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Microbial dysbiosis precedes
signs of sea star wasting
disease in wild populations
of Pycnopodia helianthoides
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VT, United States, 2Department of Biology, University of Vermont, Burlington, VT, United States,
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Sea star wasting (SSW) disease, a massive and ongoing epidemic with unknown

cause(s), has led to the rapid death and decimation of sea star populations with

cascading ecological consequences. Changes in microbial community structure

have been previously associated with SSW, however, it remains unknown if SSW-

associated dysbiosis is a mechanism or artifact of disease progression,

particularly in wild populations. Here, we compare the microbiomes of the

sunflower sea star, Pycnopodia helianthoides, before (Naïve) and during

(Exposed and Wasting) the initial outbreak in Southeast Alaska to identify

changes and interactions in the microbial communities associated with sea

star health and disease exposure. We found an increase in microbial diversity

(both alpha and beta diversity) preceding signs of disease and an increase in

abundance of facultative and obligate anaerobes (most notably Vibrio) in both

Exposed (apparently healthy) and Wasting animals. Complementing these

changes in microbial composition was the initial gain of metabolic functions

upon disease exposure, and loss of function with signs of wasting. Using Bayesian

network clustering, we found evidence of dysbiosis in the form of co-

colonization of taxa appearing in large numbers among Exposed and Wasting

individuals, in addition to the loss of communities associated with Naïve sea stars.

These changes in community structure suggest a shared set of colonizing

microbes that may be important in the initial stages of SSW. Together, these

results provide several complementary perspectives in support of an early

dysbiotic event preceding visible signs of SSW.

KEYWORDS

microbiome, dysbiosis, sea star wasting disease, wildlife disease, Bayesian
network analysis
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2023.1130912/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1130912/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1130912/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1130912/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1130912&domain=pdf&date_stamp=2023-03-16
mailto:andrew.mccracken@uvm.edu
mailto:Melissa.Pespeni@uvm.edu
https://doi.org/10.3389/fmars.2023.1130912
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1130912
https://www.frontiersin.org/journals/marine-science


McCracken et al. 10.3389/fmars.2023.1130912
Introduction

Changes in global climate have expanded the range of many

infectious diseases while the added stress from increased natural

disasters, habitat loss, thermal extremes, and anthropomorphic

impacts have left many species more vulnerable to infection by

pathogens old and new (Daszak et al., 2001; Omazic et al., 2019;

Price et al., 2019). As a result, many organisms have been

experiencing an increased frequency and spread of disease

outbreaks worldwide (Bartlow et al., 2019). Beginning in the

summer of 2013, an outbreak of Sea Star Wasting (SSW) began

decimating sea star populations along the west coast of North

America. SSW disease has come to be recognized as one of the

largest marine epizootics ever observed due to its wide geographic

range from Mexico to Southern Alaska, and its impact on over 20

different asteroid species (Hewson et al., 2014). Cases of SSW can be

traced back as early as 1896 in the eastern US (Mead et al., 1898),

and small-scale wasting events have been recorded on the west

coasts of North America since the 1970’s (Menge, 1979; Dungan

et al., 1982; Jangoux, 1986; Eckert et al., 2000; Bates et al., 2009).

However, none of these past events compare to the scale of wasting

seen since 2013. SSW is of critical ecological concern as it threatens

some of the most important keystone predators, resulting in large-

scale impacts on biodiversity, community structure, and loss of

essential habitats, such as kelp forests, which are home for many

organisms and serve as nurseries for important fisheries (Menge

et al., 2016). The sunflower star, Pycnopodia helianthoides, is among

the most heavily impacted asteroids and has virtually disappeared

from its native ranges from California to Oregon (Harvell et al.,

2019). Now critically endangered, the remaining populations of P.

helianthoides take refuge in northern Canada and Alaska (Harvell

et al., 2019).

The etiology of SSW remains unknown. A wide array of signs

commonly observed in wasting sea stars include loss of body turgor,

ectodermal discoloration, puffiness, limb autonomy (twisting and

curling), body wall lesions, and disintegrating tissue (Hewson et al.,

2014). The disease progresses and spreads quickly, with death

occurring in a matter of days and outbreaks can spread to

encompass thousands of miles within months (Harvell et al.,

2019). Some studies have suggested transmission through a

water-borne infectious agent spreading from infected to healthy

animals sharing the same aquaria (Hewson et al., 2014). In many

cases, warmer ocean temperatures have coincided with wasting

events (Bates et al., 2009; Staehli et al., 2009; Harvell et al., 2019),

and cooler temperatures have been shown to improve asteroid

survival (Kohl et al., 2016). However, cooling water temperatures

coincided with increased wasting in one study off the coast of

Oregon, suggesting that temperature alone is not the sole driver of

SSW outbreaks (Menge et al., 2016). A controversial suggestion

posits that SSW is not caused by a single causative agent, but a

combination of factors including environmental change, abiotic

stress (Aalto et al., 2020), undefined pathogens, and dysbiosis of the

organisms’ microbiome (Lloyd and Pespeni, 2018; Aquino et al.,

2020). Although early investigations implicated a densovirus as a

plausible agent of the disease (Hewson et al., 2014), later studies

failed to replicate these findings in other affected asteroid species in
Frontiers in Marine Science 02
addition to the presence of the densovirus in apparently naïve

individuals (Jackson et al., 2020).

Recent studies have begun investigating changes in microbial

communities in association with SSW disease (Lloyd and Pespeni,

2018; Aquino et al., 2020). Host-microbe interactions play a crucial

role in the development, nutrient acquisition, behavior, and

pathogen resistance of most multicellular organisms (Peixoto

et al., 2021). The immune system and the microbiome function

synergistically to maintain homeostasis and deter pathogens;

compromising one often results in the collapse of the other and

may lead to immune dysregulation and increased susceptibility to

infection (Peixoto et al., 2021). This disruptive process, termed

microbial dysbiosis, can be broadly defined as any changes in the

composition and/or function of resident microbial communities

relative to those found in healthy individuals. This may result from

pathobiont expansion, loss of microbial diversity, and/or loss of

beneficial microbes (Petersen and Round, 2014).

