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Estimating catch rates in real
time: Development of a deep
learning based Nephrops
(Nephrops norvegicus) counter
for demersal trawl fisheries

Ercan Avsar1,2*, Jordan P. Feekings1 and Ludvig Ahm Krag1

1Technical University of Denmark, Institute of Aquatic Resources, Section for Fisheries Technology,
Hirtshals, Denmark, 2Computer Engineering Department, Dokuz Eylul University, Izmir, Türkiye
Demersal trawling is largely a blind process where information on catch rates and

compositions is only available once the catch is taken onboard the vessel.

Obtaining quantitative information on catch rates of target species while

fishing can improve a fisheries economic and environmental performance as

fishers would be able to use this information to make informed decisions during

fishing. Despite there are real-time underwater monitoring systems developed

for this purpose, the video data produced by these systems is not analyzed in

near real-time. In other words, the user is expected to watch the video feed

continuously to evaluate catch rates and composition. This is obviously a

demanding process in which quantification of the fish counts will be of a

qualitative nature. In this study, underwater footages collected using an in-

trawl video recording system were processed to detect, track, and count the

number of individuals of the target species, Nephrops norvegicus, entering the

trawl in real-time. The detection was accomplished using a You Only Look Once

v4 (YOLOv4) algorithm. Two other variants of the YOLOv4 algorithm (tiny and

scaled) were included in the study to compare their effects on the accuracy of

the subsequent steps and overall speed of the processing. SORT algorithm was

used as the tracker and any Nephrops that cross the horizontal level at 4/5 of the

frame height were counted as catch. The detection performance of the YOLOv4

model provided a mean average precision (mAP@50) value of 97.82%, which is

higher than the other two variants. However, the average processing speed of

the tiny model is the highest with 253.51 frames per second. A correct count rate

of 80.73% was achieved by YOLOv4 when the total number of Nephrops are

considered in all the test videos. In conclusion, this approach was successful in

processing underwater images in real time to determine the catch rates of the

target species. The approach has great potential to process multiple species

simultaneously in order to provide quantitative information not only on the target

species but also bycatch and unwanted species to provide a comprehensive

picture of the catch composition.

KEYWORDS

demersal trawling, Nephrops counting, object detection, object tracking, sort,
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Introduction

Demersal trawling is an effective way of catching various

species. However, usage of demersal trawls is challenged by

several factors such as high bycatch rates and negative effects on

the biomass and biodiversity (Eigaard et al., 2017). In addition,

disturbance of the seabed by bottom trawls results in aqueous CO2

emissions which may inhibit marine carbon cycling after years of

continuous trawling (Sala et al., 2021). Despite the presence of such

concerns, demersal trawling is critical for catching economically

valuable commercial species like shrimp, whitefish, and Nephrops.

Nephrops excavate burrows in mud or mud/sand substrates and

emerge at specific times to feed, mate and maintain their burrows,

among others (Tully and Hillis, 1995; Aguzzi and Sardà, 2008;

Feekings et al., 2015). Their behavior is influential on catch rates

when trawling as they need to be outside of the burrows to be caught

(Main and Sangster, 1985). Besides, Nephrops-directed bottom

trawling is known to have high discard rate which eventually

causes not only economic loss but also loss of undersized

individuals (Bergmann et al., 2002). In addition to these issues, is

demersal trawling a blind process, meaning that the catch and size

composition is unknown until the trawl is taken onboard after

hours of trawling.

Advancements in underwater camera technologies may provide

solutions to some limitations in demersal trawling. In particular,

such cameras allow for recognition, counting and measurement of

the individuals making it possible to understand the catch rates of

Nephrops and unwanted species. Even though there are different

tasks such as species identification and length measurement

(Underwood et al., 2014; Underwood et al., 2018; Allken et al.,

2021), and segmentation of the fish from the background (Prados

et al., 2017) accomplished using in-trawl camera systems, they do

not concern determining the catch composition in real time. The

real-time processing of video footage collected by underwater in-

trawl cameras is important to quantify catch rates of the target

species. This information is valuable for the fishermen as it provides

insight about the ongoing fishing process and further enable active

search for better catch rates during the fishing operation. Deep

learning-based methods enable automated extraction of such

information. In fisheries research, deep learning is mostly used

for processing visual data collected either onboard or by using

underwater cameras. However, the main issue related with deep

learning methods is the substantiality of the associated computation

amount which brings about drawbacks like latency in processing

and requirement of hardware with sufficient computational

capacity. To address this issue, various deep learning models with

different sizes have been developed, and they can be applied to

different problems. A review of related literature is provided in

Section 2. There are deep learning-based methods available that are

applicable to underwater videos collected by in-trawl cameras for

real-time detection and counting of Nephrops. A fast and accurate

video processing system in Nephrops fisheries is useful for
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generating the spatial distribution of catch items as well as

determining the number of Nephrops caught.

In this study, a real-time processing pipeline for underwater

videos to determine the number of Nephrops caught during

demersal trawling is proposed as such information will provide a

strong decision tool for fishers to optimize their catching operation.

