lower than 20 m elevations based on

the Shuttle Radar Topography Mission (SRTM) DEM (Farr et al.,

2007; Yang et al., 2011).

Given the unavailability of Tier 1 Landsat data, we utilized

LMSS Tier 2 data for our analysis. Scenes with this level of

processing have a lower radiometric and positional quality, but

due to the lack of available scenes, this collection was selected. The

coastal mask was used to select scenes from LMSS Tier 2, which

were scaled and calibrated to at-sensor radiance. Only systematic

terrain (L1GT) and systematic (L1GS) processing were applied to

this collection due to insufficient ground control, excessive cloud

cover, and geolocation issues (U.S. Geological Survey Department,

2018). This collection has a resampled spatial resolution of 60 m

and a spectral range of 0.5–1.1μ including the Green, Red, NIR-1,

and NIR-2 channels, and corresponds to WRS-1 (Wulder et al.,

2022; U.S. Geological Survey Department, 2018). All scenes

available from 1972 to 1977 were selected using the coastal mask

as a spatial filter, which was then followed by a series of exclusionary

steps. Scenes that did not have all of the five bands present which

are the Red (B4), Green (B5), Near Infrared 1 (B6), Near Infrared 2

(B7), and the quality assurance bitmask (QA_Pixel) bands were

excluded. Additionally, scenes were excluded if they had L1GS

processing, exceeded a spatial displacement greater than ~24m or a

root mean square value of 0.4, and cloud cover greater than 30%;

effectively reducing imagery from 3,153 to 689 (see Figure 4).
FIGURE 2

The study area showing the coastal mask that was generated to
constrain the analysis to mangrove areas, the relevant WRS-1 Path/
Row of the Landsat images used, the areas with no available Landsat
data, and the 1970s mangrove distribution.
FIGURE 1

Overview of the methods used to conduct a random forest classification of mangrove forest extent in the case study countries. The analysis
consisted of filtering and pre-processing; creation of yearly image composites; calculation of predictors; masking to constrain the analysis; a random
forest classification; and post-classification cleanup.
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Images were then manually excluded if they had excessive cloud

cover over mangrove areas, erroneously saturated pixels, or

abnormal image artifacts, further reducing the collection to 371

images (see Figure 5). These issues were related to excessive detector

striping, transcription artifacts, abnormal saturation, memory

effect, and scan mirror pulse errors (U.S. Geological Survey

Department, 2018; Vogeler et al., 2018).

Following the manual inspection and removal of Landsat scenes

from Landsat MSS over the study area, the next step was to mask out
Frontiers in Marine Science 05
cloud cover and correct the imagery to top-of-atmosphere reflectance.

We did this by using an automated cloud and cloud shadow detection

and masking algorithm proposed by Braaten et al. (2015), called the

Landsat Multispectral Scanner System clear-view-mask or MSScvm.

This algorithm is an already established automated approach that

identifies andmasks out clouds based on green band brightness and the

normalized difference between the green and red bands. It further
FIGURE 4

A histogram showing the image counts for all available Landsat 1 & 2
imagery over the region of interest and over the years of 1972 to
1977. The histogram shows that image availability was high before
the filter process was initiated.
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FIGURE 3

The LMSS composite circa 1972 to 1977. The displayed LMSS mosaic was constructed using the medoid on a yearly basis and then the yearly
mosaics were composited using the median across the temporal period. The resulting random forest classification of mangrove extent is overlaid on
the composite. Different mangroves across the study area are highlighted which include the (A) Rakhine state, Myanmar, (B) Ayeyarwady Delta,
Myanmar, (C) Vicinity of Samut Sakorn, Thailand, (D) Tanintharyi Division, Myanmar, (E) Trat, Myanmar bordering Cambodia, and (F) Koh Kong
Province, Cambodia.
FIGURE 5

