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Wide-area sound speed profile
estimation based on a pre-
classification scheme for sound
speed perturbation modes

Chen Liu and Ke Qu*

School of Electronic and Information Engineering, Guangdong Ocean University, Zhan jiang, China
Introduction: The trend of sound speed profile (SSP) inversion is towards wide-

area sound speed estimation. However, the traditional inversion method of

dividing the latitude and longitude grids has limitations in terms of significantly

lower accuracy when samples are lacking. k-means clustering algorithm (K-

means) can divide the training class to achieve high accuracy estimation.

Method: This paper proposes a grid-free pre-classification inversion scheme

based on empirical orthogonal function (EOF) vectors. The scheme is based on

the K-means to classify the samples according to the perturbation mode of the

SSP. After classification, the SSP inversion is carried out using the self-organizing

map algorithm (SOM). The experimental sea area is selected from the South

China Sea, and the inversion results are evaluated using root mean square error

(RMSE) as the criterion.

Result: The inversion results show that the inversion error is 2.1 m/s for the

pre-classification solution and 2.7 m/s for the solution without pre-classification,

a steady improvement of more than 20% in the inversion error. Accuracy is also

improved by 2.14 m/s in the depth range where the sound speed perturbance

is greatest.

Discussion: This pre-classification scheme has smaller inversion errors and

the classification results are reasonable in terms of distribution in time and

space. It provides a feasible solution for SSP inversion in sea areas where

samples are lacking.

KEYWORDS

sound speed profile, K-means, self-organizing map, South China Sea, empirical
orthogonal function
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1 Introduction

Sound speed profiles (SSP) are an important dynamic factor

influencing underwater acoustic energy, and their acquisition in

real-time is of great importance for sound propagation (Stojanovic

et al., 1994; Rouseff et al., 2001; Song, 2017; Han and Yao, 2021; Li

et al., 2022b). However, SSP measurements have a broad spatial and

temporal coverage, and obtaining SSP through in situ

measurements is time-consuming. On the other hand, the satellite

remote sensing platform has comprehensive coverage and real-time

characteristics, which can meet the observation needs of SSP

measurement with wide spatial and temporal coverage. Still, the

data it acquires are limited to the sea surface. Therefore, the

research focuses on using certain physical relationships to project

the satellite acquired sea surface information downward to estimate

the underwater sound speed in real time (LeBlond, 1976). There

have been two approaches to reconstructing the underwater data

using sea surface data for a long time. One is the traditional model

of the physical relationship between the sea surface and the

underwater field. Carnes estimated underwater profile data for the

NW Pacific and NWAtlantic using empirical orthogonal and single

empirical orthogonal regression functions (Carnes et al., 1994). The

US Navy later included this inversion method as part of its

operational marine environment prediction program due to its

good performance in terms of efficiency and accuracy (Chu et al.,

2004). Since then, the multivariate projection method proposed by

Fischer (2000) and the multivariate regression method proposed by

Nardelli and Santoleri (2004) have also been successful in acquiring

underwater structures. However, these traditional methods are

mainly based on a linear relationship between the surface and

subsurface (Meijers et al., 2011). Their performance deteriorates in

sea areas with complex sea conditions due to the highly non-linear

nature of the ocean. So, another class of machine methods with the

advantage of extracting non-linear relationships from a data set is

gradually being used in this field (Liu and Weisberg, 2005; Jain and

Ali, 2006; Li et al., 2022a). In recent years, Su used the XGBoost

model to reconstruct the global underwater thermohaline structure

(Su et al., 2019), and Chen used the self-organizing map (SOM) to

reconstruct the underwater temperature data in the Kuroshio

extension of the Pacific Ocean east of the island of Japan (Chen

et al., 2020). Ou used the Random Forest algorithm to reconstruct

the underwater sound speed data in the South China Sea (Ou et al.,

2022a). Bao et al. estimated Pacific subsurface salinity data using a

generalized regression neural network FOAGRNN model with a

fruit fly optimization algorithm (Bao et al., 2019). An increasing

number of machine learning algorithms are being used in this area,

and most show better performance (Charantonis et al., 2015; Bianco

and Gerstoft, 2017; Li et al., 2022d; Li et al., 2022c).