The processed video footages were collected by an in-trawl camera

developed earlier (Sokolova et al., 2021b). The algorithm for

Nephrops counting has three major steps that are i) Nephrops

detection, ii) tracking of the detected Nephrops, and iii)

determining the true tracks accounted for Nephrops catches. The

accurate detection of Nephrops in the video frames is important as

the subsequent steps rely on the detected Nephrops. The detection

has been accomplished using You Only Look Once v4 (YOLOv4)

model which is known to be a fast deep learning model for object

detection operating at high frames-per-second (FPS) values. In

addition, two variants of YOLOv4, namely, YOLOv4-Tiny and

YOLOv4-Scaled are used separately for Nephrops detection, and

their effects on the tracking, counting, and the overall processing

speed are observed and compared. The second step, tracking

detections, is necessary for making association between the

detections in the consecutive video frames. Simple Online

Realtime Tracking (SORT) algorithm is used as the object tracker.

For benchmarking purposes, the tracking performance of SORT is

compared with two other object tracking algorithms, those being

Minimum Output Sum of Squared Error (MOSSE) and DeepSORT.

Finally, tracked objects satisfying some predefined conditions are

considered as a Nephrops catch. These steps are illustrated in

Figure 1. In this study we address the following research questions:
• How do the different YOLO-based object detection

methods affect the overall speed and accuracy of the

counting process?

• What is the range of the processing speed of the proposed

algorithm, and can it be considered as real-time under

different circumstances?

• Is it possible to provide simple decision parameters for the

fishers during trawling operation?

• What is the relation between the precision of the object

detection and rate of correct Nephrops counts?
Related work

Utilization of deep learning methods in computer vision

applications has become widespread in recent years due to their

major advantage of automated feature extraction. However, the deep

learning models typically possess many computational layers with high

numbers of parameters. Performing all the calculations throughout all

layers of the network takes time and hence the latency becomes an

issue when the input data needs to be processed in real time.
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https://doi.org/10.3389/fmars.2023.1129852
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Avsar et al. 10.3389/fmars.2023.1129852
Depending on the type of the problem (e.g. image classification,

object detection, instance segmentation), there are various

techniques to reduce the computational cost of the deep learning

models while keeping the model performance as high as possible.

For instance, MobileNets are efficient models developed to be used

in hardware with limited computational resources (Howard et al.,

2017) and can be used as a standalone classifier for animal

classification in underwater images (Liu et al., 2019). Together

with two other improved versions (Sandler et al., 2018; Howard

et al., 2019) and single shot object detectors (SSD), they have more

diverse applications such as detection of sea cucumbers (Yao et al.,

2019), underwater objects with different scales (Zhang et al., 2021;

Wang et al., 2022b), and Nephrops burrows (Naseer et al., 2020).

Another object detection method with many versions is YOLO,

which is known for being very fast and accurate at the same time

(Redmon et al., 2015). It can predict the bounding box coordinates

and the corresponding confidence scores with one single network.

There are numerous YOLO versions dedicated to operating on

underwater images for detection of various objects such as starfish,

shrimp, crab, scallop, and waterweed (Liu et al., 2020; Zhao et al.,

2022). Among these models, the recently proposed model, YOLO-

fish was designed for fish detection and is reported to be performing

close to YOLOv4 model on two different public datasets (Muksit

et al., 2022). Even though it is claimed to be a lightweight model the
Frontiers in Marine Science 03
associated number of parameters and the detection time are

between those of YOLOv3 and YOLOv4 (Muksit et al., 2022). In

another study, an underwater imaging system to develop and test a

lightweight YOLO model for automated fish behavior analysis was

introduced (Hu et al., 2021). In that study, a modified version of

YOLOv3-Lite model was proposed, and its detection performance

as well as the prediction speed were compared with other state of

the art models. It was shown that the proposed model works at 240

FPS processing speed while detecting the fish with higher precision

and recall values.

Changing the detection scale, increasing the number of anchor

boxes, or defining a new loss function are some of the modifications

that can be done in the YOLO network structure (Raza and Hong,

2020). Moreover, combining the output of the YOLO model with

other information sources such as optical flow and Gaussian

mixture models is another strategy to obtain an improved

detection in underwater images (Jalal et al., 2020).

In addition to underwater image and video processing methods,

there are different applications to identify fish types on the vessel.

Such studies involve usage of image classifiers based on

convolutional neural networks (CNN) (Zheng et al., 2018) or

instance segmentation networks such as Mask R-CNN (French

et al., 2020; Tseng et al., 2020). Such segmentation operations are

also useful in making morphological measurements on underwater
FIGURE 1

Overview of the algorithm steps.
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fish images (Petrellis, 2021). This approach may be practical when

the aim is to get an estimate of the individual fish sizes and weights

in the catch.

The existing studies focus on either improving the detection

performance, the computational load in individual images or

application of the deep learning models to a new problem

domain. In particular, object detection and tracking are widely

studied today in various problem domains such as face recognition

(Vijaya Kumar and Mahammad Shafi, 2022), processing of aerial

images (ElTantawy and Shehata, 2020; Wu et al., 2022), and

maritime surveillance (Jin et al., 2020). Despite the presence of

many studies with different purposes and strategies, the number of

studies concerning the real-time processing while tracking and

counting the detected fish is very limited. In a study that is aimed

to serve as a precursor to fish counting tasks, deep learning was used

to classify the environmental conditions (Soom et al., 2022).

