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Valve movements indicate
rhythm and survival potential
of scallop

Xiaogang Xun1, Jingru Wang1, Fengqing Liu1, Long Chen1,
Yan Zou1, Yan Liu1, Xiangfeng Kong1* and Xiaoli Hu2*

1School of Ocean Technology Sciences, Qilu University of Technology (Shandong Academy of
Sciences), Qingdao, China, 2Key Laboratory of Marine Genetics and Breeding (Ministry of Education),
Ocean University of China, Qingdao, China
Yesso scallop, Patinopecten yessoensis, is one of the most economically

important marine bivalves that has been extensively cultured on the northern

coast of China. Unfortunately, recurrent mass scallop mortalities have caused

enormous economic losses to farmers and industries. Therefore, the exploration

of indicators to assess the survival potential of scallops is conducive to breeding

new varieties for a high survival rate. However, traditional indicators related to

scallop health are generally measured using laborious and time-consuming

methods that often involve killing the scallops. In this study, we developed a

non-invasive and real-time method for monitoring Yesso scallop valve

movements. Our research demonstrated a close correlation between the

behavior of valve movements and the survival potential of scallops. The

frequency of valve movements was found to have a circadian rhythm with

elevated frequency during 7:00–9:00 and 17:00–19:00, showing a coincident

rhythm with cardiac activity. Moreover, the patterns of valve behavior indicated

that intense valve movements appeared to be more equally distributed in the

lifespan of long-surviving individuals. Velocity estimation of valve movement was

further applied to assess its correlation with scallop vitality and mortality. The top

valve movement velocity was the most important determinant of the scallop

vitality coefficient, which was positively correlated with scallop survival time (R2 =

0.873, P < 0.01). The prominent variables in predicting scallop survival potential,

including the scallop top velocity and thickness, were presumed to be linked to

the movement associated attributes of the shell ligament and muscle, which are

important determinants of valve behavior intensity. Our findings demonstrate

that an understanding of the valve movements of bivalves can be of great benefit,

not only in exploring scallop vitality but also in developing scallop

breeding strategies.
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1 Introduction

Bivalve mollusks are considered important marine organisms of

both economic and ecological significance. Among bivalves, over 40

species of scallops have been cultured along the coast of China,

representing one of the most valuable marine resources in China

(Guo and Luo, 2006; Wang et al., 2013). However, recurrent

outbreaks of mass scallop mortalities have caused enormous

economic losses to farmers and industries (Yu et al., 2019; Ye

et al., 2021). Many factors are suspected of causing scallop mass

mortality episodes, mainly including environmental parameter

fluctuations (e.g., temperature, salinity, dissolved oxygen, and pH)

(Chen et al., 2007; Tan and Zheng, 2020; Coleman et al., 2022),

pathogen and parasite infestation (Kawahara et al., 2019; Soon and

Zheng, 2019), contamination with pollutants (Song et al., 2015b;

Stewart et al., 2021), and phytoplankton alternations (Yu et al.,

2019). However, most factors are speculative or unexplained, as

they involve complex interactions between scallops and the

environment (Ye et al., 2021).

To promote the rapid revival of the scallop aquaculture industry,

continuous efforts in genetic selection and breeding have been applied

to improve the survival and adaptative performance of scallops by

cultivating new varieties with high survival rates (Wang et al., 2017;

Hu et al., 2021). Accordingly, many important traits have been

assessed, including heat endurance (Xing et al., 2021), nutrient

deposition (Li et al., 2019), immunity response (Song et al., 2015a),

and hypoxia and biotoxin resistance (Li et al., 2017; Xun et al., 2020;

Yang et al., 2021). It is worth noting that accurate and efficient

indicators are considered as essential prerequisites for exploring

traits. At present, the traditional indicators related to scallop health

mainly comprise physiological indices such as mortality rate and

physiological indices (e.g., growth rate and food clearance rate), as

well as indicators of molecular biology concerning enzyme activity

and functional gene expression (Laing, 2002; Xing et al., 2016; Li et al.,

2020; Wang et al., 2021a). However, these indicators are measured

using laborious and time-consuming methods that often involve

killing the scallops. Besides, many valuable scallops are difficult to

distinguish, even at the laboratory level, due to the lack of indicators

assessing or predicting individual survival potential. In practice, the

task is considerably more difficult, because technology relating to real

time and non-invasive detection methods is often lacking, especially

for plenty of candidate scallops. Therefore, the development of real

time and efficient detection methods will facilitate the exploration of

valuable candidate indicators to evaluate daily scallop vitality and

enable the breeding of scallops for superior survival potential.