Infections of microbial pathogens have been previously linked

to a wide range of mass mortality events afflicting echinoderms

(Scheibling, 1986; Tajima et al., 1996; Scheibling and Hennigar,

1997; Tajima et al., 2007; Becker et al., 2008; Delroisse et al., 2020).

Alterations in microbial community composition have been

recorded with disease onset and progression in the ochre sea star,

Pisaster ochraceous (Lloyd and Pespeni, 2018). The proliferation of

anaerobic bacteria at the animal-water interface, as a result of

increased primary production and organic matter buildup during

following warmer temperatures, has also been implicated as an early

mechanism of disease onset by limiting dissolved oxygen supply to

infected asteroids (Aquino et al., 2020). While the impact of SSW on

the microbiome has been investigated in controlled laboratory

conditions (Lloyd and Pespeni, 2018; Aquino et al., 2020), the

function of the microbiome in natural marine systems remains

understudied. Monitoring of natural communities and their

associated microbiomes is critical to understanding the resilience

of these communities in the presence and persistence of the recent

wasting outbreaks. Investigations into these interactions, in both

healthy and diseased organisms, will set the foundations for long-

term investigations into the evolutionary and adaptive potential of

the microbiome to environmental change at a scale that is difficult

to replicate in laboratory settings (Leray et al., 2021).

In this study, we analyze the microbiome of the sunflower star,

Pycnopodia helianthoides, as a factor of apparent health status and

exposure at multiple field sites. Here, we collected tissue biopsies

from wild sea stars sampled at seven field sites in Southeast Alaska

when the disease was just starting to emerge in 2016 (Figure S1). At

the time of collection, some impacted sites were completely

overtaken by the disease, with all sea stars showing signs of

wasting, while less severely impacted sites had a mixture of

wasting and apparently healthy asteroids. Apparently healthy sea

stars were collected from sites where wasting was observed

(Exposed), alongside animals actively showing signs of wasting

(Wasting). Sea stars were also collected from locations yet to

show any signs of wasting (Naïve), however, there was no way to

certify the absence of the disease-causing agent due to its unknown

etiology. To better understand differences between a naïve, exposed,

and actively wasting microbiome, we examined patterns of diversity
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within and between samples, identified differentially abundant taxa

that may play a role in disease progression, and inferred metabolic

pathways enriched or depleted between compared groups. Specific

communities of samples and microbial taxa with similar patterns of

abundance were then found using a Bayesian network clustering

analysis based on hierarchical stochastic block models, a statistically

rigorous alternative to traditional clustering approaches which were

recently used to study host-microbiome interactions in the human

gut (Cobo-López et al., 2022). Together these analyses provide

several complementary perspectives in support of dysbiosis as a

mechanism of SSW disease and its onset.
Materials and methods

Sample collection

Samples were collected in the summer of 2016 off the coast of

Southeast Alaska (Figure S1). With the aid of SCUBA, a biopsy from

a single ray was collected underwater from each sampled sea star,

and isolated until in a wet lab aboard a research vessel (R/V Kestrel,

Alaska Department of Fish and Game). Epidermal biopsy samples

were collected from sea stars at both impacted and naïve sites at

depths ranging from 7 to 18 meters. Seven total sites were sampled

(2 Naïve and 5 impacted) with a total of 18 Wasting, 20 Exposed,

and 47 Naïve individuals sampled (total N=85). Nonlethal biopsy

punches (3.5mm diameter biopsy punch, Robbins Instruments,

Chatham, NJ) were taken from the body wall of each individual

and preserved in RNAlater (ThermoFisher Scientific, Waltham,

MA) in 2ml tubes. Only epidermal body wall tissue was sampled,

even when sampling wasting individuals. For individuals displaying

SSW symptoms, wasting epidermal tissue at the edge of the lesion

was sampled. All biopsy tissue samples were shipped to Vermont on

dry ice and stored at −80°C until processing.
RNA extraction and cDNA
reverse transcription

RNA was extracted from each biopsy using a modified TRIzol

protocol (TRIzol reagent ThermoFisher Scientific, Waltham, MA).

After lysing tissue in 250ul TRIzol, it was homogenized for 20

minutes with a plastic pestle with 750ul additional TRIzol using a

Vortex Genie2 (Scientific Industries, Bohemia, NY). To extract

RNA, 200 ul chloroform (ThermoFisher Scientific, Waltham,

MA) was added, inverted 15 times, incubated for 3 minutes at

RT, and centrifuged at 4°C for 15 minutes at 12,000×g. The RNA-

containing supernatant was transferred to a new tube and the

previous step was repeated. Adding 500 ul isopropanol

(ThermoFisher Scientific, Waltham, MA) and 1 ul 5 mg/ml

glycogen (Invitrogen, Carlsbad, CA), incubation for 10 minutes at

room temperature, and centrifugation for 5minutes at 7500×g at

4°C precipitated the RNA from the supernatant. After drying for 10

minutes at RT the RNA pellet was dissolved in 50 ul nuclease-free

water. A NanoDrop 2000 Spectrophotometer (ThermoFisher

Scientific, Waltham, MA) and Qubit 3.0 Fluorometer (Life
Frontiers in Marine Science 03
Technologies, Carlsbad, CA) were used to measure the quality

and quantity of the RNA extractions. To check for DNA

contamination, we performed negative amplification PCR (16S

PCR amplification parameters below). Random hexamer primers

reverse transcribed cDNA with SuperScript IV (Invitrogen,

Carlsbad, CA).
16S PCR amplification and sequencing

To amplify the V3 and V4 region of the 16S bacterial gene, we used

t h e p r i m e r s : f o r w a r d 5 ′TCGTCGGCAGCGTCA

GATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG and

reverse 5′GTCTCGTGGGCTCGGAGATGTGTATAAGAG

ACAGGACTACHVGGGTATCTAATCC (Klindworth et al., 2013).