Machine learning is efficient and high performing, but it also

faces apparent problems. One of the most realistic problems is that

machine learning algorithms require many samples as a training set

to get a good estimation result. Insufficient samples in the training set

can directly lead to wrong estimation results (Frederick et al., 2020). If

the time series and spatial orientation were expanded to introduce

more samples, this would lead to inconsistent basis functions for the

inversions and introduce more significant errors due to differences in
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the perturbation mechanisms. To maintain the consistency of the

basic functions, the traditional treatment is to divide the sea area into

individual 1° x 1° or 2° x 2° latitude and longitude grid cells and then

extract the Empirical orthogonal function (EOF) vector basis

functions in each grid (Chen et al., 2018; Li et al., 2021). When the

sample data is insufficient, the whole sea area is treated as a large grid

in a unified manner. This treatment will result in greater errors due to

the large area of the sea grid and differences in the sound speed

perturbation mechanisms in the sea area, resulting in inconsistencies

in the derived basis functions. This paper proposes a pre-classification

scheme based on the extraction of EOF vectors from sound speed

profiles to solve the difficulty of the abovemachine learning algorithm

to divide the grid in the sea with insufficient data samples. This

scheme classifies sea areas with similar perturbance mechanisms into

the same class of data samples. The classification is based on the

consistency of the EOF basis functions tested using the K-means

algorithm. The SSP is inverted using the SOM algorithm after the

classification. The K-means algorithm is a classical Euclidean

distance-based clustering algorithm that can reasonably classify seas

based on the similarity of EOF. Previous scholars have applied it to

the estimation of thermohaline profiles showing that this

classification algorithm is feasible and effective (Hjelmervik and

Hjelmervik, 2013). The SOM algorithm can fuse the input SSP

inversion-related parameters by simulating a lateral inhibition

phenomenon in the biological nervous system; similar inversions

by previous scholars using the SOM have also shown good

performance (Chapman and Charantonis, 2017).

The experimental area was selected from the South China Sea,

the largest marginal sea connecting the Indian and Pacific Oceans.

Its unique semi-enclosed basin structure, monsoons, and other

factors led to a complex SSP distribution and perturbation, which

presented a challenge to the SSP inversion scheme (Sun et al., 2020).

The most critical difficulty is that due to political and economic

reasons, Argo buoys are sparsely deployed in the South China Sea

region, and SSP samples are scarce in the South China Sea

compared to other water areas. This makes it challenging to

implement inversion solutions for relevant machine learning

algorithms. Therefore, the pre-classification scheme in this paper

was chosen to conduct experiments in the South China Sea, which

can verify the validity and feasibility of the classification scheme.

The classification divides the sea area into three types of samples,

and the results of the inversion experiments are evaluated for the

assessment using root mean square error (RMSE). The inversion

results show an accuracy of 2.1 m/s after pre-classification

treatment of the South China Sea. The inversion accuracy using

the traditional treatment of the entire South China Sea as one large

grid is 2.7 m/s. The pre-classification scheme improves the

inversion accuracy by 0.6 m/s and stabilizes upgrading the

inversion accuracy by more than 20%. The experimental results

show that using the K-means algorithm to check the consistency of

the empirical orthogonal function and to pre-classify the sea area is

an effective solution for the difficulty of dividing the training grid of

machine learning algorithms into complex sea areas with

insufficient data samples. It achieves a high accuracy inversion of

the de-gridded SSP for complex sea areas with insufficient

data samples.
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2 Data

Three main types of data were used in this experiment: Argo

buoy data, satellite remote sensing data, and World Ocean Atlas

2018 (WOA18) data.
2.1 Satellite remote sensing data

The satellite remote sensing data used in the study are sea

surface temperature anomaly (SSTA) and sea level anomalies (SLA).

SSTA and SLA data from the Copernicus Project (https://

marine.copernicus.eu/). The temporal resolution was chosen as

one day, and the spatial resolution was chosen as 0.25° × 0.25°.
2.2 Background profile data