A histogram showing the image counts for all available Landsat 1 & 2
imagery over the region of interest and over the years of 1972 to 1977.
Image availability was decreased by 88.23% once filters were applied to
the collection to exclude imagery based on RMSE, cloud cover %,
spatial characteristics, sensor attributes, and scene processing.
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identifies and masks cloud shadows using near infrared band darkness

and cloud projection. Along with this cloud detection, it also corrects

for topography-induced illumination and water identification using a

digital elevationmodel (Braaten et al., 2015). Then on a per image basis,

MSScvmwas applied to each image effectively removing themajority of

cloud cover and cloud shadow. Following that, we created a mosaic for

subsequent classification. As shown in Figures 4, 5, the amount of

imagery is highly variable. This study selected the years 1972 to 1977

due to these years having the highest and most semi-consistent image

count with almost wall to wall coverage (see coastal mask in the

Figure 1 study area) during the 1970s. Once the images were identified,

the cloud free mosaics were generated per calendar year from 1972 to

1977 on a per pixel basis using themedoid, a more robust version of the

median. Although these studies are more effective with seasonal

composites, this was not feasible due to low image counts. The

medoid represents the point with the minimal summed distance to

all points in a data set. It also takes into consideration the multiple

dimensions in the selection relevant to the different bands of a scene

found within a year (Flood, 2013). The medoid was calculated by

finding the difference between the median and the corresponding

median of each band squared followed by finding the sum of the

powered differences across bands per image for all observations. These

annual medoid mosaics were much more sensitive to extreme outliers

resulting in a more consistent representation of the study area. This

approach was also selected to account for the inconsistent number of

Landsat observations per year. The yearly medoid image collection was

then used to produce a single five-year composite over the study period

using the median across all medoid observations (see Figure 3 for

composite results and Figure 1 for workflow).

Following the steps used to create a single mosaic of LMSS from

1972–1977, a series of indices were calculated that are ideal for

mapping mangrove extents (Yancho et al., 2020). The indices that

were calculated include the simple ratio (SR), normalized difference
Frontiers in Marine Science 06
vegetation index (NDVI), the normalized difference water index

(NDWI), the combined mangrove recognition index (CMRI), the

soil-adjusted vegetation index (SAVI), the optimized soil-adjusted

vegetation index (OSAVI), and the greenness chlorophyll

vegetation index (GCVI) which serves as a proxy for chlorophyll

content and proved to be useful in some mangrove mapping studies

(Jordan, 1969; Tarpley et al., 1984; Huete, 1988; Gao, 1996; Gupta

et al., 2018; Yancho et al., 2020; Rondeaux et al., 1996; Gitelson

et al., 2003; Chamberlain et al., 2021). In addition to the vegetation

indices, slope and elevation were also incorporated which was

extracted from JAXA’s Land Observing Satellite (ALOS) (Takaku

et al., 2014; Takaku et al., 2020). The predictors used for the random

forest classifier can be referred to in Table 1 in addition to the

original bands used in the LMSS collection.

Before beginning the process of collecting model calibration and

validation samples, masks were applied to the coastal region of

interest (see Figure 1) using the ALOS DSM (Takaku et al., 2014;

Takaku et al., 2020) and NDVI bands. These datasets were used to

exclude areas that were not vegetation using NDVI pixels less than

0.05 and areas of elevation greater than 40 m. This masking

excluded any area that did not have an NDVI values associated to

dense vegetation, such as urban, water, and bare ground areas in

addition to higher elevation areas. Given this level of masking, this

study specifically focused on dense assemblages of mangrove forests

and excluded only the most fragmented mangroves with low NDVI

values. Training polygons were collected using the final composite

by digitizing areas representing the most homogenous mangrove

and non-mangrove vegetation pixels. Due to the lack of reference

data from the 1970s, the composite itself was used as a reference to

digitize the training samples. In total, 1,134 points were selected for

the mangrove (n=283) and non-mangrove (n=851) land cover

classes. Using the Landsat MSS composite (see Figure 3) an area

was designated as mangrove if it was found within the coastal mask
TABLE 1 The vegetation index inputs were created using the bands from Landsat MSS 1 & 2 as listed on the first row.

Variable Spatial & Temporal
Resolution

Dataset Reference

Green, Red, NIR-1, NIR-2,
Pixel_QA

60 m, 1972–1977 Landsat MSS 1 & 2 (U.S. Geological Survey Department, 2018; Gorelick et al., 2017)

*NDVI 60 m, 1972–1977 Landsat MSS 1 & 2 (Tarpley et al., 1984; U.S. Geological Survey Department, 2018)

*NDWI 60 m, 1972–1977 Landsat MSS 1 & 2 (Gao, 1996; U.S. Geological Survey Department, 2018)

*GCVI 60 m, 1972–1977 Landsat MSS 1 & 2 (Gitelson et al., 2003; U.S. Geological Survey Department, 2018)