25 ul PCR reactions (1X MiFi Mix (Bioline, Toronto, Canada), 200nM

each primer, and 2ul cDNA) were run with the following conditions:

95°C for 3 minutes followed by 25 cycles of 95°C for 30 seconds, 55°C

for 30 seconds, and 72°C for 30 seconds, with a final extension at 72°C

for 5 minutes. To clean the PCR products, AMPure XP beads

(Beckman Coulter, Brea, CA) and MiSeq indexing adapters were

added. The indexed PCR products were cleaned again with AMPure

XP beads, following Illumina 16S metagenomic sequencing library

preparation protocol. To validate band size, the cleaned, indexed PCR

products were run on a 2% agarose gel. 16S rRNA Library sequencing

was performed at the Cornell Biotechnology Resource Center (Ithaca,

NY) using 2 × 300 base pair overlapping paired-end reads on an

Illumina MiSeq platform.
Sequence data processing, taxonomic
assignment, and diversity metrics

Sequences were demultiplexed and barcode sequences were

removed by the core facility. QIIME2 (v.2-2021.8) was used for

data cleaning and analysis (Bokulich et al., 2018). Paired end reads

were imported into QIIME2 and read quality was assessed using

QIIME2’s ‘qiime_demux_summarize’ function. Read quality was

determined by Phred score (>30) then subsequently denoised and

trimmed using DADA2 (Callahan et al., 2016), which removes

errors and noise from data sequenced by Illumina, and creates

information about the removed data. DADA2 parameters were set

at trimming forward reads at 16bp and truncating at 289bp and

reverse reads were trimmed at 0bp and truncated at 257bp.

Diversity metrics were run using the ‘qiime_diversity_core-

metrics-phylogenetic’ function with an Amplicon Sequence

Variant (ASV) sampling depth of 13,547 to ensure maximal

sample depth without omitting any samples. ASV richness (alpha

diversity) of Naïve, Exposed, and Wasting asteroids was calculated

using the Shannon diversity index using the qiime2 plugin and the

between-group diversity (beta diversity) was calculated using the

weighted_unifrac_distance_matrix to take into account the relative

abundance of ASVs shared between samples (Lozupone et al.,

2006). One sample (HH02_18) was responsible for all identified

outliers in our beta-diversity analysis between Naïve samples, and

was removed. Variation among Naïve individuals was 22.6%
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outlier-inclusive, and 19.9% with outliers removed (Figure 1D).

Diversity plots were made using Qiime2 outputs visualized in

GraphPad Prism version 9.3.0 for windows.
Taxonomic classification

Taxonomy was assigned to each ASV by using the q2-feature-

classifier (Bokulich et al., 2018) then trained and mapped to known

bacterial taxa classified by the Greengenes database (McDonald et al.,

2012). Greenegene reference sequences were trimmed tomatch our data

with a minimum length of 100bp and a maximum of 500bp. ASVs

mapped to the same taxonomic classification were collapsed into

Observable Taxonomic Units (OTUs) at the lowest level of

identification provided by Greengenes database using the

“qiime_taxa_collapse”. It should be noted that not all taxa were

identifiable to the species level. However, ASV’s assigned to the same

class, family, or genus could still be identified as distinct OTUs based on

phylogenetic mapping, even if Greengenes could not confidently assign

a specific species identification. For example, there are two separate

classifications assigned to the genus Vibrio with no further classification

at the species level, yet retained distinct abundances tracked separately

through the analyses. Respiratory profiles (e.g., aerobic, facultative

anaerobic, and obligate anaerobic) of microbes of interest were

inferred from literature, as cited, describing the genus and/or family.
Differential abundance

To test for differential abundance of microbial communities

associated with exposure and onset of SSW, we used Analysis of

Composition of Microbiomes with Bias Correction (ANCOM-BC)

(Lin and Peddada, 2020) in R version 4.2.1 (Team, 2021). ANCOM-

BC differential abundance analysis uses a series of pairwise

comparisons to estimate the average abundance of a given

microbial species through linear regression while correcting the

bias induced by differences among samples. This method provides

false discovery rate (FDR) corrected p-values for each taxon and

confidence intervals for differentially abundant taxa. Differentially

abundant taxa were defined based on FDR < 0.05 and taxa that were

not present in at least 10% of the compared samples were dropped

from the analysis. The W score represents the number of times the

null-hypothesis (the average abundance of a given species in a

group is equal to that in the other group) was rejected for a given

species. Beta value represents the effect size as a log-linear (natural

log) value relative between compared groups. Fold change was

calculated by taking ebeta. Violin plots were constructed using log-10

transformed values from the raw abundance of each taxa using

GraphPad Prism version 9.3.0 for windows.
Bipartite clustering analysis

To identify taxonomic communities and other high-level patterns

of abundance, we used Bayesian stochastic blockmodeling, a

principled approach to network clustering which finds statistically
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significant partitions in a network. First, a bipartite network was

constructed by assigning sea star samples and ASVsOTUs to separate

node groups. Samples and taxa were then connected with an edge if

the taxa was present, with an edge weight of log(aij)+1, where aij > 0 is

the abundance of taxa j in sample i. OTU abundance was aggregated

to the species level, and taxa with total abundance less than 100 across

all samples were removed. Samples and ASVs were assigned to

hierarchical groups following the hierarchical stochastic block

model (hSBM), with the maximum a posteriori estimate found

using a specialized Markov chain Monte Carlo algorithm (Peixoto,

2020). We used the “degree-corrected” variant of the model (Peixoto,

2017), since it had a smaller minimum description length than the

simpler non-corrected model (Figure S4). Analyses were performed

using graph-tool version 2.44 (Peixoto, 2014).
Functional profiling

Phylogenetic Investigation of Communities by Reconstruction of

Unobserved States version 2 (PICRUSt2) was used to predict the

functional content of the microbial communities (Douglas, et al.,

2020). PICRUSt2 uses extended ancestral-state reconstruction of

unknown microbes and a library of reference genomes to predict

which gene families [by KEGG orthology (KO) (Kanehisa et al., 2016)

and EC: enzyme functions] are present. PICRUSt2 also uses these

data to infer abundances of metabolic pathways using a map of gene

families to pathways from the online metacyc database (Caspi et al.,

2018) (https://metacyc.org/). Predicted KO abundance was predicted

by Picrust2 from the corresponding metagenomes from the 16s

rRNA marker gene and KEGG functional hierarchies at level 2

were mapped using the KEGGREST v1.36 (Tenenbaum and

Maintainer, 2021) package in R version 4.2.1 (Team, 2021) to infer

biological functional enrichment between the sample groups. Because

KOmapping to KEGG orthologs provides predictions for all possible

pathways (including eukaryotes), predicted eukaryotic categories

were filtered from the analysis. The PICRUSt2 output was

visualized with Morpheus (https://software.broadinstitute.org/

morpheus). Predicted metacyc pathways (Table S3) and KEGG

pathway functional categories differentially abundant between 1)