According to the detected conditions, some traditional image

processing methods were applied to the image to detect the

presence/absence of fish. Even though no object detection and

tracking were involved, the processing speed and power

consumption of the proposed algorithm was evaluated on

different hardware with various specifications.

On the other hand, there exists tracking algorithms developed

for underwater objects like fish schools (Liu et al., 2022). In that

work, a ResNet50 model was used as the feature extractor and an

amendment detection module was proposed to improve the object

detection and hence the performance of the tracking. The proposed

model was compared with four different tracking algorithms, and it

was shown that it outperforms the others in three out of four

metrics. In two other studies, an experimental setup was prepared

for collecting video footage using a web cam placed above a small

fish tank. The fish in the tank were detected by YOLOv3-Tiny

model that is trained on the specific dataset. Next, the tracking of

the detections was accomplished by optical flow (Mohamed et al.,

2020) or Euclidean distance (Wageeh et al., 2021). In these studies,

tracking performances are provided poorly with no clear definition

of a fish count and a correct track. In another study about fish

tracking, an end-to-end model was proposed to detect and track the

fish in a tank and determine the abnormal behaviors (Wang et al.,

2022a). For the detection task, a modified version of YOLOv5 was

used and the tracking was accomplished by SiamRPN++. The

proposed model was shown to be operating at 84 FPS with higher

detection performance than the other object detectors.

As can be understood from the existing studies, there are many

efforts for object detection and tracking in underwater videos.

However, the number of applications aimed at counting specific

individuals by tracking them is very limited. One example can be

the method based on Mask R-CNN to detect and count the catch

items during trawling (Sokolova et al., 2021a). In that study, the

detections and catch counts were collected under four classes,

namely, Nephrops, round fish, flat fish, and other. The study

involves detailed experiments about different data augmentation

methods together with tracking and counting of the catch belonging

to the specified classes. Though, it focuses on improvement of the

object detection performance, overlooking the detection speed of

the algorithm.
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Current study differs from previous studies in i) counting of

Nephrops in real-time by detecting and tracking them in underwater

videos, ii) comparing the effects of three different YOLO models to

the performances at every stage of the algorithm as well as the

overall processing speed, and iii) showing the possibility of real-

time monitoring and automated description of the catch items

during trawling.
Materials and methods

The video dataset

The dataset used in this study consists of five videos collected

using an underwater image acquisition system mounted at the

codend entrance of a demersal trawl that allows in-trawl

observation during fishing (Sokolova et al., 2021b). The videos

were recorded on June 27, 2020, in Skagerrak on commercial

Nephrops grounds where the catch in each haul were length

measured to provide size and count for all caught species The

footages have different durations and Nephrops ground truth

counts. The object densities in the videos are different and such a

diversity allows for better performance estimation for real-world

applications. The details about the videos are provided in Table 1.

The stereo camera of the image acquisition system was set to record

videos with a resolution of 1280 × 720 pixels at 60 frames per

second (FPS). Only the videos from the right camera were used for

processing the frames as the entire data output from the stereo

camera is useful for generating depth maps which is not within the

scope of this study.
Nephrops detection models

Among various versions of YOLO, the fourth version

(YOLOv4) is efficient and stable with various applications in

different domains (Bochkovskiy et al., 2020). The object detection

task is considered as a regression problem by YOLOv4, and it

eliminates the necessity of using large mini-batches during training.

It optimizes the trade-off between the detection speed and accuracy,

which means that it is possible to obtain accurate detections at high

FPS values. Therefore, YOLOv4 has been selected as the primary

model for Nephrops detection in this study. In addition, two

variants of this model, YOLOv4-Tiny and YOLOv4-Scaled, are

used to compare their performances.
TABLE 1 Details of the video footages.

Duration (min) Total Nephrops (no.) FPS

Video 1 00:55 4 60

Video 2 01:31 6 60

Video 3 07:30 36 60

Video 4 08:10 40 60

Video 5 06:29 23 60
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YOLOv4 uses a CSPDarknet53 model as the feature extractor

backbone. It contains 29 convolutional layers and has advantages

like high receptive field and a large number of parameters that are

required for an accurate object detection (Bochkovskiy et al., 2020).

The output feature maps of the CSPDarknet53 are passed through a

multi-scale max-pooling operation. This operation is implemented

by a spatial pyramid pooling (SPP) layer where outputs of four max-

pooling operations with kernel sizes 1x1, 5x5, 9x9, and 13x13 are

concatenated. Processing with the SPP layer is important for

increasing the receptive field and separate the contextual features.