*SR 60 m, 1972–1977 Landsat MSS 1 & 2 (Jordan, 1969; U.S. Geological Survey Department, 2018)

*CMRI 60 m, 1972–1977 Landsat MSS 1 & 2 (Gupta et al., 2018; U.S. Geological Survey Department, 2018)

*SAVI 60 m, 1972–1977 Landsat MSS 1 & 2 (Huete, 1988; U.S. Geological Survey Department, 2018)

*OSAVI 60 m, 1972–1977 Landsat MSS 1 & 2
(Rondeaux et al., 1996; U.S. Geological Survey Department,

2018)

*Slope 2006
Advanced Land Observing

Satellite
(Takaku et al., 2014; Gorelick et al., 2017; Takaku et al., 2020)

*DSM 30 m, 2006
Advanced Land Observing

Satellite
(Takaku et al., 2014; Gorelick et al., 2017; Takaku et al., 2020)
The slope was calculated using the DSM from the ALOS dataset. All the datasets were accessed using the Google Earth Engine repository. The slope was calculated using the Google Earth Engine
slope functions (Gorelick et al., 2017). The predictors used for the Random Forest model used in this study are denoted by an asterisk.
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region, was found along the coastline, found along tributaries

closest to the coastline, had a dense texture, and was a patch with

high and consistent NDVI values. The non-mangrove training areas

were selected based on whether it was found in water, areas at

greater distances from the coast, and in groupings of pixels that

were not homogenous or did not have a high NDVI value. These

characteristics were chosen given that the minimum mapping unit

(MMU) was around 0.16 ha and that we had a goal of mapping an

assortment of mangrove trees and not individual mangrove trees

below the MMU.

Following the preparation of predictors and collection of

training samples, a random forest algorithm was used to predict

the distribution of mangrove and non-mangrove areas for the entire

study area using the LMSS mosaic. Random forest is an approach

that uses non-parametric classification and decision trees in

addition to classification and regression trees (Breiman, 2001).

The hierarchy of this classifier is composed of a root node,

inclusion of predictor samples, node separator with relevant

decision rules, and the end of the leaf node with the desired

classes – or in our case the probability of belonging to the

mangrove class. Random forest was also chosen because models

in other studies resulted in higher accuracies in comparison to other

decision tree classifiers (Breiman, 2001; Pal, 2003; Ghimire et al.,

2012; Belgiu and Drăgut,̧ 2016). The predictors that were selected

for the model used in this study included the previously prepared

indices or elevation parameters; SR, NDVI, NDWI, CMRI, SAVI,

OSAVI, GCVI, and DSM. The random forest model we selected

utilized a total of 100 trees sampled at random for every 5th

predictor, a minimum leaf population of 1, a bag fraction of 0.5

per tree, no limit on the maximum number of leaf nodes in each

tree, a randomization seed value of 0, with the output mode set to a

probability output. Following this classification of continuous

mangrove probability, a series of post classification steps were

used to remove noise and to threshold the classification’s bimodal

distribution. First the classification was automatically thresholded

using a gray level histogram detection method proposed by Otsu

(1979) to divide the layer into two distinct classes, mangrove, and

non-mangrove. Once the classification was automatically converted

into a binary classification of mangrove and non-mangrove areas,

the classification was cleaned up to remove noise using a majority

filter. The majority filter was applied using a 3 by 3 kernel majority

filter where a given pixel would be changed if most of the cells

within a neighborhood were contiguous. Following the majority

filter, a series of dilation and erosion techniques were used to

generalize the zones using an evaluation of immediate orthogonal

and diagonal neighbors for a given mangrove or non-mangrove

region (Serra, 1982). The order of sorting priority was based on the

size of the mangrove and non-mangrove zones when performing

the classification smoothing. The classification was manually

cleaned up to eliminate additional salt and pepper areas, areas

that had visible errors introduced by excessive cloud cover or had

any additional noise. An example of this would be any errors of

commission found farther from the coastline where brackish waters

are less concentrated.

To assess the classification, we followed the “good practices”

proposed by Olofsson et al. (2013) and Olofsson et al. (2014) using a
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random stratification approach over the study area. It is important

to note that the area proportion for the mangrove and non-

mangrove class were 16% and 84% of the total study area and the

sample allocation was based on the smaller area proportion class

(mangrove). Furthermore, we anticipated an accuracy of 70% and a

proportion of 20% for the mangrove class, and a target standard

error of 1%. This leveraged a set of 300 samples for the non-

mangrove class and a set of 67 samples for the mangrove class.