Naive and Exposed, and 2) Exposed and Wasting individuals were

identified by t-test with Benjamini Hochburg False Discovery Rate

correction (Padj < 0.01 and Padj < 0.05 respectively).
Results

Microbial diversity increases with disease
exposure and symptom onset

The relative proportions of microbes differed greatly between

the three groups, Naïve, Exposed and Wasting, most notably in the

progressive decrease of proportion of Spirochaetaceae and increases

in Vibrionaceae and Fusobacteriaceae (Figure 1A). PCoA analysis

revealed Naïve sea stars clustered strongly together and away from

Wasting sea stars along PC1 accounting for 68% of the variation
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among samples (Figure 1B). Exposed sea stars were in between

Naïve andWasting along PC1, but clustered closer to Naïve samples

in unconstrained multivariate space despite their greater geographic

distance (Figure 1B). Naïve and Exposed sea stars however differed

along a composite of both PC1 and PC2 (Figure 1B). The estimated

number of microbial taxa (alpha diversity) differed across all three

site-health groups (Shannon diversity index, P < 0.05; Figure 1C).

Naïve sea stars had the lowest diversity of microbial taxa. Exposed

sea stars showed an increase in microbial diversity in comparison to

the Naïve group, while Wasting sea stars had the highest microbial

diversity overall (Figure 1C).

Similarly, the composition of microbial taxa, beta diversity, was

different across all site-health status groups (Weighted Unifrac

distance; pairwise post-hoc tests: P < 0.001). Beta diversity

increased with disease exposure and onset at impacted sites with

the lowest diversity recorded in the Naïve group and the highest in

the Wasting group (Figure 1D). The within-group beta diversity

measures the differences in microbial communities between

individuals of the same group, and indicates a similar trend of

increasing diversity with disease exposure and symptoms. The

larger the within-group beta diversity, the more dissimilar the

microbial communities are between individuals of the same

group. All three groups differed from each other (pairwise

PERMANOVA test, P < 0.001). The Naïve and Exposed groups

had a relatively low within group beta diversity with an average

variation of 19.9% in the Naïve samples, 26.1% variance in the

Exposed samples, suggesting that individuals within each group

share relatively similar communities of microbes with other
Frontiers in Marine Science 05
members of their group. However, the Wasting group had a

variance of 41.7% indicating that individuals in the Wasting

population had greater dissimilarity in their microbial composition.
Identifying differentially abundant microbial
taxa associated with SSW disease

To identify microbes associated with exposure and onset of disease

signs, we tested for the differential abundance of microbes identified by

taxonomic assignment between samples characterized by exposure and

health status. Of the 685 distinctly identified taxa, 90 were differentially

abundant between Naïve and Exposed groups (50 up, 40 down in

Exposed relative to Naïve) and 76 were differentially abundant between

Exposed andWasting (35 up, 41 down inWasting relative to Exposed)

(FDR < 0.05) (Figure 2A). A full list of relative fold change of each

distinct taxa is available in Table S1.

The analysis of differentially abundant taxa from Naïve to

Exposed groups revealed an increase in taxa containing members

regularly associated with facultatively anaerobic processes with

disease exposure (Table 1). These taxa include seven taxa in the

family Vibrionaceae (Photobacterium sp, Aliivibrio sp, Vibrio

tapetis, Vibrio cyclitrophicus, Unknown sp, Vibrio sp1, Vibrio sp2;

13.4 to 1233.3 fold increase); two genera of Fusobacteriaceae

(Propionigenium sp, Psychrilyobacter sp; 2.4 to 32.9 fold increase);

three taxa of the family Colwelliaceae (Unknown sp, Thalassomonas

sp, Colwellia austuarii; 6.4 to 21.5 fold increase); the genusMoritella

(15.4 fold increase), and the family JTB215 in the Order Clostridia
B

C

D

A

FIGURE 1

Divergence in microbial communities associated with site-health status. (A) Relative abundance of microbial families of five randomly selected
individuals from each comparison group. (B) PCoA Emperor plots of the weighted UniFrac distance based on diversity of taxa present on samples in
each site-health status; Naïve sea stars (blue), Exposed (orange) and Wasting (pink). (C) Shannon Diversity and (D) Within-Group Beta Diversity of taxa
present on P. helianthoides by site-health status. The diversity of taxa differed between and within groups of Naïve and Exposed (P < 0.001) and
Exposed and Wasting (P < 0.001).
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(6.4 fold increase) (Figure 2C, Table 1). In addition to the gain of

anaerobic microbes, we observed a decrease in only a few notable

taxa often characterized with aerobic function including the genus

Crocinitomix in the family Cryomorphaceae (12.3 fold decrease);

Psychrobacter sanguinis in the family Moraxellaceae (11.9 fold
Frontiers in Marine Science 06
decrease); an unknown genus of Xenococcaceae (8.9 fold

decrease); and Rothia nasimurium (5.7 fold decrease) of the

Micrococcaceae family (Figure 2B, Table 1).