The background profiles are taken from the WOA18 dataset,

derived from the National Oceanic Data Research Center (NODC)

climate state ocean hydrographic data (https://www.ncei.noaa.gov/

products/world-ocean-atlas). It is a climate-averaged data set that

integrates temperature, salinity, density, and other data sets and

measurements from various global seas, including annual, seasonal,

and monthly averages. It is generally available at 0.25°, 1°, and 5°

spatial resolution. The WOA18 data used in this experiment were

selected as annual averages for 2005-2017, with a spatial resolution

of 0.25° × 0.25°.
2.3 Argo data

The international Argo program was implemented in 2000,

with over 15000 automated profiling buoys deployed in the global

ocean by many countries. This was mainly for measuring

temperature and salinity profiles. The Argo data used in the

experiments were taken from the Global Ocean Argo Scattered

Data Collection by the China Argo Reference Centre (ftp://

ftp.argo.org.cn/pub/ARGO/global). Due to political and sea

complexity factors, buoys in the South China Sea are sparsely

deployed and data measured are scarce, with only 3881

temperature and salinity profiles measured between 2009 and

2018. The experimental SSP data can be converted from

temperature, salinity, and pressure data in the buoy based on

empirical equations for sound speed. For the depth sampling in

the profile, the sampling interval was 5 m for the first 100 m and

10 m for the depth of 100-200 m, as the sound speed perturbance

amplitude gradually approached 0 after 200 m, and the sampling

interval was increased to 25 m and 50 m. After 1000 m depth, the

number of samples decreases significantly, and in some seas, there is

no data even below 1000 m depth. Considering the number of

samples and the EOF vector magnitude values, this paper selects

1000 m as the maximum depth. Sound speed anomalies and

variability exist in this depth range, and universality can be

guaranteed. The thermohaline data were converted to SSP using
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an empirical formula for the sound speed (Del Grosso, 1974). Of

these, 3757 SSP sample data from 2009 to 2017 were used as the

training set, and 124 SSP sample data from 2018 were used as the

test set (Figure 1).
3 Materials and methods

3.1 EOF dimensionality reduction

In solving problem of SSP inversion, the SSP are firstly reduced

in dimensionality. The samples are usually reduced in

dimensionality to represent the sound speed perturbation by the

sound speed basis function. The sound speed can then be modeled

using a function of time sampling point t and depth z in the form of:

C(z, t) = C0 +o∞
i=1ai(t)ki(z) (1)

where C0 is the background profile, the part of the ocean where

the sound speed is stable and constant over time, and can usually be

approximated by the mean value. The part perturbed with time and

depth is represented as a superposition of the EOF vector ki(z) and

its projection coefficients ai(t). During SSP reconstruction, the EOF

vectors of higher-order modes may contain too much noise.

Therefore, the SSP perturbation can be effectively described using

no more than a five orders EOF vector while ensuring little loss of

SSP information. A five orders EOF vector are used for

characterization in this paper. The EOF vector is obtained by

extracting the principal components of the sound speed sample

matrix, which is obtained by bringing the profile’s temperature,

salinity, and depth data into the empirical equation for the sound

speed (Del Grosso, 1974). The samples are subtracted from the

climatic state sound speed profile values representing the

background mean to the matrix form w of the sound speed

anomaly data.

R = w � wT (2)

R� E = E � L (3)

where R is the covariance matrix of the sound speed anomaly

matrix, E is the EOF vector, and the first five orders vector is chosen

as the inversion basis function.

Figure 2 shows the first five orders of the normalized vector of

the EOF. Based on the amplitude distribution, it is known that the

perturbation of the sound speed mainly occurs in the range of 0-

200 m sea depth, and the amplitude has tended to zero at 1000 m.

Thus this experimental study focuses on the reconstruction effect in

the first 1000 m sea depth.
3.2 Error analysis

The error analysis uses RMSE as the error assessment criterion

for full text., where Cr is the measured profile and C is the

reconstructed profile. Where m is the number of depth sampling

points and n is the number of samples.
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
om

i=1on
j=1(Cr(i,j) − C(i,j))

2

m� n

s
(4)

Table 1 shows the variance contribution of the first five orders

of EOF modes, with the first five orders accounting for 96.1% of all

eigenvalues. The direct reconstruction error of the first five orders is

1.03 m/s. This indicates that the first five orders EOF modes already

contain the main features of the data, suggesting that they are

sufficient for reconstructing the profiles and do not introduce too

much perturbation noise from the higher-order modes.
3.3 Sample classification

During the experiment, author tested the accuracy performance

of k at different values. It is found that the accuracy increases as the

value of K increases. However, when K>3, the increase is very small,

and the experimental cost and the accuracy gain are not

proportional, so this paper uses K=3 to solve the difficulty of

dividing the grid when the sample is insufficient. with the

following procedure.
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1. Determine the total number of classifications K = 3

2. K data vectors are randomly selected as the barycenter

using the projection coefficients ai as the training set.