However, a total of 28 were impossible to verify visually, therefore

our final dataset resulted in 339 samples: 54 to mangrove and 285 to

non-mangrove. The verification process took place in the Collect

Earth platform (Bey et al., 2016; Saah et al., 2019), each sample was

inspected using both the original LMSS mosaic, Google Earth

Imagery (Lisle, 2006), and the classification overlaid as a

reference. Sample points were validated as mangrove when 50%

of a 30 m x 30 m square centered about a sample point had a higher

NDVI reflectance (manifested as a dark red color), were adjacent to

the coastline, at the intersection of a river outlet and the ocean, or

were greater than the MMU of ~0.16 ha. The non-mangrove class

was labeled if a given sample point was found in open water, bare

ground with some vegetation cover, water with some vegetation,

heavily fragmented vegetation, and vegetation that was not

immediately adjacent to the coastline or river outlets for greater

than 50% of a 30 m x 30 m area. Then the attribute table of the

validation point was updated by extracting the value found in the

classification at each point location. This was used to calculate the

error matrices, overall, producer’s, user’s accuracy, and

Kappa Coefficient.

Once the classification and accuracy assessment was completed,

we analyzed the extent of mangrove ecosystems for our ROI within

the context of each country’s unique circumstances, GMW extents,

and other external estimates. In order to measure change in

mangrove extent between the 1970s and 2020, we compared our

1970s mangrove cover map to maps created by GMW for 1996,

2007, 2010, 2016, and 2020 (Bunting et al., 2022). The GMW maps

were reprojected and resampled to match the spatial resolution of

the LMSS classification results. Then, the layer was rasterized.

Lastly, the GMW raster was masked to exclude all areas that

overlapped with no Landsat observations available in the final

LMSS classification product.
3 Results

3.1 Data processing and uncertainty

A total of 3,153 images were identified during the initial data

exploration phase before additional filters were applied. This study

identified 371 images suitable for classification that met spatial

offset and cloud cover filters, which reduced the available imagery

by 88%. The study had an average of 63 ± 38 images per year but

with significant interannual variability. The highest image

availability occurred in 1973 (n = 109) and 1976 (n = 103). The

year with the lowest image count was 1974 with 9 images. Following

the filtering and scene selection phase, the LMSS imagery was

corrected to top-of-atmosphere, cloud and cloud shadow masked,
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and then composited into a mosaic over the study period resulting

in a cloud free medoid mosaic of LMSS. This approach likely has

high amounts of variability and uncertainty due to the lack of

observations & the inability to map mangrove cover seasonally.

Additionally, the coarser spatial, spectral, and radiometric

resolution of MSS constrains the capacity for mapping mangroves

during the 1970s. This work would greatly benefit from additional

efforts to map mangroves on a seasonal basis over a longer time

period consistently with harmonization across all of Landsat’s

sensors as done by other studies (Braaten et al., 2015; Zhu et al.,

2018; H. Nguyen et al., 2019; Yan and Roy, 2021). Following the

classification, the final mangrove data product was assessed for

accuracy, but with other constraints.

The overall accuracy and kappa coefficient was 95% and 0.82

respectively. Producer’s and User’s accuracy were 98% and 96% for the

non-mangrove class and 80% and 90% for the mangrove class

(Table 2). These accuracy results indicated that the model was less

likely to identify real mangrove features on the ground in comparison

to the mapped mangrove feature in the map. The higher reliability, or

User’s accuracy for the mangrove class indicated that map users were

more likely to find the mangrove areas identified in the map on the

ground. Some of these uncertainties were likely related to the quality of

the mosaic and how consistent a given pixel may be. Take for example

the issue of low image counts for 1974 in this study and the fact that

there were regions with no Landsat observations.
3.2 1970s baseline of mangrove extent and
assessment of change from 1970s to 2020