Bivalves are known to open and close their valves in natural

conditions to maintain their basal metabolic status and respond to

external stimuli to protect themselves. Moreover, this phenomenon

is closely linked to vital activities, such as respiration, feeding,

excretion, and escape behavior (Nagai et al., 2006; Robson et al.,

2009; Redmond et al., 2017). In addition, these behavioral responses

are affected by both physiological and environmental factors

(Hartmann et al., 2016). Consequently, valve movements were

usually measured and utilized as a predominant indicator

reflecting short term changes in environmental conditions and
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water quality monitoring (Hartmann et al., 2016; Redmond et al.,

2017). However, few studies have assessed bivalve valve movements

in relation to the associated vital behavior, including survival

potential. In the present study, we developed a rapid valve

movement detection method for multi-sample real-time

monitoring of bivalves, which produced data acquired once every

100 ms for the precise measurement of valve behavior.

Furthermore, we continuously monitored valve movements in

Yesso scallop (Patinopecten yessoensis), an important aquaculture

bivalve mollusk from the northern coast of China (Wang et al.,

2017), and refined several parameters, including the frequency and

velocity of valve movements, to assess their correlation with scallop

vitality and mortality. Our results revealed that valve movement

could be applied as a vital indicator associated with the circadian

rhythm and survival potential. This study will contribute to scallop

breeding aiming to prevent future regional scallop mass mortalities.
2 Materials and methods

2.1 Collection and maintenance of scallops

In this study, all adult Yesso scallops were from a

contemporaneously cultured population obtained from

Zhangzidao Group Co., Ltd (Dalian, China) in 2021. Limited by

the monitoring capacity of devices, a total of 16 scallops were

randomly selected and equally divided into two groups and

designated S1-0 to S1-7 and S2-0 to S2-7 after 3 days acclimation

and depurations in filtered seawater at 14 °C with aeration. Each

group was held in the same experimental aquarium containing 16 L

of water. Isochrysis galbana cells were cultivated (Kaplan et al.,

1986) and fed to each group once a day to a final density of 106 cells/

mL in a 50 mL volume. The scallops nearly filtered all the algal cells

within 12 h. The phenotype data of scallops was measured,

including shell length (Lenshell), height (Heishell) and width

(Widshell) and whole wet weight (WT). Shell length and height

were measured as the maximum dimension at right angles to each

other (Supplementary Figure S1), while shell width was measured as

the greatest vertical distance between the two valves, generally

reflecting scallop thickness (Supplementary Figure S1).
2.2 Measurement of scallop
valve movements

Scallop valve movement was monitored using a noninvasive

method based on the Hall effect (Wilson et al., 2005; Robson et al.,

2009; Wang et al., 2021b). In this study, each sensor probe

comprised a Hall detection module, a signal transmission line, a

flexible sheet with a magnet, and plastic stents (Wang et al., 2021b).

For each sensor probe, the magnet was fixed at the top of the flexible

sheet, perpendicular to the Hall element, which was encapsulated in

plastic housing with a signal transmission line attached at the end

(Figure 1A). The sensor probe was fixed on the bottom plate

through the plastic stents. During the experiment, each scallop
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was placed on the bottom plate and directly below the flexible sheet

(Figure 1B). When the valve of a scallop opened or closed, the shell

moved the magnet on the flexible sheet, causing the Hall element

voltage to change. The voltage data was transmitted to a data

acquisition unit at 10 Hz (at 100 ms intervals) (DAM3055, ART

Technology Corp., China). The maximum capacity of each

monitoring device contains eight sensor probes; therefore, each

group comprised only eight scallops. Scallops were continuously

monitored until natural death.
2.3 Calculation and estimation of scallop
valve movement indicators