3. Calculate the Euclidean distance of each projection vector

to the K prime centers and classify the vector to the class

with the smallest Euclidean distance.

4. After all vectors are classified, the center of mass of each

cluster is recalculated.

5. The distance between the new center of mass and the

original center of mass in step 4 is calculated, and when

it is less than the set threshold, it is judged to be converged,

and the classification is finished. If the threshold is not

reached, steps 3 to 5 are repeated until convergence is

achieved,
dmi =
1
Nm

oN
n=1dmna

n
i   (5)

The projection coefficient ai is the training set, where n is the

sample order, N is the total number of samples, and Nm denotes the

total number of samples in them cluster. ani denotes the i element of

the n sample and is used to determine whether sample n belongs to
FIGURE 1

Sound speed profile samples and background profile.
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cluster m. If it does, dmn=1, otherwise dmn=0. Based on dmi , the

Euclidean distance ϵ can be calculated for all clusters,

ϵ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

n=1oK
k dmnoS

i=1(a
n
i − dmi )

2 
q

(6)

where S is the EOF number of orders used for inversion. A

smaller ϵ indicates a smaller standard deviation for all clusters,

indicating a better clustering effect.
3.4 Profile estimation based on remote
sensing data

The SOM inversion process is briefly described as follows

(Chapman and Charantonis, 2017; Li et al., 2021).
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1. Initialization: the weight vectors are initialized along a

linear subspace tensor of the two principal feature vectors

of the input dataset in an ordered manner.

2. A sample vector x is randomly selected from the input

training dataset, and the degree of similarity between it and

all the weight vectors on the map is calculated, The best

matching unit (BMU) denoted as yc. The similarity is a

metric using the Euclidean distance.
x − yck k = mini x − yik kf g  (7)
3. After finding the BMU, the prototype vector for the SOM

was done using a batch algorithm by simply replacing the

prototype vector with a weighted average of the samples,
TABLE 1 Properties of reconstruction of different orders of the empirical orthogonal function.

mode EOF1 EOF2 EOF3 EOF4 EOF5

Variance contribution/% 70.0 15.9 5.4 3.2 1.6

Cumulative variance contribution/% 70.0 85.9 91.3 94.5 96.1

Reconstruction error (m/s) 2.62 2.00 1.56 1.18 1.03
frontie
FIGURE 2

First five orders of the empirical orthogonal function.
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Fron
where the weighting factor is the neighborhood area

function value,
yi(t + 1) = o
n
j=1hic(j)(t)xj

on
j=1hic(j)(t)

  (8)

where c(j) is the BMU of the sample vector xj, hic(j) is the

neighborhood function (weighting factor), and n is the number of

sample vectors.
4. Select another learning data input to the network’s input

layer and return to step 2) until all the input data is

provided to the network.

5. Let t = t + 1, return to step 2, and stop when training times T

are reached.
After the neural network is trained, the inversion calculation is

performed using known data. By using the existing data to find the

nearest best matching unit in the neural network in terms of

Euclidean distance, and using the best matching unit to complete

the network parameters, where the parameters to be completed are

the inversion coefficients.

dcE(X, ref
c) =oi∈avail(1 +oj∈minssing(cor

c
ij)

2)� (Xi − ref ci )
2 (9)

where X is the input data, cis the index of each type, ref is the

reference vector, dcE is the Euclidean distance between the input

vector and the map cell, corcij is the correlation between the known

information and the information of the water body to be inverted,

Xi is the known information, avail is the set of known information,

and minssing is the set of unknown information. The SSP

reconstruction is performed by obtaining the set of projection

coefficients. The entire specific flow chart is as Figure 3 (Ou

et al., 2022b).
4 Results and discussion

The experimental sea area was divided into three categories

according to the EOF’s consistency. The sample numbers of Type 1,
tiers in Marine Science 06
Type 2 and Type 3 are 1746, 612 and 1399 respectively, and the

marker colors are Red, Pale yellow and Blue respectively.

Figure 4 shows the geospatial distribution of each type of

training sample data, with the first type of samples concentrated

in the inland river basin on the Xisha Islands side, the second type

of samples concentrated in the coastal waters near the Philippines

and Vietnam, and the third type of samples concentrated in the

watershed on the Philippines side.