Our 1970s map of mangrove extent identified 15,420 km2 across

our study area (Table 3). Myanmar had the greatest extent of

mangroves (9,272 km2), followed by Thailand (5,407 km2) and

Cambodia (742 km2). When comparing our new 1970s baseline data

to existing GMW maps of mangrove extent, we found a sharp decline

inmangrove area between the 1970s and 1996. Across the study region,

mangrove area declined by 47% (corresponding to a loss of 8,239 km2)

during this period (Table 3). Loss rates were highest in Thailand (58%)

and lowest in Cambodia (14%). In Thailand, declines in mangrove

areas were especially pronounced around Bangkok and along the

eastern portion of the Gulf of Thailand (Figure 6). In contrast, areas
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with the greatest occurrence of persistence and gain were found in the

Mu Ko PhayamNational Park along the coastline up to theMu Ko Ra-

Ko Phra Thong National Park. Myanmar experienced a 42% decline in

mangrove area between the 1970s and 1996. Here, loss was greatest

around the Ayeyarwady Delta (Figure 7). In Cambodia, most losses

were concentrated along the Koh Kong coastline in the northwestern

portion of the country (Figure 8). Although Cambodia experienced

overall declines in mangrove extent between 1970s and 1996, there

were some southwest gains in the Bay of Kampong Som in the Botum

Sakor District of Koh Kong Province (Figure 8).

Firstly, the GMW estimates were masked using the areas labeled as

0 due to a lack of Landsat observations in the LMSS mosaic. The

inventory of extent of different time points up to 2020 show that rates

of mangrove loss across our study region declined dramatically after

1996 (Table 3; Figure 9). Overall, mangrove extent declined by 7%

between 1996 and 2007 and these rates were similar across the three

countries. Mangrove extent then showed little change between 2007

and 2016. Between 2016 and 2020, mangrove extent increased in all

three countries; rates of mangrove expansion ranged from 7%

(Cambodia) to 18% (Thailand). These results further extend our

understanding of mangrove change before the 1990s, a period of

data scarcity when it comes to mangrove data products.

4 Discussion

4.1 Data processing challenges and
limitations

In this study, we provided a semi-automatic approach to

delineating the extent of mangrove area using LMSS data from

the 1970s. We leverage the earliest available Landsat imagery using
TABLE 2 Accuracy metrics.

Producer Accuracy User Accuracy

Non-mangrove 0.982 0.962

Mangrove 0.796 0.895

Overall Accuracy 0.953

Kappa statistic 0.815
TABLE 3 A comparison of extent estimates from the new 1970s baseline and the *GMW extent.

MMR km2 Net Loss/
Gain km2

THAI km2 Net Loss/
Gain km2

KHM km2 Net Loss/
Gain km2

Total km2 Net Loss/
Gain km2

1972 9271.98 – 5406.59 – 741.95 – 15420.51 –

*1996 5345.00 −3926.98 2259.00 −3147.59 636.00 −105.95 8240.00 −7180.51

*2007 4965.49 −379.51 2119.24 −139.76 596.37 −39.63 7681.11 −559.00

*2010 4942.92 −22.57 2142.58 +23.34 589.83 −6.54 7675.33 −5.78

*2016 4912.69 −30.23 2144.17 +1.59 587.61 −2.22 7644.47 −30.86

*2020 5435.39 +523 2527.99 +383.82 626.92 +39 8590.30 +946
fr
GMW was masked to exclude areas that overlapped with no Landsat observation areas in the LMSS mosaic.
* Each estimate is attributed to global mangrove watch extent estimates (Bunting et al., 2022).
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MSS and compared it to more recent mangrove extent maps to

understand historical mangrove change. However, some limitations

remain, for instance none of the LMSS data from this period has

been processed to the highest level of terrain and precision (Braaten

et al., 2015; Roy et al., 2016). The issues that affected the quality of

the collection, a sensor that makes up a significant portion of the

early Landsat record (Yan and Roy, 2021), were related to a variety

of anomalous errors such as memory, effect, scan correlated shifts,

and scan mirror pulse1. In addition to sensor-related issues, there is

also the difficulty of conducting a remote sensing investigation in

the case study countries, one of the planet’s cloudiest regions

(Kontgis et al., 2015; Li et al., 2018; Oliphant et al., 2019).

Because of these challenges, this study excluded imagery that had

a spatial offset greater than 24 m, cloud cover of less than 30%,

imagery with oversaturated pixels, or excessive striping. It should

also be noted that the number of images found per year was not

consistently the same (Figures 4, 5) or of an ideal quantity to do

annual image classifications and change detection. As a result, we

had to composite multiple years’ worth of data to cover the entire

study area. These challenges will make it difficult to expand this

approach to other countries outside of our study area.