The distance of valve movements can be calculated from output

voltage data since the external magnetic field is inversely

proportional to the square of the distance between the magnet

and the Hall element sensor (Nagai et al., 2006). The voltage data

for each scallop was converted to distance data based on the

calibration of the sensor probe (Wang et al., 2021b). The real

time distance curve of the scallop was constructed to show valve

movement performance during the whole experiment. The velocity

was estimated by calculating the time derivative of valve movement

distance in homemade Perl scripts. Regression analysis of all data

were fitted to calculate the prediction equations of survival potential

from the measured variables by optimizing the coefficient of

determination (R2). All data were analyzed using SPSS 21.0 (IBM

Corp., Armonk, USA). In addition, a heat map of frequency

patterns was constructed using custom R scripts.
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3 Results & discussion

3.1 Measurement of scallop
valve movements

The scallop valve movement monitor was designed to fit the

bottom space of the experimental aquarium with eight sensor

probes (Figure 1A). Its waterproof outer case makes it possible

for application in an actual mariculture environment. To avoid

exceeding the detection range of the sensor, the activity of each

scallop was limited to the area enclosed by specific fences

(Figure 1B). However, the scallops lay undisturbed during the

experiment, as the tentacles lengthened and waved slowly in the

water currents (MacKenzie Jr, 2008) (Figure 1C).

Continuous recording of the valve movements of all scallops (n

= 16) lasted the whole experiment until they died naturally. The first

scallop died after approximately 213 h of investigation, while the

last one survived for over 673 h, approximately 1 month (Table 1).

Valve position information for each scallop was recorded at 10 Hz

(100 ms intervals) after optimization since the difference among the

curves at frequencies over 2 Hz (0.5 s intervals) was almost

indistinguishable (Robson et al., 2009). Therefore, increasing

measuring frequency appeared to approximate actual scallop

action, resulting in a smoother valve movement curve. The

pattern of scallop valve behavior sometimes showed periods

where the line was flat (i.e., the shell is open) and displayed

frequent spikes, indicating the intense valve movement of shell

closure for a short duration (Figure 2A). However, due to long term

monitoring and individual differences, many scallops demonstrated
FIGURE 1

Scallop valve movement monitoring device. (A) The overlook view of the monitoring device with eight sensor probes. (B) The top view of the device
when monitoring scallops. The activity of each scallop was limited to the area enclosed by specific fences. (C) The scallops lay undisturbed during
the experiment.
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abundant and idiosyncratic behavioral patterns of valve

movements, illustrating the challenges in behavior data analysis.

To quantify valve movement behavior, velocity was estimated

using the time derivative of valve movement distance (Figure 2B).

Relative valve abduction and adduction velocities were measured as

ethological variables of scallop valve movement. Our calculations

demonstrated that each velocity value could represent one valve

movement, and both showed a coincident variation tendency

(Figure 2). Furthermore, these indicators, such as velocity and
Frontiers in Marine Science 04
frequency, could be used to assess and reflect the intensity of each

valve movement.
3.2 Circadian rhythm of scallop
valve movements

We monitored the valve movement of all scallops and counted

their respective frequencies. The scallops were divided into two
B

A

FIGURE 2

Partial raw data for scallop valve movements. (A) Two-hour raw distance data were selected from one continuous monitoring sample to display
partial behavioral patterns of scallop valve movements. (B) Coincident with the patterns above, the velocities of valve movements were calculated
based on the distance data, reflecting the intensity of each valve movement.
TABLE 1 Statistics of valve movements in scallops (Patinopecten yessoensis).

Sample
ID

Lenshell
(cm)

Heishell
(cm)

Widshell
(cm)

WT
(g)

Survival
time (h)

Fh Vave
(cm/s)

Vlq
(cm/s)

Vmed

(cm/s)
Vuq
(cm/s)

Vmax

(cm/s)
Vtop10
(cm/s)