Differential abundances of taxa from Exposed to Wasting groups

revealed further increases in taxa abundance with physiological signs
B

C

A

FIGURE 2

Differential abundances of taxa associated with site-health status (A) Number of differentially abundant OTUs identified to the species level in each
comparison: Naïve vs Exposed (orange: relative to Naïve group) and Exposed vs Wasting (pink: relative to Exposed group) (Padj < 0.05). (B, C) Violin
plots depicting log10-transformed abundance values of 12 differentially abundant microbial taxa, grouped by Order or Family as patterns of
abundance were similar between members of the same taxonomic classification; Naïve samples (blue), Exposed (orange), and Wasting (pink).
Microbial taxa were identified as aerobic (open circle), facultative anaerobes (striped circle), and obligate anaerobes (solid circle) based on respiratory
function often characterized by taxa members. Multiple dots denote a family which includes species of more than one respiratory type. The "*"
symbol represents statistically significant differences between the abundances of the displayed taxa between the site-health groups it lies between.
TABLE 1 Fold-change of differentially abundant taxa.

Naive vs Exposed Exposed vs Wasting

Taxa Taxa Level q-val Fold-change Taxa Taxa Level q-val Fold-change

Vibrio_1 Genus 0.000 1233.266 Psychrilyobacter Genus 0.001 22.829

Pseudoalteromonas_1 Genus 0.000 406.702 Clostridiales_1 Order 0.000 16.747

Vibrio_2 Genus 0.000 330.592 Shewanella benthica Species 0.000 8.838

Pseudoalteromonas_2 Genus 0.000 106.617 JTB36 Family 0.000 8.687

Vibrionaceae_1 Family 0.000 81.685 Spirochaeta Genus 0.000 8.467

Vibrio cyclitrophicus Species 0.000 61.291 Arcobacter Genus 0.019 7.788

Vibrio tapetis Species 0.000 51.756 Psychromonas Genus 0.039 7.538

Psychrilyobacter Genus 0.000 32.874 Propionigenium Genus 0.043 6.773

Alteromonadales Order 0.000 25.776 Fusibacter Genus 0.043 6.523

Bizionia_1 Genus 0.000 24.565 JTB215 Family 0.126 6.420

Helicobacter Genus 0.000 -3.280 Spirochaetes_2 Class 0.000 -9.062

Pseudanabaenaceae_1 Family 0.000 -3.441 Pseudoalteromonas_1 Genus 0.039 -9.114

Tenacibaculum Genus 0.005 -3.542 Oleispira Genus 0.037 -10.052

Enhydrobacter Genus 0.000 -4.020 Bizionia_1 Genus 0.000 -10.334

Psychromonas Genus 0.021 -5.470 Francisellaceae_2 Family 0.039 -10.441

Rothia nasimurium Species 0.000 -5.679 Phyllobacteriaceae_2 Family 0.000 -11.903

Chryseobacterium Genus 0.000 -5.852 Unknown Bacteria 1 Kingdom 0.010 -16.654

Xenococcaceae Family 0.000 -8.856 Unknown Bacteria 2 Kingdom 0.000 -17.939

Psychrobacter sanguinis Species 0.000 -11.973 Spirochaetaceae_2 Family 0.000 -24.602

Crocinitomix Genus 0.000 -12.322 Flammeovirgaceae_1 Family 0.000 -53.922
Top ten increasing and decreasing abundances of taxa between Naïve vs Exposed (left) and Exposed vs Wasting (right). Fold change was calculated based on the linear log Beta value output of
ANCOM-BC with adjusted p-value (q-value < 0.05).
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of disease, including those with members frequently identified with

obligate anaerobic processes (Table 1). These taxa include further

increases of the two genera of Fusobacteriaceae (Propionigenium,

Psychrilyobacter; 7.5 to 22.8 fold increase); five taxa in the order

Clostridiales (family Peptostreptococcaceae, genus Clostridium,

Clostridiales sp1, family JTB215, genus Fusibacter, Clostridiales sp2;

1.5 to 16.7 fold increase); a single unknown species of Spirochaeta sp

(8.5), two species of the family Desulfobulbaceae (Desulfotalea sp and

Unknown sp; 1.8, 4.4 fold increase); an unknown genus of

Desulfobacteraceae (4.2 fold increase); and minor increases in the

seven Vibrionaceae taxa mentioned above (1.0 to 3.4 fold increase)

(Figure 2C, Table 1). Taxa exhibiting the greatest decreases in

abundance with signs of disease included some families containing

strictly aerobic species as well as some unidentifiable taxa. We noted a

decreased abundance of an unknown genus of the family

Flammeovirgaceae (53.9 fold decrease); an unknown genus of

Spirochaetaceae spp (24.6 fold decrease) and two unknown orders in

the class Spirochaetes spp (4.9 to, 9.1 fold decrease); two altogether

unknown bacterial phyla (16.7 to 17.9 fold decrease); an unknown

genus in the family Francisellaceae (10.4 fold decrease); and further

decreases in Crocinitomix in the family Cryomorphaceae (1.7 fold

decrease) (Figure 2B, Table 1).
Co-occurring microbial communities
associated with healthy, exposed, and sick
sea stars

To identify communities of similarly abundant microbes, and

the communities of sea stars where these microbes occur, we used
Frontiers in Marine Science 07
Bayesian network clustering analysis based on hierarchical

stochastic block models. The best fit partition from the analysis,

presented in Figure 3, demonstrated a highly heterogeneous

community structure. At the lowest level in the hierarchy, there

were 56 groups for 85 samples, and 103 groups for the 264 OTUs,

which shows a high level of model complexity was required to

explain the data. The group hierarchy clearly distinguished the three

health conditions of the samples. At the highest level of clustering

(level 2) there were three distinctive clusters for the samples, two of

which comprised all but three of the Naïve samples, and one which

contained all the Exposed and Wasting samples except one. The

next level then tended to separate exposed and wasting samples,

with 50% of Wasting individuals falling into a single group (Figure

S2). The identified OTU clusters also showed a relationship with the

health status of the animals on which they appear, with some

occurring primarily on Naïve samples, and others primarily by

Exposed and/or Wasting samples (Figure 3, right side). A full list of

cluster membership is available in Table S2.