YOLOv4 also uses features at different levels of the feature extractor

backbone. To accomplish this, feature maps from three layers of the

CSPDarknet53 model are input to the path aggregation network

(PANet) in which the features are fused both in top-down and

bottom-up directions. Such an aggregation allows for simultaneous

utilization of localization information present in the lower level

features and semantic information in the higher level features. The

extracted features with this structure are then passed through a

YOLOv3 head to predict bounding box locations and the

corresponding confidence scores. To improve generalization and

reduce the risk of overfitting, two new methods are introduced in

the algorithm: Mosaic and Self-Adversarial Training (SAT). In

addition, a continuously differentiable and smooth function Mish

is used as the activation between the layers of the network.

YOLOv4-Tiny is a lightweight version of the original YOLOv4

architecture. The major differences are in the numbers of anchor

boxes and the convolutional layers in the backbone. Specifically, the

tiny model has six anchor boxes while the original version has nine.

Also, the number of YOLO prediction layers was reduced from

three to two, which allows higher prediction speed while

performing poor on the small objects. The scaled version of

YOLOv4 (YOLOv4-Scaled) introduces modifications in the

backbone and neck structures of the YOLOv4 architecture (Wang

et al., 2020). In particular, the first CSP layer in the CSPDarknet53

backbone was replaced by a Darknet residual layer. In addition, up

and down feature scaling operations in the PANet and pooling

operations in the SPP module are enhanced by CSP blocks that

ultimately may decrease the computation cost by 40%.
Tracking and counting of the
detected nephrops

Since the main goal of the study is to automatically count the

number Nephrops entering the trawl, the detected Nephrops should

be tracked as they appear in the frames. To accomplish this, an

algorithm to make association between the detections in the

consecutive frames should be implemented. This is done by

object tracking algorithms that are particularly useful when the

object of interest is occluded or not detected for a certain number

of frames.

Simple Online and Real-time Tracking (SORT) is the object

tracking method used in this study (Bewley et al., 2016). SORT uses

2D motion information for modeling the state (i.e. bounding box

location, area, and aspect ratio) of each track in the video. Kalman

filter with a linear velocity model predicts the state of the tracks for
Frontiers in Marine Science 05
the next frame (Kalman, 1960). The association between the

detections and the predicted tracks is accomplished by applying

the Hungarian algorithm (Kuhn, 1955) on the cost matrix whose

entries are the IoU values between the detections and predictions. In

order to highlight the suitability of the SORT algorithm for real time

Nephrops tracking, the performance of two other tracking methods,

MOSSE and DeepSORT, are tested as well. Details of this

comparison are given in Section 4.4.

Due to occlusions or inaccuracy of the object detector model,

the target objects may not be detected in all frames when they are in

the field of view of the camera. These discontinuities in the

detection constitute a challenge for the tracking process. SORT

algorithm is capable of predicting the bounding box coordinates in

case of such discontinuities. However, if a track is not associated

with a detection for 30 consecutive frames, then this track is

considered finished. This means that the finished track will not be

considered for association with the new detections anymore.

In order to determine the count for the Nephrops catches, the

tracks output by the SORT tracker are checked. This is done with

the help of a horizontal level defined at the top 4/5 of the frame

height. When the Nephrops are leaving the frame from the bottom,

they are partly visible, and this may cause the object tracker to

assign different identities to the same Nephrops as they are about to

disappear. Such an identity switch may generate false positive

counts if the horizontal threshold is set to be the bottom of the

frame. This is the reason for selecting a level different than the

bottom of the frame.

In particular, any track satisfying at least one of the following

conditions increases the counter by one:
i. The track with the lower level of the associated bounding

box crosses the horizontal level. When the Nephrops is

tracked successfully with no occlusions or distortions, this

condition is easily satisfied. This is the most common

condition.

ii. The track with the center of the associated bounding box

crosses the horizontal level. Due to occlusions, tracking of

some Nephrops are initialized after the lower level of their

bounding box is below the horizontal level. This condition

is useful for counting such Nephrops.

iii. The track with the height of the associated bounding box is

greater than 2/3 of the frame height. Some Nephrops pass

very close to the camera causing them to appear very large

and in small number of frames. In such cases, the first two

conditions cannot be satisfied. So this condition allows for

detecting these Nephrops.
One sample counting instance for each condition are given

in Figure 2.
Model training

The models mentioned in Section 3.2 are trained using an image

dataset generated by the frames extracted from the videos included
frontiersin.org
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in this study. The majority of the frames in the videos do not

contain any objects and are consequently not useful for the training

process. Therefore, a manual selection of the frames with some

objects is required. A total number of 4044 images were selected

according to the presence of Nephrops, fish, or others. After the

selection of frames, the bounding boxes for the objects in all the

frames were manually labeled using the VIA annotation tool (Dutta

and Zisserman, 2019). Since the aim is to count the number of

Nephrops entering the gear, any object other than Nephrops was

labeled as other. Therefore, the object detection step is considered as

a binary detection problem.

The dataset was randomly divided into training and test sets with

proportions of 87.5% and 12.5%, respectively. Next, 1000 images were

generated using the Copy-Paste (CP) augmentation method and

added to the training set (Ghiasi et al., 2021). When performing the
Frontiers in Marine Science 06
CP augmentation, pixel values corresponding to the masks of the

objects in the source images were pasted onto the destination images.