S1-0 8.50 8.57 2.23 85.26 594 21.75 3.78 2.21 3.59 4.89 11.08 10.85

S1-1 9.02 8.81 2.31 87.56 673 17.38 5.06 2.96 4.86 6.81 17.76 16.50

S1-2 8.42 8.32 2.52 85.56 578 7.69 3.09 1.92 2.74 4.08 7.24 6.96

S1-3 8.38 7.72 2.13 73.42 459 13.32 4.08 2.01 4.07 5.72 12.03 11.58

S1-4 7.31 7.06 2.09 62.16 407 17.15 4.51 1.82 4.58 6.95 11.09 10.82

S1-5 7.43 7.21 1.80 43.38 483 3.88 3.10 1.69 2.63 4.12 13.92 11.09

S1-6 7.35 7.70 2.13 56.91 600 11.29 3.02 1.91 2.67 3.64 8.61 8.41

S1-7 7.21 7.54 2.10 70.24 495 15.08 3.86 1.90 3.39 5.40 12.52 12.23

S2-0 8.30 7.77 2.23 79.80 435 11.45 4.11 2.38 3.75 5.41 11.95 11.35

S2-1 8.09 8.03 2.22 85.05 554 8.85 4.34 2.76 4.44 6.00 10.17 9.63

S2-2 8.40 8.35 2.14 92.13 386 14.01 5.64 4.08 6.15 7.23 11.69 11.42

S2-3 7.72 7.73 1.92 56.95 499 10.74 4.10 2.16 4.22 5.67 12.84 11.00

S2-4 7.73 7.42 1.94 49.93 600 10.53 3.72 1.81 3.45 5.28 12.81 12.00

S2-5 7.16 7.12 1.93 46.39 637 6.17 3.80 2.22 3.49 4.98 13.69 13.25

S2-6 7.79 7.60 1.89 64.13 213 13.28 4.05 2.73 3.94 5.32 10.27 9.47

S2-7 7.51 7.80 1.72 44.34 256 3.38 2.68 1.48 2.07 2.87 12.08 11.11
fro
Lenshell, shell length; Heishell, shell height; Widshell, shell width; WT, whole wet weight; Fh, average frequency per hour; Vave, average velocity; Vlq, lower quartile velocity; Vmed, median velocity;
Vuq, upper quartile velocity; Vmax, maximum velocity; Vtop10, average of top 10 velocities.
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groups based on their frequency patterns. Nearly three quarters of

the scallops were clustered in one group with more than one active

period. Their frequent valve movements were spread out over a 7 h-

period from 2:00 to 8:00 and increased to a peak in a 3 h-period

from 17:00 to 19:00 (Figure 3A). While the scallops from the other

group (e.g., ID: S2-3, S2-5, S2-7) had a peak period of valve

movements from 7:00 to 9:00 (Figure 3A). Coincidentally, an

investigation monitoring 43 Zhikong scallops (Chlamys farreri)

over approximately 48 h showed that the frequency of valve

movements also began to decrease at 9:00 after an active period

from 1:00 to 8:00 and increased rapidly from 17:00 after a quiescent

phase (Supplementary Figure S2). Therefore, scallop frequency

patterns showed a possible circadian rhythm of valve movements.

However, there might not be a direct correlation between the

circadian rhythm of valve behavior and scallop survival time,

since individuals with different lifespans seemed to share a similar

frequency pattern. For instance, the individual S2-5 lived much

longer than S2-7 clustered in the same group as S2-5 (Figure 3A). In

addition, the individuals with frequent daily valve movements, such

as S1-0 and S1-1, were almost as long-lived as those with low

frequency, such as S1-2 and S2-5 (Figure 3B), which suggested that

the daily frequency of valve movements also could not be directly

applied in assessment of scallop survival potential.

Notably, the circadian rhythm phenomenon in scallops was not

only found in their valve movements but also in other physiological

activities, such as cardiac performance. Two daily active periods of

cardiac performance have also been reported in the scallops with

significant heart rate elevation during 1:00–9:00 (peak at 2:00 and

8:00) and 17:00–19:00 (peak at 18:00), where the circadian rhythm

was similar to valve movements (Xing et al., 2019). The acceleration

in heart rate is usually accompanied by energy conversion,

reflecting increased cardiac workload or oxygen demand. As an

energy adaption behavior, scallop valve opening/closing mainly

depends on muscular relaxation and contraction, which is more

energetically costly than in quiescent phases (Redmond et al., 2017).

Therefore, their coincident performance in the circadian rhythm

might be related to the energy metabolism of daily behavior

(Robson et al., 2009; Riisgård and Larsen, 2015).