The hierarchical partitions also allowed us to identify regions of

high and low diversity in the data, which helps clarify communities

driving the observed trends in alpha and beta diversity (Figures 1C-

D). Figure S3 shows the Shannon entropy of each sample/OTU,

grouped according to their level-1 block membership. We found the

average diversity between blocks was significantly different than

random (Welch’s one-way test; F = 17.3, p < 0.001 for sample

blocks; F = 29.7, p < 0.001 for OTU blocks). Among sample blocks,

those belonging to the middle level-2 block of Figure 3, which

contained the majority of Naïve samples and no impacted samples,

had notably lower diversity compared to the other blocks. However,

the 11 Naïve and 1 Wasting sample from the top level-2 block
FIGURE 3

Statistically similar communities of samples and taxa found using hierarchical bipartite clustering. The maximum a posteriori partition is shown in
blue, while a random sample of 400 links from the original abundance network is shown ranging from purple (lowest abundance) to orange (highest
abundance). Levels of the partition tree have been labeled as they are referenced in the text, with horizontal black bars separating communities at
the highest level of clustering (level 2). Contributions: the proportion of total abundance contributed from samples based on site-health status, for
each level-1 OTU block. OTU blocks 1-24 show low abundance and uneven spread across samples whereas blocks 25 and 26 show high abundance
and even spread among contributing samples (Figure S3). Level-1 OTU block membership can be found in Table S2.
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appear to have comparable alpha diversity to the bottom level-2

block containing mostly impacted samples.

Subcommunities of taxa with high entropy were also identified,

particularly taxa belonging to level-1 blocks 25 and 26. These

communities were also highly abundant (Figure 3, left), which

shows these taxa jointly occurred at high levels across the samples

they appeared in. Taxa belonging to these two blocks can be thought

of as “backbone” communities that are both highly abundant and

consistent across their respective groups. The Naïve-driven

backbone (level-1, block 26) included taxa in the families

Spirochaetaceae, Flammeovirgaceae, Francisellaceae, Rickettsiaceae,

Flavobacteriaceae, Helicobacteraceae, and two altogether unknown

bacterial species. Many Exposed individuals shared this Naïve

backbone but gained the addition of a secondary backbone (level-

1, block 25), mostly void of Naïve contribution, and which also

appeared in Wasting samples. This impacted backbone of co-

colonizing taxa was composed of the family Vibrionaceae (Vibrio

sp1., Photobacterium sp. and Aliivibrio sp.), Moritella sp.,

Shewanella sp., and Pseudoalteromonas porphyrae. Conversely,

blocks with consistently low entropy tended to also have lower

relative abundance. Taxa in these blocks were unevenly distributed

across samples, and likely represent communities of stochastically

colonizing microbes which have a minor effect on overall

microbiome function.
Predicted metabolic pathways and KEGG
enrichment vary with exposure and onset
of SSW

To test for functional divergence in the microbes between Naïve,

Exposed and Wasting asteroids, we predicted metabolic metacyc

pathways and KEGG Ortholog (KO) functional enrichment using
Frontiers in Marine Science 08
PICRUSt2. Pathway enrichment revealed 106 pathways that

increased from Naïve to Exposed groups and only 3 pathways that

declined (Figure 4B; Padj < 0.01 by a t-test with Benjamini Hochburg

correction). These pathways included NAD salvage and biosynthesis

of essential amino acids, phosphates, nucleotides, and sugars such as

sucrose (Table S3). Additionally, glycolysis and the TCA cycle had

numerous pathways enriched from Naïve to Exposed groups as well

as the enrichment of sulfate assimilation and degradation which is a

strictly anaerobic pathway (Jurtshuk, 2011). The pathways found to

be depleted in Exposed compared to Naïve included pathways

associated with phospholipases, starch degradation III, and vitamin

E biosynthesis (tocopherols). KEGG functional categories mapped to

the second hierarchy level revealed increases in predicted genes

involved in “Xenobiotic Biodegradation and Metabolism” and

“Cellar Processing and Signaling” and no significant decreases (Padj
< 0.05; Figure 4A).

In contrast, no pathways were enriched between Exposed and

Wasting groups, yet 30 were found to be depleted (Figure 4C; Padj <

0.01). These depleted pathways included L-glutamate and L-

glutamine biosynthesis, Salvage and biosynthesis of pyrimidine

nucleosides and ribonucleosides, branch chain amino acid

biosynthesis, and glycolysis (Table S3). 13 of the pathways that

were enriched from Naïve to Exposed groups were then reduced

from Exposed to Wasting (padj < 0.01). These included pathways

associated with glycolysis, biosynthesis of nucleotide building

blocks, and homolactic fermentation. KEGG functional categories

mapped to the second hierarchy level revealed depletion in

predicted genes involved in “Cell Growth and Death” ,

“Translation”, “Membrane Transport”, and various elements of

metabolism with no categories increasing (Padj < 0.05; Figure 4A).

In sum, there was a general gain in pathways/function from Naïve

to Exposed groups, then a loss of pathways from Exposed

to Wasting.
B

C

A

FIGURE 4

Metabolic Pathway and Kegg Ortholog Enrichment/Depletion associated with site-health status. (A) KEGG functional classification of predicted KEGG
Orthology terms. Listed terms differ significantly between Naïve ~Exposed or Exposed~Wasting groups as determined by t-test with Benjamini
Hochburg False Discovery Rate correction (Padj< 0.05). Metacyc pathway enrichment trends between (B) Naïve (blue bar) vs Exposed (orange bar)
and (C) Exposed (orange bar) vs Wasting (pink bar).
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Discussion

Microbial communities play an important role in maintaining

the health of their hosts by providing protection against harmful

pathogens and aiding in the metabolism of organic compounds

(Peixoto et al., 2021). Changes to the core microbiome, defined as

any set of commonly occurring microbial taxa, or functional

attributes associated with those taxa, can leave the host

susceptible to disease (Neu et al., 2021; Peixoto et al., 2021). The

goal of this study was to compare the microbiomes of sea stars

completely naïve to SSW to those recently exposed and actively

afflicted by the disease in the field. Though our analysis, we were

able to identify 1) a pre-symptomatic increase in microbial

diversity, 2) an increase in abundance of facultative and obligate

anaerobes (most notably Vibrio) accompanied by changes in

metabolic function, and 3) a consistent co-colonization of taxa in

large numbers among impacted individuals, as well as a shift in the

less abundant, more stochastic communities found in Naïve

samples to entirely different communities in Exposed and

Wasting samples. Our results reveal changes to the core

microbiome of P. helianthoides preceding physiological signs

characteristic of SSW and thus supports the hypothesis that an

early dysbiotic event plays a key role in disease progression of SSW

in the field, particularly in the proliferation of anaerobic taxa.