To improve the diversity in the augmented images, some geometric

transformations were applied to the images as explained in (Sokolova

et al., 2021a). The details, like number of images and the object

instances in the image dataset after the augmentation are given in

Table 2, and three sample images are provided in Figure 3.
A

B

C

FIGURE 2

Illustration of the counting conditions. Two consecutive frames in the columns. (A–C) correspond to the conditions i, ii, iii, respectively.
TABLE 2 Numbers of images and instances from both classes in the
training and test sets used in the object detection step.

Images Nephrops Instances Other Instances

Training Set 4538 3766 8014

Test Set 506 204 775
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The darknet framework was used for the training of the models

(Redmon, 2016). The training and testing were performed on a

Tesla A100 GPU with 40 GB RAM, CUDA 11.1, and cudnn

v8.0.4.30. All the coding was done with Python v3.9.12 following

the instructions and model configuration files made available at

(Bochkovskiy, 2022). Some of the hyperparameters regarding the

models and their training are listed in Table 3. Note that all the

models were trained for 6000 iterations and the weights yielding the

best detection performance were used in the subsequent steps.
Frontiers in Marine Science 07
Performance evaluation metrics
The performances of each step in the study are evaluated and

reported separately in Section 4. To evaluate the object detection

performance, different mAP values are calculated for each of the

models using the test set. mAP is a quantification of the detection

performance by comparing the amount of overlap between the

ground truth and predicted bounding boxes. It is a widely used

metric and has good representation of the detection performance as

it considers both the prediction confidence score and the
A

B

C

FIGURE 3

Samples from the image dataset. (A) An image with a Nephrops instance. (B) An image with some other instances. (C) An image with copy-paste augmentation.
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intersection over union (IoU) values. First, the confidence scores for

the bounding boxes are converted into class labels for different

threshold values. This allows to obtain a confusion matrix for each

threshold and hence calculate the precision and recall values using

the True Positive (TP), False Positive (FP), and False Negative (FN)

in each matrix given by the following equations.

Precisionn =
TPn

TPn + FNn

Recalln =
TPn

TPn + FNn

Here the subscript n represents different confidence score

thresholds. The multiple (recall, precision) points correspond to a

curve in 2D space (precision-recall curve), and the average precision

(AP) value is the weighted mean of the precisions with the weights

being the changes in the recall values.

AP = o
n−1

i=0
(Recalli − Recalli−1)Precisioni

This AP calculation procedure is repeated for all classes

separately in the dataset. The average of all the AP values is

defined as the mAP which can be obtained by

mAP =
1
co

c

i=1
APi

where c represents the number of classes in the dataset and APi
is the AP value for the ith class.

The mAP value can be computed for different IoU thresholds

that affects the shape of the precision-recall curves. As a convention,

the mAP value is calculated for IoU = 0.50 (mAP@.50). However,

for benchmarking purposes,mAP values at different IoU thresholds

are calculated and averaged as well. In this study, three mAP values

are provided as the detection performance of the models:mAP@.50,

mAP@.75, and mAP@.50:.05:.95 (mAP values averaged for the

thresholds from 0.50 to 0.95 with steps of 0.05). In addition, since

the purpose is to track and count the Nephrops only, the AP values

belonging to Nephrops class (APnep) are also given for the same

IoU thresholds.

Having obtained the tracks as the algorithm output as explained

in Section 3.3, the tracking performance metrics were calculated.

Among the calculated metrics, multi-object tracking accuracy

(MOTA) is a combination of three error types namely, number of

misses, false positives, and mismatches. It is obtained by

normalizing the total of these three errors by the number of

ground truth tracks. In calculation of MOTA, only the track
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locations are used. In other words, no bounding box information

is considered in MOTA. To overcome this situation, another metric

called multi-object tracking precision (MOTP) is defined. MOTP is

the average overlap between the bounding boxes of predictions and

ground truths. Mostly tracked (MT) and mostly lost (ML) are two

quality measures that consider the ratio of successfully tracked

frames for an object. A track is MT if it is tracked for at least 80% of

its life span. If the tracking ratio is less than 20%, then is called ML.

Within the context of object tracking, it is also desirable to obtain

tracks preserving their identities with small numbers of untracked

frames. Therefore, it is possible to mention two more metrics here.

Identity switch (ID-Sw) is the total number of tracks changing their

identity for the same ground truth object. Fragmentation is the

number of interruptions in the track where no tracking is made.

Finally, higher order tracking accuracy (HOTA) combines errors

originating from both association and detection (Luiten et al.,

2021). Specifically, it is the geometric mean of association

accuracy and detection accuracy.
Results

Detection performance of the models

The mAP and APnep values for different IoU thresholds for all

three models are given in Table 4. These values are obtained by

passing the test set samples in the image dataset introduced in

Section 3.1 through the trained models. Note that the best weights

determined during the training phase are used for prediction on the

test set which can be considered as a regularization step to avoid

overfitting. In other words, the weights calculated in the subsequent

iterations are not considered for Nephrops detection. The best

weights are obtained at iterations 4962, 5245, and 4113 for

YOLOv4, YOLOv4-Tiny, and YOLOv4-Scaled, respectively.