However, considering all scallops monitored in a relatively

stable environment, the daily frequency of valve movements

fluctuated widely from dozens to hundreds in most individuals

throughout the whole investigation (Figure 3B), which seemed to be
Frontiers in Marine Science 05
in contradiction with possible stability of the energy consumption

for scallop daily behavior. Thus, it was suggested that quantification

of valve behavior was reflected not only by daily frequency but also

by intensity of each valve movement.
3.3 Indicators for assessing scallop
survival potential

The daily valve movement velocities of each scallop throughout

the experiment were measured and used to calculate the average

(Vave), lower quartile (Vlq), median (Vmed), and upper quartile (Vuq)

velocities (Table 1). The scallops preferred to control the speeds for

daily valve gape or closure with respect to the median and upper

quartile velocities, maintaining these at 3 ± 1 and 5 ± 2 cm/s,

respectively (Figure 4). In contrast, the maximum velocity (Vmax) of

valve movements in most scallops was over 10 cm/s except for

individuals S1-2 and S1-6 with maximum velocities of 7.24 and 8.61

cm/s, respectively (Table 1). Considering the average of the top 10

velocities (Vtop10) for each scallop, both the maximum and averaged

top velocities had a coincident variation tendency and close

absolute values among the scallops, eliminating the possible

effects of some extremums due to accidental errors (Table 1).

Valve movements with high velocity values might be more

directly related to energy consumption (Redmond et al., 2017).

Accordingly, we investigated the distribution of intense valve

movements for each scallop, where only the top 5% of valve

opening/closing events were selected based on their velocities.

Our results showed that intense valve movement events were

almost equally distributed in the lifespan of the longest surviving

individual, S1-1, of which the percentage of days spent with high-

speed movements was 93.5% (Figure 5), whereas that for the

shortest-lived individual, S2-7, was only 13.3% (Figure 5).

Moreover, the average survival days of groups with percentages

over 90% (ID: S1-1, S1-4, S2-1, S2-3) were 24.3 days, more than the

those of the other groups, which were 22.2 days (70–90%, ID: S1-0,

S1-3, S2-0, S2-2, S2-4), 20.3 days (60–70%, ID: S1-7, S2-5, S2-6),

and 22 days (<50%, ID: S1-2, S1-5, S1-6, S2-7) (Figure 5). Indeed,

behavioral data from continuously monitored organisms are usually

complex and there are always exceptions (Hartmann et al., 2016).

Even though some individuals exhibited nonlinearity and variable

behaviors, the daily intense valve responses based on the velocity
BA

FIGURE 3

Frequency of valve movements in monitored scallops. (A) Heatmap showing the circadian rhythm of valve movements among the scallops based on
the hourly average frequencies of 24-h time points. (B) In order of sample ID, the histogram shows the average activity frequency per hour
throughout the experiment for each scallop. In addition, the number of daily valve movements for each scallop is highlighted with colors varying
from blue to red, representing the scale of the daily frequency level.
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index reflected scallop behavioral strategies, which might be related

to the survival potential of scallops.

Furthermore, the regression equations of scallop valve

movements were determined to predict individual survival

potential from the measured variables in reference to valve

behavior and body size, which was a primary finding of the work

conducted here. The regression predictive value (RPV) was defined

as scallop vitality coefficient and calculated by multiple linear

regression analysis with models of backward elimination. The

correlation between RPV and survival time was positive but not

significant when the model containing all variables under

consideration (R2 = 0.906, P=0.12). When removing the least

significant variable, shell height, we found a significant positive

correlation between the RPV and survival time with the highest

coefficient (R2 = 0.906, P<0.05) (Figure 6A). The equation of RPV

was defined as follows: RPV = 1043.5Widshell -112.9Lenshell -4.0WT

+366.5Vlq +241.9Vuq +624.4Vmed -1579.7Vave +83.1Vtop10

+26.1Vmax +6.2Fh -51.0, where the phenotype data of scallops was

involved, as well as the velocity variables and the average frequency

per hour (Fh) of valve movements (Figure 6A). The equation of RPV

was further optimized through backward stepwise regression to

have a smaller P-value than preceding equations and maintain a

high correlation coefficient (R2 = 0.873, P<0.01) (Figure 6B). The

optimized equation of RPV was as follows: RPV = 856.5Widshell
-123.7Lenshell +364.8Vlq +295.6Vuq +670.6Vmed -1750.8Vave
Frontiers in Marine Science 06
+120.8Vtop10 +335.1, which only retained size and velocity