The initial role of host microbiomes in SSW was characterized

by Lloyd and Pespeni 2018, demonstrating the progressive shifts in

microbial community composition through the stages of wasting.

Further studies on the mechanisms of these shifts were proposed by

Aquino et al. in 2021, hypothesizing that increases in organic matter

(such as algal blooms, nutrient runoff, or pollutants) could alter the

interactions of microbes at the asteroid-water interface, and lead to

copiotrophic proliferation, appearance of facultative anaerobes, and

eventual colonization of strictly anaerobic taxa which may

compromise host respiratory and immune functions. Our

findings in these field samples further support these current

theories in the etiology of SSW by revealing an early dysbiotic

event characterized by a consistent suite of facultative anaerobes

(i.e.,Vibrionaceae, Moritellaceae, Colwelliaceae) (Imhoff, 2005;

Bowman, 2014; Urakawa, 2014) across Exposed individuals

followed by an increase of obligate anaerobes (i.e.,Clostridiales,

Fusobacteriaceae) (Olsen, 2014; Stackebrandt, 2014) and other

opportunistic taxa in the Wasting asteroids (Figure 2; Figure 3).

Like all previous studies on SSW, except one (Hewson et al., 2014)

which was later revised (Hewson et al., 2018), we did not find

evidence for a single causative agent responsible for outbreaks of

SSW, however, the unknown Vibrio species showing a 1200-fold

increase with exposure is worth further investigation. Our results

and others suggest that the cause of SSW is likely a complex

interaction between environmental stressors, undefined

pathogens, and changes in the host-immune system that lead to a

dysbiotic microbial community perpetuating SSW disease.

The Anna Karenina principle of animal microbiomes (Zaneveld

et al., 2017) states the microbial community composition of

diseased individuals varies more than healthy individuals. In the
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present study, comparing Naïve to Exposed to Wasting individuals,

opportunistic microbiota increased with each stage in a

progressively stochastic manner. For exposed and wasting sea

stars, there was an increase in taxa diversity and dissimilarity

between samples with SSW exposure and onset of signs. Exposed

sea stars showed marked changes in community composition even

before signs of the disease were present. However, what is most

interesting is how these communities changed. The increase in

microbial richness (alpha diversity) from Naïve to Exposed groups

along with the increase in heterogeneity in microbial composition

between individuals of the same group (within-group beta

diversity), indicates an initial recruitment or proliferation of

opportunistic taxa across Exposed individuals before symptom

onset. The initial shifts in microbiota in Exposed asteroids may

be a stepping-stone leading to the higher diversity observed between

members of the Wasting group, indicating a more opportunistic

colonization and a stochastic progression of dysbiosis coinciding

with the onset of disease as anticipated by the Anna Karenina

principle of dysbiotic states.

Some variation in microbiome composition may be expected

from the geographic distance between Naïve and Impacted

sampling sites, which were approximately 70km apart (Figure S2).

However, recent studies on the structure of coral microbiomes

suggest that host species have the largest influence on microbial

composition, demonstrating relative stability across space and time

within a host (Dunphy et al., 2019). Additionally, we found greater

similarity between Naïve and Exposed samples (both apparently

healthy) than we did between Exposed and Wasting (both at

impacted sites) within our PCoA plot (Figure 1B), supporting the

idea that disease state, not geographic distance, is driving the

observed variations in microbial community structure.

Further evidence of dysbiosis was found in the form of

consistent co-colonization of taxa appearing in large numbers

among impacted individuals (Figure 3, level-1, block 25; Table

S2), forming a backbone community unique to the impacted

samples. Unsurprisingly, the taxa in this block consisted of some

of the most differentially abundant facultative anaerobes to appear

between Naïve and Exposed samples in our microbial abundance

comparison, including Vibrionaceae (Vibrio sp1., Photobacterium

sp. and Aliivibrio sp.), genus Moritella sp., Shewanella sp., and

Pseudoalteromonas porphyrae (Figure 2). This suggests a shared set

of microbes that may be important in the initial stages of SSW

disease in exposed animals. Additionally, the community of

microbes occurring both highly abundant and consistent across

Naïve samples (Figure 3, level-1, block 26) seems to be less common

across impacted samples. Members of this “healthy” backbone

include taxa with the largest observed decreases in our differential

abundance comparison including some species of Spirochaetaceae,

Flammeovirgaceae, both unidentified bacteria phyla, and two

members of the order Rickettsiales (Figure 2, Figure 3, Table S2).

This “healthy” backbone could be thought of as the core-

microbiome of Naïve sea stars, and its reduced presence across

Exposed and Wasting animals further highlights the microbial

imbalance caused by SSW.
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Of all the taxa that increased with disease exposure and

symptom onset, members of the genus Vibrio are of particular

interest due to their historical role in the pathology of many marine

animals, including echinoderms, strong differential abundance

trends (Table 1, Figure 2), and presence of multiple species in the

backbone community of Impacted samples in our clustering

analysis (Figure 3, block 25 Table S2). Previous studies have

demonstrated the proliferation of Vibrionaceae species

throughout the progression of SSW (Lloyd and Pespeni, 2018;

Aquino et al., 2020), have been regularly identified in the

decaying tissue of wasting sea stars prior to the current 2013

outbreaks, and associated with many other echinoderms diseases

(Eckert et al., 2000; Becker et al., 2004; Staehli et al., 2009; Kohl et al.,

2016; Hira and Stensvåg, 2022). Several species of Vibrio are known

to cause intestinal and extraintestinal infections in humans and

animals (Farmer and Hickman-Brenner, 2006), V. coralliilyticus is

known to cause tissue damage and necrosis in corals (de O Santos

et al., 2011), and V. echinoideorum was recently found to facilitate

the development of lesion syndrome in the green sea urchin (Hira

and Stensvåg, 2022). Interestingly, NCBI Blast results placed V.