In most of the performance metrics, YOLOv4-Scaled outperforms

the other two models. Nevertheless, the differences between YOLOv4

and YOLOv4-Scaled are minor which precludes suggesting the best

model for all cases. For the threshold IoU = 0.5, the scaled version is

slightly better at detection of theNephrops, but when the AP values for

both classes are considered, YOLOv4 has a higher mAP value. This

means that YOLOv4-Scaled is not as precise as YOLOv4 when

detecting the objects from the other class. On the other hand, the

difference between the performances of YOLOv4-Tiny and the other

two models is smaller when IoU = 0.5. This indicates that the tiny

version is capable of detecting the bounding boxes but not with as high

IoU values as those obtained by the other models.
TABLE 3 Summary of the model settings.

Network Size Initial Learning Rate Momentum Decay Training Epochs

YOLOv4 416 0.00100 0.949 0.0005 6000

YOLOv4-Tiny 416 0.00261 0.900 0.0005 6000

YOLOv4-Scaled 640 0.00100 0.949 0.0005 6000
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Tracking and counting performance of
the models

Note that only the tracks satisfying the count conditions were

involved in the tracking performance calculation because these are

the tracks used in counting performance calculation as well. In

addition, the tracking metrics were obtained for all five videos

separately, but their average values are provided here as one single

clustered column chart (Figure 4). The MOTA, MOTP, and HOTA
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values are given as percentages (Figure 4A) and the rest are number

of tracks (Figure 4B).

The Nephrops counts output by the algorithm associated with

the tracks are given in Table 5. The numbers of true positive counts

are reported together with the numbers of false positive and false

negative counts together with the correct count rates for each

individual video. The lowest total number of false positives is

achieved by YOLOv4-Scaled which has the highest false negative

tracks as well. Therefore, it is possible to explain the low false
TABLE 4 Performance comparison of the detector models.

mAP (%) APnep (%)

@.50 @.75 @.50:.05:.95 @.50 @.75 @.50:.05:.95

YOLOv4 97.82 85.58 71.89 97.84 91.37 74.76

YOLOv4-Tiny 95.10 73.06 62.71 94.57 76.95 64.28

YOLOv4-Scaled 97.55 88.10 72.28 98.47 94.05 75.97
Best values are provided in bold.
A

B

FIGURE 4

Tracking performances associated with the detectors. (A) Percentage values for MOTA, MOTP, and HOTA, (B) MT, ML, ID-Sw, and Fragmentation
numbers averaged over the test videos.
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positive rate by its inefficiency in generating tracks satisfying the

count conditions. The lowest amount of false tracks are achieved by

YOLOv4 which also has the highest true positives. Specifically, the

related F-scores calculated on the total counts for YOLOv4, Tiny,

and Scaled versions are 85.44%, 80.21%, and 74.44%, respectively.
Processing speed comparison of
the models

The required amount of calculations in the model and

the hardware specifications are the two major factors affecting the

processing speed. The calculation amounts are determined at the

design stage of the models, and this can be adjusted to some degree

by changing the input image sizes which is also named as network

size (see Table 3). Typically, a larger network size in the model

yields better object detection, sacrificing the processing speed and

vice versa. The input image size for the YOLOv4-Scaled model was

adjusted to be higher than the other two models to improve its

detection accuracy. Such an adjustment allowed for obtaining a
Frontiers in Marine Science 10
similar accuracy with YOLOv4 model and hence benchmarking

their tracking, counting and speed performances.

The FPS values for each model and video are summarized in

Table 6. As expected, the YOLOv4-Tiny model is the fastest in all

the videos because it has a reduced number of computational layers

to enhance its speed. The slowest model is YOLOv4-Scaled. The

reason for its lower FPS values is related with its larger network size.

However, a smaller network size for this model would cause lower

detection and tracking performances eventually yielding a lower

number of true positive counts.
Benchmarking with other trackers

To evaluate the suitability of SORT, two other object tracking

algorithms were tested on the same dataset. One of these methods is

based on a correlation filter, namely, Minimum Output Sum of

Squared Error (MOSSE) filter (Bolme et al., 2010). The reason for

selecting this object tracker is that its processing speed is claimed to

reach 669 FPS (Bolme et al., 2010). In addition, usage of MOSSE was
TABLE 5 Detailed numbers of counts obtained by the detection models.

Video-1 Video-2 Video-3 Video-4 Video-5 Total

Ground Truth 4 6 36 40 23 109

YOLOv4

Output 4 4 39 31 19 97

True Positives 4 4 34 27 19 88

False Positives 0 0 5 4 0 9

False Negatives 0 2 2 13 4 21

Correct Count Rate (%) 100.00 66.67 94.44 67.50 82.61 80.73

YOLOv4-Tiny

Output 4 4 33 24 18 83

True Positives 3 4 31 21 18 77

False Positives 1 0 2 3 0 6

False Negatives 1 2 5 19 5 32

Correct Count Rate (%) 75.00 66.67 86.11 52.50 78.26 70.64

YOLOv4-Scaled

Output 3 4 27 19 18 71

True Positives 3 4 25 17 18 67

False Positives 0 0 2 2 0 4

False Negatives 1 2 11 23 5 42

Correct Count Rate (%) 75.00 66.67 69.44 42.50 78.26 61.46
frontie
TABLE 6 Comparison of image processing speed between models in frames per second (mean [min-max]).