Figure 5 shows the seasonal time distribution of the number of

training sample data in each category. The first sample data

category is mainly distributed from December to May, with a

small number of samples from June to September. The overall

season of the first category of data is biased toward winter. The

second sample data category is mainly distributed in October-April,

with almost zero samples in summer, and the overall data season is

winter. The third category of data sample data is primarily

distributed from June to November, with an overall seasonal bias

towards summer and autumn.

Figure 6 shows the errors for each sample in the test set.

Except for very few samples, the errors after K-means

classification and reconstruction using the SOM are all below

4.3 m/s, which is significantly more accurate than the

traditional method of using the sea as a large grid with direct

inversion using the SOM. The maximum reconstruction error

for the K-means+SOM model in the test set samples was

4.29 m/s, and the maximum reconstruction error for the SOM

model was 5.79 m/s.

Figure 7 shows the errors of the two reconstruction modes for

each depth sampling point. From the modal plots and the sampling

point error plots, it is known that the sound speed perturbations are

most intense, and the amplitude is greatest at 100-200 m sea depth.

As the temperature is the main factor affecting large variations in

sound speed in the upper ocean, it is inferred that the error at this

depth is due to seasonal and diurnal variations in the mixed layer to

the extent that large variations in SSP are produced. Ocean internal

waves and other dynamic ocean activity also contribute to some

extent to the concentration of errors at these depths. The lower

error at the sea surface is because near-surface SSP are directly

controlled and estimated by sea surface parameters. And the errors
FIGURE 3

SOM algorithm inversion process.
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will naturally be relatively small in deeper layers with less sound

speed perturbance. The reconstruction accuracy of the K-means

+SOM model is significantly higher than that of the SOM model,

except for very few depth sampling points. The maximum

reconstruction error of the K-means+SOM model is 3.08 m/s at

the sound speed perturbation. In comparison, the maximum

reconstruction error of the SOM model is 5.22 m/s at the sound

speed perturbation, indicating that the classified and then inverse

model characterizes the sound speed perturbation to a greater

extent. The error analysis of the sample sequence and the depth

reconstruction data show that this classification model followed by

inversion has high accuracy. The vast majority of the improvement

in accuracy of the post-class inversion is because classification

refines the EOF vectors of the samples, which in the traditional

method using a large grid are of one class, to three classes after

classification refinement. The EOF vectors of samples with the same

and similar characteristics are naturally the same and similar. EOF

vector analysis was performed on the classified samples of the three

categories, correspondence analysis of the time and space
Frontiers in Marine Science 07
distribution, and time and space functions of the three types of

samples to verify this conclusion.

The first-order mode contribution of Type 1 is 63.9%, and the

second-order mode contribution is 20.6%. The features are mainly

concentrated in the first mode, and the second-order mode

accounts for a certain proportion of the features. The sound

speed perturbations of the first two modes are concentrated in the

ocean’s upper layer above 200 m sea depth. The modal contribution

of the first five orders is 96.3%, which already covers most features.

The direct reconstruction error of the first five orders is 0.86 m/s,

which is sufficiently accurate to use the first five orders for

characterization and does not introduce too much perturbation

noise from the higher order modes (Table 2).

The first-order mode contribution of Type 2 is 93.3%, and the

features are mainly concentrated in the first mode. The sound speed

disturbances in the first-order mode are all concentrated in the

ocean’s surface layer above 100 m sea depth. The first five order

modal contribution is 99.0%, which covered the sample features.

The direct reconstruction error of the first five orders modal is
FIGURE 4

Distribution of samples after classification, asterisks mark class centers.
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1.82 m/s; using the first five orders modal representation has

covered the original features of the sample (Table 3).

The first-order mode contribution of Type 3 is 72.2%. The

second-order mode contribution is 14.4%, with the features mainly

concentrated in the first mode and the second-order mode

accounting for a certain proportion of the features. The sound

speed perturbance in the first two modes are concentrated in the

ocean’s upper layer above 200 m sea depth. The modal contribution

of the first five orders is 96.2%, which already contains the majority

of the sample features. The use of the first five orders of modal

representation has largely encompassed the majority of the sample

features. This sample data category is influenced by factors such as

black tides, monsoons, and wider geographical distribution. It is the

most challenging part of the three categories of sample data to

characterize. The consistency of the EOF vectors is low relative to

the first two categories, with a direct reconstruction error of 4.80 m/

s for the first five orders of modalities (Table 4).