echinoideorum with the highest total-score for of the top 5 ASVs

with the largest fold-change when comparing Naïve to Exposed sea

stars. Additionally, a 2011 study focusing on population control

methods of the Crown of thorns Sea Star, Acanthaster planci, used a

thiosulfate-citrate-bile-sucrose agar (TCBS) to selectively stimulate

the growth of Vibrionaceae species (Rivera-Posada et al., 2011a;

Rivera-Posada et al., 2011b). Not only did the TCBS stimulation of

Vibrionaceae species elicit SSW-like signs and mortality, but a

follow up study in 2012 demonstrated an interspecies

transmissibility of the TCBS-induced disease between different

species of asteroids (Caballes et al., 2012). Taken together, these

results suggest an important role for Vibrio in SSW, though future

work in which the abundance of Vibrio is manipulated would be

needed to test this hypothesis.

While Vibrio species may be sufficient in causing disease in some

cases, other opportunistic taxa may also play an important pathogenic

role, taking advantage of a weakened immune system and further

contributing to the anaerobic and lethal nature of SSW. A number of

the differentially abundant taxa identified in the present study are

linked to disease in humans and animals. Microbes in the order

Clostridiales are implicated in several human intestinal diseases due

to the secretion of harmful toxins (Bauer and Kuijper, 2017). Some

members of Fusobacteriaceae are known to cause skin infections and

topical ulcers on their hosts through the secretion of harmful

metabolites (Olsen, 2014). Additionally, Moritellaceae has been

characterized as a fish pathogen with severe economic impact,

forming lesions on their teleost hosts (Urakawa, 2014). The

mechanistic role in disease progression of the anaerobes that increase

with signs of SSW remains up for debate. It is likely that the suffocating

properties of these proliferating anaerobes are not the sole driver of

disease. Transcriptomic profiling of affected P. helianthoides unveiled a

number of immune systems, tissue remodeling, and neural genes in

response to SSW, which could be more than expected from anaerobic

suffocation alone (Fuess et al., 2015).
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We observed a gain and loss of taxa to a similar degree in each

site-health comparison, yet generally only increases in pathway

and KEGG functional category enrichment upon exposure and

loss of pathways and KEGG enrichment with wasting signs

(Figure 2A; Figure 4). Taken together, the initial increase of

pathway functions may reflect a general colonization and/or

proliferation of facultative anaerobes with exposure to SSW,

while the low number of depleted pathways may reflect the loss

of less-impactful taxa and/or an overlap in metabolic processes

between those gained and lost. The transition to wasting signs is

accompanied by the loss of pathway functions which may signify

the loss of putatively beneficial microbes, and the lack of pathway

enrichment with the onset of wasting may signify an overlap of

pathway functions that were already increased by the initial SSW

exposure. This suggests that only a few of the differentially

expressed taxa may be responsible for the marked changes in

pathway enrichment observed in this study, most likely related to

the taxa with the largest effect size addressed above. However, 16S

ribosomal RNA sequencing alone is not enough to fully

characterize the metabolic roles of the colonizing taxa we have

observed through the progression of SSW, and thus we are

hesitant to make assumptions based on specific metabolic roles

predicted in this analysis. Metagenomic and metabolomic analyses

will be necessary to further characterize the molecular functions of

the microbes and the potential role of secondary metabolites,

secreted toxins, and virulence factors in the progression of

this disease.

Polymicrobial diseases are difficult to study and thus-far

poorly characterized in marine systems due to the variety of yet-

unidentified microbes living in the oceans. However, many of

these diseases share commonalities. Black band disease in corals,

for example, is caused by the proliferation of cyanobacteria,

sulfide-oxidizing, and sulfate-reducing bacteria on and around

coral tissues similar to the taxa identified in this study (Sato et al.,

2017). Other marine diseases, such as Pacific Oyster Mortality

syndrome (PCOM), Bald Urchin Disease, and SKin Ulceration

Disease (SKUD) are the result of opportunistic, and non-specific,

bacterial colonization (Becker et al., 2008; Delroisse et al., 2020;

Petton et al., 2021). PCOM was linked to a virally induced

immunocompromised state acting as the catalyst for microbial

dysbiosis and the opportunistic colonization by pathogenic

bacteria eventually leading to animal death (Petton et al., 2021).

Nonspecific viral infection such as Sea Star Associated

DensoVirus (SSWaDV), along with climate anomalies, reduced

dissolved oxygen, pollutants, and other biotic/abiotic stressors

could all weaken the sea star’s immune response and promote the

colonization of dysbiotic microbes. The impact of one or the

cumulative effect of multiple stressful factors may tip the

homeostasis of the microbial communities driving them toward

dysbiosis and disease. While non-specific and opportunistic

colonization is supported in many studies, our findings suggest

certain microbial taxa may be more likely than others to initiate

these early dysbiotic stages of SSW disease, acting as a

steppingstone for more opportunistic pathogens to take hold.
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Conclusion

The results of this study reveal a dysbiotic event preceding

visible signs of wasting disease, driven by a few key taxa, and the

persistence of these communities through the progression of the

disease. The proliferation of specific microbes (most notably

members of the genus Vibrio) prior to signs of disease implicates

changes in biotic and abiotic conditions that may underlie the SSW

epidemic, particularly in the case of microbial pathogens. In the

future, extending approaches to better understand the host-microbe

interactions at a higher resolution will allow investigators to better

identify key microbes involved in both healthy and diseased states,

their related metabolic functions, and subsequent consequences of

microbiome disruption as a result of biotic and abiotic stress.

Additionally, the function of the core microbiome in many

natural systems remains unknown. Long-term monitoring of

entire communities and their associated microbiomes may

provide insights into the adaptive and evolutionary potential of

the microbiome in the presence and persistence of the recent

wasting outbreaks.
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