Video-1 Video-2 Video-3 Video-4 Video-5 Average

YOLOv4
116.49
[65-123]

115.64
[76-123]

116.67
[75-123]

114.77
[69-123]

115.76
[62-122]

115.87
[69.4-122.8]

YOLOv4-Tiny
267.51
[84-323]

248.58
[96-267]

251.22
[76-318]

251.50
[75-316]

248.72
[91-311]

253.51
[84.4-307.0]

YOLOv4-Scaled
78.93
[39-80]

79.51
[51-81]

80.31
[40-82]

79.93
[44-82]

80.73
[48-82]

79.88
[44.4-81.4]
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shown to be one of the effective trackers tested in underwater videos

(Lopez-Marcano et al., 2021). The MOSSE algorithm initializes a

correlation filter based on a detected object in a frame. Next, in the

subsequent frames, the algorithm looks for a location having the

highest correlation with the initially detected object. Due to the

changes in appearance of the same Nephrops instances throughout

the video, the Nephrops detection used for generating the correlation

filter is updated every fifth frame. This approach was implemented

earlier for tracking of yellowfin bream in underwater videos (Lopez-

Marcano et al., 2021).

The other tracker evaluated is DeepSORT, an improved version of

the SORT algorithm (Wojke et al., 2017). DeepSORT uses the

appearance information of the detected objects together with their

motion information in 2D. The motion information is quantified by

the Mahalanobis distance between the detected bounding box

centroids and the Kalman filter predictions under a constant

velocity model. On the other hand, the appearance features for each

detection are obtained by passing the bounding box region through a

pre-trained CNN containing two convolutional and six residual layers.

The minimum cosine distance between the appearance features of the

detections and the last 100 features of each track is determined as the

second metric used by DeepSORT. For the benchmarking

experiments, the resources and the instructions made available in

the official repository of DeepSORT are utilized (Wojke, 2019).

Instead of reporting the full detailed results for benchmarking

trackers, only MOTA, HOTA, correct count rate, average FPS

values, and F-scores for YOLOv4 model are provided (Figure 5).

Evaluation of these metrics is sufficient for comparing the trackers

by understanding their overall performance.
Discussion

A major challenge in demersal trawling is the lack of

information about the catch entering the gear during fishing. This

study demonstrates a full pipeline to acquire, process and display
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catch information for Nephrops, in close to real-time, to act as a

decision tool for the fisher during the fishing operation. The

applicability of such tools in commercial trawling and their

potential improvements is discussed below.

One advantage of the proposed algorithm is the powerful image

acquisition system that provides mostly sediment-free clear videos

for being processed in the subsequent steps (Sokolova et al., 2021b;

Sokolova et al., 2022). In the existing literature for underwater

image processing, there are some papers where the effects of

preprocessing on underwater images are analyzed for improving

the detection performance (Han et al., 2020; Zhou et al., 2022). But

the preprocessing requires some time, degrading the overall

processing speed. In addition, there are different types of

degradations such as low contrast and color distortion present in

the underwater images (An et al., 2021). Our method does not

require any preprocessing to enhance the detection accuracy

because the image acquisition system is robust and capable of

capturing clear videos with adjustable illumination (Sokolova

et al., 2021b).
Evaluation of the algorithm steps

Since the followed strategy is tracking-by-detection, successful

Nephrops detection is expected to imply more accurate tracking

which eventually may result in better Nephrops counts. Hence,

achieving high mAP is critical at the object detection step. The

performances of object detector models may be considered as

sufficiently successful for an accurate tracking and counting task

because all three models have mAP @.50 values above 95%

(Table 4). In addition, the Nephrops detection performance, APnep
value, associated with YOLOv4-Scaled model is the highest

indicating a better detection capability of Nephrops. However, this

situation is in connection with the increased size of the YOLOv4-

Scaled model which slows down its respective detection

speed (Table 6).
FIGURE 5

Some performance metrics obtained by three different object tracking algorithms.
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In the literature, there are numerous metrics defined for

evaluating the performance of an object tracking algorithm. For

simplicity, only those metrics commonly mentioned in the object

tracking literature are provided in this paper. Among the three

models, YOLOv4 model has the best values for MOTA, MT, ML,

and HOTA. For a detection model, having higher MT and lower

ML track count means that their associated successive detections

are good enough to attain a valid track. This idea is also supported

by the high accuracy values in MOTA and HOTA. On the other

hand, an identity switch can be the source of a false positive count

provided that the switching happens somewhere close to the

horizontal level defined for counting conditions. As for the

MOTP, it is very close for three of the models. This means that

they have nearly the same level of success in bounding box

localization throughout the tracks and cannot be used as a

distinguishing factor for commenting on the counting performance.