Following this phase, careful measures were taken to identify the

LMSS scenes that would be used in this study. The images then had to
1 https://www.usgs.gov/landsat-missions/landsat-known-issues
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be preprocessed to TOA and cloud masked using the MSScvm

(Braaten et al., 2015) algorithm. This algorithm was developed by

researchers to overcome the challenge of automatically detecting and

masking clouds from MSS (Braaten et al., 2015), but with some

limitations. This algorithm was designed to work with temperate

ecosystems, but due to the lack of automatic algorithms for MSS

cloud detection, MSScvm was selected for pre-processing procedures.

Many measures were taken to identify the best approach to

establishing a new baseline, but these limitations must be considered.
4.2 Shifting perspectives on mangrove
change

With our new 1970s baseline map of mangrove extent in our

case study countries, we identified a sharp decline in mangrove

extent primarily for Myanmar and Thailand between the 1970s and

1996. However, after 1996, mangrove loss rates declined

dramatically, and mangrove extent has been relatively stable since

the mid-2000s according to this assessment. We do believe that an

additional effort must be done to map the extents more consistently

and harmoniously across sensors over a dense time series. But that

was not possible at this time because of the lack of MSS scenes of

sufficient quality. The proximate and underlying drivers of gains

and losses for our study area are complex due to the history of

political and economic instability from situations like the reign of

the Communist Party of Kampuchea (CPK) over the course of 1975
FIGURE 6

The classification difference between the 1970s Thailand mangrove baseline and the 1996 GMW mangrove extent. The losses were most significant
in the Samut Sakhon, Nonthaburi, Bangkok, and Samut Prakan.
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to 1979 in Cambodia (Mosyakov, 2000) or the lack of electricity and

subsequent need for mangrove firewood (from the Ayeyarwady

delta) in the Yangon province of Myanmar. Furthermore, studies

have indicated that some of the Myanmar and Cambodia mangrove

losses may have been attributed to Thailand’s ban on logging in

1989 (Brown et al., 2001) proving that conservation measures can

have unintended deforestation consequences (Brown et al., 2001;

Pumijumnong, 2014; Lim et al., 2017). Meanwhile, Cambodia’s

decades of political conflict under the reign of CPK may have

resulted in lower rates of deforestation due to the lack of timber

demand prior to the 1980s (Boutros-Ghali, 1994; Le Billon, 2000).

Studies on the political ecology coupled with this study can help

shed light on the transition from war to peace or the nature of

different industries and their impacts on land cover and land

use change.
4.3 Country specific perspectives

In Cambodia, we calculated a total of 742 km2 for the period of

1972 to 1977. This is a more conservative estimate compared to

other studies that inventoried a total of 946 km2 for the same period

without using remote sensing (Cambodia Land Cover Atlas 1985/

87–1992/93, 1994; Cambodia Forestry Policy Assessment, 1996;

Ministry of Environment, Kingdom of Cambodia, 2009). Following

this time period, one study estimated a total of 758 km2 for 1989,
Frontiers in Marine Science 10
while another study mapped a total of 646 km2 by 1996

(Kozhikkodan Veettil and Quang, 2019; Bunting et al., 2022).

Over the course of 1996 to 2016, different studies estimated a

mangrove loss of 208–300 km2. When comparing the new 1970s

baseline to the estimate by Bunting et al. (2022) in 2020, this study

indicates an additional loss of 115 km2 ± 174 km2. Many of the

drivers of degradation and change have been attributed to shrimp

pond aquaculture; salt pan and charcoal production; and

infrastructure development (Kozhikkodan Veettil and Quang,

2019), but we suggest that the drivers of change were also very

much political especially during the temporal period of this study

(Boutros-Ghali, 1994; Le Billon, 2000).