According to the law that the EOF first-order mode

contribution is the majority, the EOF first-order mode can

already be roughly analyzed to derive the sound speed variation

law (Figure 8). Therefore, the first order mode of the EOF analysis

of the three types of samples can be used as a function of space, and

the average of the projection coefficients can be used as a function of

time to analyze the change in sound speed for each type of data.

Figure 9 shows the trend of sound speed variation as a function

of time and space for the first type of data, the perturbation of the

sound speed reaches its maximum near 100 m depth, with the

overall sound speed variation being large at the surface and small at

the deep-seated. The perturbance gradually decreases with

increasing depth, reaching around 400 m, where it tends to zero,

and after that, it does not change much with increasing depth. As a

function of time, the mean amplitude of sound speed has negative

values, with the maximum value in the summer months when the
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data sample is small, in line with the seasonal transformation of the

first type of sample data. Combined with the spatial and temporal

distribution, the first data type is spatially distributed on the western

side of the South China Sea, and the temporal distribution is skewed

towards winter. Influenced by the monsoon in the northeastern part

of the South China Sea in winter, the frequent intrusion of cold air

can cause significant cooling of the seawater in this region resulting

in a negative trend in the temporal and spatial amplitude of the

sound speed variation.

Figure 10 shows the trend of sound speed variation as a function

of time and space for the second type of data, from the perspective of

the spatial function, similar to the first type of data, the perturbation

of sound speed reaches a maximum near 100 m depth, with the

overall sound speed variation being large at the surface and small at

the deep-seated. The perturbance gradually decreases with increasing

depth, reaching around 400 m and tending to zero, with little change

with increasing depth after that. As a function of time, the amplitude

values of the sound speed are all negative, which corresponds to the

seasonal transformation of the second type of sample data. Combined

with the spatial and temporal distribution, the second type of data is

spatially distributed in the northern part of the South China Sea and

the cold water area near the coast of Vietnam, with a temporal

distribution biased towards winter. The northern part of the South

China Sea is influenced by the winter monsoon in the northeastern

part of the South China Sea, and the frequent intrusion of cold air can

cause significant cooling of the seawater in this region resulting in a

negative trend in the temporal and spatial amplitude of the sound

speed variation. The waters close to the coast of Vietnam can form

cold upwelling waters due to the cold summer eddies in the western

South China Sea, creating a cold water zone. The effects of the

monsoon and upflow cause the samples in this category to show

negative values in sound speed variation perturbation and time and

space functions.
FIGURE 5

Seasonal distribution of sample data.
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Figure 11 shows the trend of sound speed variation as a function

of time and space for the third type of data, from the perspective of

the spatial function, similar to the first two types of data, the

perturbation of sound speed reaches a maximum near 100 m

depth, with a large variation in overall sound speed variation at

the surface and a small variation at the deep-seated. The

perturbance gradually decreases with increasing depth, reaching

around 400 m, where it tends to zero, and after that, it does not

change much with increasing depth. As a function of time, the

amplitude of sound speed has a positive value, which corresponds to

the seasonal transformation of the type 3 sample data. Combined

with the spatial and temporal distribution, the third type of data is

spatially distributed on the eastern side of the South China Sea, with

distribution in both the north and south. The temporal distribution

is skewed towards summer. The influence of the southwest

monsoon in summer and the heat and salt transported to the

northern part of the South China Sea from the eastern side of the

Bus Strait to the northern part of the South China Sea by the

Kuroshio tide will warm up the seawater. Sound speed variation’s
Frontiers in Marine Science 09
time and space functions for this type of sample show positive

values in magnitude.

The K-means algorithm divides the South China Sea waters into

three categories of training data samples based on the consistency of

EOF. The correspondence analysis results between the time and

space distribution and the time and space functions show that this

classification has some justification for classifying samples that are

similar in time and space into similar categories. Based on the

results of the analysis of reconstruction errors and time and space

functions. The K-means-based pre-classification scheme effectively

solves the difficulty of dividing the training grid for machine

learning algorithms in complex, under-sampled seas and also

enables de-gridded SSP inversion for complex, under-sampled

seas. This is reflected in the refinement of the EOF vector in the

classification and the rational division of samples with the same

geographical location and similar hydrological characteristics in

terms of geographical distribution and time season. The time-

seasonal distribution of the sample data corresponds well to the

time function.
FIGURE 6

Error per sample for the test set.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1130061
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu and Qu 10.3389/fmars.2023.1130061
FIGURE 7

Error per depth of the test set.
TABLE 2 First five orders contribution rates and errors for Type 1.