Finally, it is possible to mention the performance for total

Nephrops counts and the processing speeds of the method.

Checking only the total counts at the end of the video may be

misleading since some Nephrops are not counted while there may be

multiple counts for some others. Therefore, checking the false

positive and false negative counts together with the true positives

gives better insight about the counting performance. The

quantification of these three types of tracks is done by calculating

the F-scores for each detector model. In addition, the rates for

correct counts in each video are provided. At this point, it is notable

that the correct count rates for Video-4 are relatively low when

compared to the other four videos. The reason for such a

remarkable difference is that Video-4 has some sediments

degrading the visibility of the objects in the video. This situation

highlights the importance of sediment-free video acquisition.

Furthermore, when Tables 4, 5 are considered together, it is

possible to conclude that high performance at the object detection

step does not always imply better correct count rates. This is

apparent for the YOLOv4-Scaled model which has a very high

detection rate but fails to achieve good count performance.

As for the processing speed, it is measured in terms of FPS. It is

the type of the detector model that has a major impact on the overall

duration of processing a frame. In addition, updating the object

tracks by the SORT algorithm takes some time. During the

experiments on the videos, it was observed that, on average, 1.6%

of the total processing duration of the frames are used by SORT

tracking algorithm when YOLOv4 is used as the object detector.

However, tracking is effective only when there is a tracked object in

the frame. Nevertheless, the maximum processing speed related

with three of the models is higher than the FPS value of the input

video (Table 6). This means that the detectors are capable of

running at real-time processing speed, but this speed may be

reduced when there is a tracked object in the video. On average,

the processing speeds of YOLOv4-Scaled is slightly below the real

time threshold while the other two models are fast enough to be

considered real-time.

The benchmarking results of SORT with MOSSE and

DeepSORT trackers revealed that SORT is a better tracker for this

application in terms of tracking accuracy, Nephrops counting, and

processing speed. The major problem with the MOSSE tracker is the
Frontiers in Marine Science 12
requirement for updating the correlation filters frequently. This

process slows down the procedure considerably. On the other hand,

tracking without any correlation filter update step, MOSSE is quite

inefficient for this problem because the Nephrops individuals float

and rotate under the influence of water flow causing their

appearance to be changed as they are in the field of view of the

camera. As for DeepSORT, it is more accurate than MOSSE in

terms of counting performance. However, the CNN-based feature

extraction step slows down the overall tracking speed and

eventually causes the slowest processing.
Implications for the nephrops fishing

Demersal trawling is a blind process today, which means that

fishers do not know if they are catching the target species during

trawling operation. This study constitutes a basis for addressing this

problem by outputting the target catch count with a real-time speed.

In other words, it demonstrates the possibility of providing the

Nephrops catch amount throughout the trawling operation. Such

information is useful for not only improving the catch rates of the

target species but also reducing the bycatch amounts, oil and energy

consumption, and ult imate ly improve the economic,

environmental, and social sustainability of the fishery.
Further development

The first step for further improvement of the proposed method

is to run it on an edge device with limited computational power.

Note that the reported results in this study were obtained using a

powerful processing unit (Section 3.4). In real world applications, it

may not be practical to access such a computer. Therefore,

experimentation with an edge device, which is more accessible

onboard commercial fishing vessels, is one of the improvement

plans with high priority. The change of the processing platformmay

not affect the correct count rates, but will have an influence on the

overall processing speed. Nevertheless, the achieved speed with

YOLOv4-Tiny model is promising and it may still perform

sufficiently fast on an edge device.

When there is a tracked object in the video, the tracking speed

drops considerably. In other words, tracking step is a bottleneck in

the procedure. However, SORT is known to be one of the fast

tracking algorithms in the literature, which is also supported by the

benchmarking results. In case of requiring higher speed, skipping

some intermediate frames may be helpful at cost of degradation in

the count accuracy. This may contribute to the compensation of the

speed loss due to the edge device. Besides, even if there is a small

delay, the achieved processing speed may be considered as a

significant improvement when compared to hours of delay

associated with the current situation, where information on catch

rates and compositions is only available once the catch is taken

onboard the vessel.

In the longer term, the method may be extended to detect and

count more species and contribute to a larger scale in fisheries.

However, this requires generation of a larger video dataset
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containing more diverse species. In addition, the edge processing

unit may be connected to the stereo camera directly by integrating

them inside the underwater camera box. This may be coupled with a

wireless transceiver device that transmits the count information, e.g.

acoustically to a screen onboard. This key information is sufficient

for the fisher to decide whether to continue fishing in the same area.
Conclusion

This study demonstrates the possibility of using state-of-the-art

deep learning methods to develop real-time decision tools for the

trawl fisheries demonstrated here as a Nephrops counter. In

particular, the experiments are carried out with three different

object detector models on underwater videos collected by an in-

trawl camera. The detection, tracking, and counting performances

as well as the processing speeds associated with these models are

calculated. According to the obtained results, it is possible to

conclude that such a system is promising for improving the

sustainability of trawl fisheries.
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