It is important to note that several studies have indicated a high

level of uncertainty on Cambodian mangrove forest estimates (Rizvi

and Singer, 2016; Nop et al., 2017; Kozhikkodan Veettil and Quang,

2019). Although there is some uncertainty, these statistics show a

trend of little change between the 1970s era up to 1996 and may

serve as additional support to other claims on the political drivers of

mangrove persistence. During the period of 1975 to 1979, the CPK

(Boutros-Ghali, 1994; Le Billon, 2000) was the ruling regime in

Cambodia. During this time, the country experienced severe

famine, deaths associated to the lack of medicine, the

proliferation of disease, and mass genocide which led to the

deaths of up to 1.5 to 2 million people (Locard, 2005). These

extremely difficult circumstances indirectly enabled forest stability

and even gains (Le Billon, 2000) throughout the 1970s, which
FIGURE 7

The classification difference between the 1970s Myanmar mangrove baseline and the 1996 GMW mangrove extent. The area of Myoungmya and
Pharon showed the most jarring losses in Myanmar.
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helped almost two-thirds of the country to be completely forested

by the early 1980s (Cambodia Land Cover Atlas 1985/87–1992/93,

1994). Also, the aquaculture industry was not actively introduced

until 1960 in Cambodia and was relatively inactive during the time

of the CPK conflict. The active political conflict coupled with the

lack of aquaculture activities are the likely drivers of mangrove

stability seen between the 1970s to the 1990s.

Our estimate of mangrove extent from the 1970s for Thailand

(5,407 km2) were somewhat higher than estimates from previous

studies that mapped an extent with a range of 3,127–3,679 km2

(Aksornkoae, 2012; Pumijumnong, 2014; Charupphat and
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Charupphat, 1997; Klankamsorn and Charuppat, 1982; Barbier

and Cox, 2002; Naito and Traesupap, 2014). However, the large

losses in mangrove extent that we observed between the 1970s and

1996 agree with other studies (Charupphat and Charupphat, 1997;

Klankamsorn and Charuppat, 1982; Aksornkoae, 2012; Naito and

Traesupap, 2014). One such study that documented the economic

and demographic drivers of mangrove losses over the course of

1975 to 1996 in Thailand indicated that almost half (46%) of all

mangroves were lost to coastal shrimp farming (50–65%) and the

increased demand for land in coastal areas due to urbanization and

agriculture during the period of 1979 to 1996 (Barbier and Cox,
FIGURE 9

A histogram showing the distribution of mangrove extents comparing the new 1970s era baseline to the estimates for GMW at different time points;
1996, 2007, 2010, 2016, 2020. These estimates indicated an average loss of 44% from the 1970s to 2020 over the study period.
FIGURE 8

The classification difference between the 1970s Cambodia mangrove baseline and the 1996 GMW mangrove extent. The areas of Botum Sakor
showed a trend of persistence, while Srae Ambel showed areas of mostly loss.
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2002; Spalding et al., 2010). This study indicates that the losses were

12% greater (58%) over the same time.

Mangrove losses associated with Thailand were primarily

related to the demand for land development, aquaculture,

economic incentives, and policy failures, but only up until

industries started to aggressively expand. The studies by Barbier

and Cox (2002) and Bantoon (1994) observed how even though

aquaculture was introduced as early as 1974, the industry began to

have severe mangrove loss impacts after 1985 due to Japanese

demand (Bantoon, 1994; Barbier and Cox, 2002). In addition,

sustained economic growth caused coastal populations to grow,

boosting the demand for urbanization and economic crowding

around mangrove areas. This caused shrimp production to go

from 15,000 metric tonnes (KMT) in 1985 to 264,000 KMT in

1994 (Pednekar, 1998; Barbier and Cox, 2002). It also caused the

shrimp farm area to rapidly expand between 1983 and 1996 and the

number of farms to increase from 3,779 to 21,917. This boom in the

aquaculture industry in addition to increased urbanization are the

likely contributors to the severe mangrove losses seen

throughout Thailand.

Previous estimates of mangrove extent and change in Myanmar

exhibit a large amount of variation, highlighting the need for better

data for this region (Aung, 2007; Spalding et al., 2010; Thant et al.,

2012; Webb et al., 2014; Giardino et al., 2016; Veettil et al., 2018;

Alban et al., 2020). Some of these claims documented that extreme

overexploitation began as early as the Second World War to satisfy

the demands of the military with the worst forest overexploitation

occurring over the period of 1949 to 1972. According to Oo (2002)

and Kyi (1992), mangrove forests in the Ayeyarwady delta

decreased from 2,345 km2 in 1954 to 1,786 km2 in 1984. This

study speculated losses that are much higher than our findings

which established an area of 9,272 km² in the 1970s. More recently,

Bunting et al. (2022) mapped a total of 5,821 km² of mangroves

across the entire country in 1996, while Alban et al. (2020) mapped

a total of 13,233 km² for the same year. These contradictory

statistics demonstrate the need for region-specific mapping

approaches in lieu of sub-setting a global dataset to report on

country specific mangrove extent (Estoque et al., 2018; Alban et al.,

2020). Also, Alban et al. (2020) estimated higher rates of mangrove

deforestation in Myanmar, with 60% of mangroves permanently or

temporarily lost between 1996 and 2016 due to the cultivation of

rice, oil palm, and rubber in addition to urbanization.