Type 1 EOF1 EOF2 EOF3 EOF4 EOF5

Variance contribution/% 63.9 20.6 5.9 4.2 1.7

Cumulative variance contribution/% 63.9 84.5 90.4 94.6 96.3

Reconstruction error (m/s) 2.17 1.73 1.33 0.96 0.86
F
rontiers in Marine Science
 10
 frontie
TABLE 3 First five orders contribution rates and errors for Type 2.

Type 2 EOF1 EOF2 EOF3 EOF4 EOF5

Variance contribution/% 93.3 2.9 1.5 0.9 0.4

Cumulative variance contribution/% 93.3 96.2 97.7 98.6 99.0

Reconstruction error (m/s) 4.46 4.20 2.99 2.55 1.82
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TABLE 4 First five orders contribution rates and errors for Type 3.

Type 3 EOF1 EOF2 EOF3 EOF4 EOF5

Variance contribution/% 72.2 14.4 4.8 3.1 1.6

Cumulative variance contribution/% 72.2 86.6 91.5 94.6 96.2

Reconstruction error (m/s) 5.02 4.93 4.85 4.81 4.80
F
rontiers in Marine Science
 11
 frontie
FIGURE 8

The first five orders of modalities of Type 1~Type3.
FIGURE 9

Time and space functions of Type 1.
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5 Conclusions

Sound speed profiles are one of the elements of marine

environmental observations, and real-time, accurate sound

speed profile information is important for various marine

acoustic studies. Previous scholars have proved that projecting

the sea surface data acquired by satellite remote sensing

technology into the ocean and performing SSP inversion to

obtain large-scale sound speed data is feasible and effective.
Frontiers in Marine Science 12
However, due to the non-linear and distinctive characteristics of

the ocean, the accuracy of the inversion using the traditional linear

inversion method through physical relationships is low and not

applicable in a complex class of sea in the South China Sea when

there are complex climatic, seasonal variations and geographical

environments in certain sea areas. The accuracy of inversion using

machine learning methods is undoubtedly improved. Still, it is

also limited by the fact that gridded inversion requires a certain

number of samples in each grid. This is also not applicable in sea
FIGURE 11

Time and space functions of Type 3.
FIGURE 10

Time and space functions of Type 2.
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areas where the spatial and temporal distribution of sample data is

sparse due to various reasons such as political reasons, observation

environment, and harsh natural environment. Therefore, this

paper proposes an EOF-based grid-free pre-classification

scheme. It abandons the idea that machine learning algorithms

consistently divide the sea area into 1°×1° or 2°×2° latitude and

longitude grid cells or treat the whole sea area as a large grid for

inversion, and divides the training classes according to the

consistency of EOF, refining the EOF vector.

In this paper’s classification of the South China Sea area, the

scheme divides the sea area into three types of data samples with

similarity in spatial and temporal distribution. Each type of

sample corresponds better to the South China Sea area in terms

of time and geographical environmental factors, such as the

southwest monsoon in summer, the northeast monsoon in

winter, the northern Kuroshio, and the cold water upwelling

formed by the western summer cold eddies. The results of the

experimental error analysis also show that the classification

followed by the inversion scheme consistently improves the

model’s accuracy by more than 20% compared to direct

inversion using machine learning algorithms. The accuracy of

the inversion results is also improved in the most difficult to

characterize major sound speed perturbance at depths of

100-200 m.

In future research, we can try to introduce more geographic,

physical, and climate-based multi-source constraints to refine the

classification conditions to obtain better classification results. For

example, setting the monsoon constraint parameter to classify the

sea areas affected by monsoon that cause temperature increase or

decrease into one category. According to the geographical location,

the sea areas affected by the flow field are classified into the same

category. Samples with similar depth range of sound speed

perturbance are classified into one category according to the

different main sound speed perturbance in the sea area. The

introduction of more constraints for classification should be able

to bring the accuracy of SSP inversion further, under the premise of

ensuring interpretability in physical sense.
Frontiers in Marine Science 13
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