variables (Figure 6B). Furthermore, starting with a model

including the significant phenotype data of Widshell, Lenshell, and

WT, each variable in reference to valve behavior was separately

added to the model to reveal its effect on the equation. RPV was

significantly positively correlated with survival time, only when

containing Vtop10 or Vmax in the model (respectively R2 = 0.628, R2

= 0.643, and both P<0.05) (Figure 6C). By contrast, no matter which

of Widshell and Vtop10was removed, the RPV of the optimized

equation in Figure 6B could not be positively correlated with

survival time, as its elimination from the model caused a huge

drop in R2 (respectively R2 = 0.340, R2 = 0.303) (Figure 6D).

Therefore, the variables regarding to the top velocity of valve

movement and scallop thickness dominated the estimation of scallop

survival potential. Indeed, these indicators were found to be related to

exercise adaptations of scallops. Compared with the top velocity,

which reflects intense valve movements, modifications in shell width

and muscle mass were also considered derived adaptations to scallop

locomotion activity (Tremblay and Guderley, 2017). It was reported

that the scallops with greater shell width usually had faster sinking

time, heavier muscle masses and more tonic contraction duration

(Tremblay et al., 2012; Tremblay and Guderley, 2017). Indeed, tonic

contraction plays a crucial role in maintenance of valve opening and

prolonged valve closure (Tremblay et al., 2012). For example, the

scallops with greater shell width usually prefer to keep tonic

contraction when controlling their valves to escape predators,

which is energetically economical (Tremblay et al., 2012). It means

that scallops with greater shell width probably have better muscle

physiological capacities including muscles masses, strength, and

endurance, as well as advantages in energetic cost, which is

beneficial to improve scallop survival performance. In addition,

since an increase in valve closure velocity requires that the ligament

allow the rapid opening of the valves, the resilience of the ligament

tends to be higher in scallops with more intense responses (Tremblay

et al., 2015). Therefore, these variables were presumed to be linked to

the movement associated attributes of the ligament and muscle,

which are important determinants of the intensity of the response

to external stimuli. As responses to daily activities, bivalve valve

movements demonstrate bivalve behavioral adaptations to varying

levels of food availability and predation risk, which have crucial effects
FIGURE 4

Box and whisker plots showing velocity data for scallop valve
movements. Box plots show the median, 25th (lower quartile) and
75th (upper quartile) percentile (box), and minimum-maximum
percentile range (whiskers). The dotted line represents the average
velocities for each scallop. The order of samples on the x-axis is
based on scallop survival times in this study.
FIGURE 5

Distribution of intense valve movements among the scallops. Only the top 5% valve movement events of each scallop were selected based on the
order of their velocities. The percentage of each graph represents the ratio of the days with the top events to the total survival days of each scallop.
The order of graphs in the figure is based on their percentages.
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on individual survival (Robson et al., 2010). Our findings highlight

the roles of valve movements in relation to scallop vitality and

provide relevant variables for predicting individual survival

potential without harming scallops.
4 Conclusion

Compared with general applications in water monitoring, here,

valve movements were monitored to assess scallop vitality. Our

results emphasize the importance of valve movements in assessing

daily behavior and predicting survival potential, which has rarely

been reported in previous studies. Indeed, bivalves maintain their

basal metabolic status and response to external stimuli through

their valve movements, which underlie aspects of scallop adaptation

to variation in food availability and predation risk. Further analysis

of bivalve valve behavior will assist in obtaining a deeper

understanding of bivalve survival and provide a background for

exploring important indicators for the bivalve aquaculture industry.
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SUPPLEMENTARY FIGURE 1

Dimensional distribution of scallop.

SUPPLEMENTARY FIGURE 2

Frequency of valve movements in Zhikong scallops (A) The heatmap shows

the circadian rhythm of valve movement frequency patterns in adult Zhikong
scallops (Chlamys farreri). A total of 43 Zhikong scallops in three batches (ID:

A_CF1-A_CF13, B_CF14-B_CF28, C_CF29-C_CF43) were under 48-hour

monitoring. (B) The stacked histogram shows the hourly valve movement
frequencies of Zhikong scallops at 24-h time points.
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