Other studies that were done during the 1990s indicated

additional land use drivers of change were to blame for the severe

losses that were also found in Myanmar in the three main mangrove

regions: Ayeyarwady, Tanintharyi, and Rakhine. According to Oo

(2002), the main objective of mangrove management was fuel-wood

and charcoal production. Then during Myanmar’s period of

insurgency (1949–1972), the forest department was not able to

effectively use forest management at large. However, mangrove

species were not as affected by commercial demand, but by local

demand. For example, the more heavily populated area of Yangon

relied heavily on mangrove for charcoal and firewood production

from the Ayeyarwady area, resulting in heavy losses. The Rakhine
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state on the other hand is an area with lower population and was

speculated to have minimized losses according to Oo (2002) in the

early 2000s. Higher populations and the demand for charcoal and

fuel wood production therefore led to more extensive mangrove

losses according to these studies. Following such losses, the Forest

Department started intensive mangrove planting projects in 1975

followed by strict prohibitions of mangrove-derived charcoal and

firewood after 1993. An important distinction that the study by Oo

(2002) made is that many of the areas were experiencing losses due

to the lack of electricity and need for energy which was an indirect

driver of the fuel wood and charcoal production industry

before prohibition.

Much of the losses of mangroves in our study region were

driven by economic concerns. The Ayeyarwady delta of Myanmar

experienced losses to mangrove charcoal and firewood production,

but this resource was used to address the complete lack of electricity

in the adjacent area of Yangon. This study indicated that almost half

of mangrove area was lost by 1996, but we also urge researchers to

have a sensitive perspective on the drivers behind the loss. Yes, these

losses were extensive, but these results should be considered within

the context of the people of Myanmar who had an urgent need to

address their energy security, or the coastal communities of

Thailand who pursued the economic benefits of the shrimp

industry or urbanization, and the people of Cambodia who

worked diligently towards reconstruction after the Khmer rouge.

This study allowed us to not only establish a new baseline that

would better inform current understandings of mangrove change

before the 1990s, but it aided our understanding of the different

needs that the people and their governments were trying to meet.

We hope that this new baseline and conversation on the political

ecology can serve as an example of good research practices in trying

to understand mangrove change dynamics without forgetting about

the human element.
5 Conclusion

Myanmar, Thailand, and Cambodia are home to one of the

planet’s most biologically complex and carbon rich mangrove

ecosystems. There is a high degree of variability in the cadence

and severity of mangrove change in these complex coastal

ecosystems. Ultimately, the social and ecological values of these

mangrove ecosystems have urged a sustained effort to produce a

variety of region and sub-regional mangrove extent data products

and inventories for this area. However, mangrove extent and

change dynamics before the mid-1990s are not well constrained

and this area is no exception. Due to the limited availability of

publicly available EO data of sufficient quality or availability,

conducting a remote sensing analysis of this nature is supremely

difficult. This study therefore worked to identify a semi-

automatic approach to quantify mangrove distribution over the

course of 1972 to 1977 using the best available Landsat 1-2 MSS

Tier 2 data. The extent maps in this study were generated using a

Random Forest model that mapped a new baseline extent of
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15,421 km2 with a resulting overall accuracy of 95%. The accuracy

assessments also indicated a producer’s accuracy of 80% and 98%

and a user’s accuracy of 90% and 96% for the mangrove and non-

mangrove class. The study further established historical losses by

comparing the new baseline to external mangrove estimates from

GMW. This comparison indicated that mangroves were reduced

by 6,830 km2 (44%) by the year 2020. The majority of mangrove

losses therefore occurred between the 1970s and the 1990s

followed by an immediate trend in mangrove persistence. This

study also elaborated on the political, social, and economic

drivers of change for this area and urge the remote sensing

community to do the same.
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