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TSI-SD: A time-sequence-
involved space discretization
neural network for passive scalar
advection in a two-dimensional
unsteady flow

Ning Song1†, Hao Tian2†, Jie Nie1*, Haoran Geng1, Jinjin Shi1,
Yuchen Yuan1 and Zhiqiang Wei1*

1College of Information Science and Engineering, Ocean University of China, Qingdao, China,
2College of Mathematical Science, Ocean University of China, Qingdao, China
Numerical simulation of fluid is a great challenge as it contains extremely

complicated variations with a high Reynolds number. Usually, very high-

resolution grids are required to capture the very fine changes during the

physical process of the fluid to achieve accurate simulation, which will result in

a vast number of computations. This issue will continue to be a bottleneck

problem until a deep-learning solution is proposed to utilize large-scale grids

with adaptively adjusted coefficients during the spatial discretization procedure

—instead of traditional methods that adopt small grids with fixed coefficients—so

that the computation cost is dramatically reduced and accuracy is preserved.

This breakthrough will represent a significant improvement in the numerical

simulation of fluid. However, previously proposed deep-learning-based

methods always predict the coefficients considering only the spatial

correlation among grids, which provides relatively limited context and thus

cannot sufficiently describe patterns along the temporal dimension, implying

that the spatiotemporal correlation of coefficients is not well learned. We

propose the time-sequence-involved space discretization neural network (TSI-

SD) to extract grid correlations from spatial and temporal views together to

address this problem. This novel deep neural network is transformed from a

classic CONV-LSTM backbone with careful modification by adding temporal

information into two-dimensional spatial grids along the x-axis and y-axis

separately at the first step and then fusing them through a post-fusion neural

network. After that, we combine the TSI-SD with the finite volume format as an

advection solver for passive scalar advection in a two-dimensional unsteady flow.

Compared with previous methods that only consider spatial context, our method

can achieve higher simulation accuracy, while computation is also decreased as

we find that after adding temporal data, one of the input features, the

concentration field, is redundant and should no longer be adopted during the

spatial discretization procedure, which results in a sharp decrease of parameter

scale and achieves high efficiency. Comprehensive experiments, including a

comparison with SOTA methods and sufficient ablation studies, were carried out
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to verify the accurate and efficient performance and highlight the advantages of

the proposed method.
KEYWORDS

unsteady flow, spatiotemporal feature, CONV-LSTM, passive scalar advection, spatial
discretization, discretization acceleration
1 Introduction

Fluid is an indispensable component in the atmosphere and

ocean. Additionally, It is of great importance to meteorological

services, which attempt to identify safe aerospace and shipping

routes. Fluid research is mainly based on numerical simulation by

solving partial differential equations Lumley (1979). Mainstream

methods include the finite difference method Rai and Moin (1991)

and the finite volume method Leschziner (1989) 34. Owing to the

rapid variations with a high Reynolds number Kraichnan (1959),

the numerical solution requires high-resolution spatial grids to

ensure the accuracy of the simulation. In addition, when the

Reynolds number folds by ten, the computation load will fold by

1,000. Although current high-performance computing can provide

powerful computation ability for these extremely complicated

variations, as real-time simulation is always required for emergent

forecasting, improving efficiency only in computation power will

always be limited and insufficient. Efforts should be made to

optimize from the perspective of algorithm architecture.

A scale of previous works has been carried out to reduce the

computation load from the perspective of decreasing the resolution

of the grids. As early as 1982, Brown et al. Brown (1982) applied a

multigrid method to accelerate the numerical solution process of

the three-dimensional transonic potential flow. The multigrid

method was considered a classic method to reduce computational

costs in the traditional numerical solution process because it uses

different mesh divisions for different regions instead of high-

resolution mesh modeling. Inspired by this thought, Mazhukin

et al. Mazhukin et al. (1993) proposed a dynamically adaptive grid

method based on a time-dependent coordinate transformation

from the physical to a computational space for solving partial

differential equations. Additionally, Jin et al. Jin et al. (2014)

proposed the application of a coarse grid projection scheme. This

method solved the momentum equation on the fine grid level and

the pressure equation on the coarse grid level. Therefore, a

satisfactory numerical solution should not only retain the

simulating accuracy but also improve the computation’s efficiency.

This tradeoff issue has been a bottleneck problem for a long

period and will remain until a deep-learning solution that utilizes a

neural network to take the place of the classic numerical methods

module during the spatial discretization procedure is proposed. We

use the central difference RUMSEY and VATSA (1993) as an

example of traditional numerical methods for spatial

discretization and illustrate its basic idea in Figure 1A. To
02
calculate the value of point x at time t, generally, we use

neighborhood grid points around x at time t-1,

SD =o​ aV(xneigborhood , t − 1) (1)

where SD is the calculated spatial derivative, and V is a template

composed of values at points around x within a certain distance at

time t-1 a are fixed coefficients with regard to the corresponding

truncation error Lantz (1971). Here, to capture the very subtle

variations that occur in the physical movement of unsteady flow,

traditional methods usually adopt grids with very high resolution,

which leads to an extremely large computation cost. However, the

deep-learning method addresses this problem by adopting large-

scale grids with adaptively adjusted coefficients instead of

traditional methods that adopt small grids with fixed coefficients,

as shown in Figure 1B.

SD =o​fq(xt−1)V(xneigborhood , t − 1) (2)

However, these previously proposed deep-learning-based

methods predicted the coefficients only considering spatial

correlation among grids, which provided relatively limited context

and thus could not describe patterns along the temporal dimension

sufficiently, implying that the spatiotemporal correlation of

coefficients was not well learned. We propose a novel algorithm

to extract grid correlations from spatial and temporal views together

to address this problem. We simply illustrate our algorithm in

Figure 1C. In our neural network, we added temporal

neighborhoods to help predict grid coefficients:

SD =o​fq(xt−1, xt−2,… )V(xneigborhood , t − 1) (3)

where {xt−n,…,xt−1} denotes grid values along the time

dimension within a certain range. By adding temporal

consideration, we can learn a better mapping function to predict

the spatial grid coefficients and achieve a more accurate simulation

result. Moreover, we also find that the concentration field, which

was used as one of the inputs of the neural network, turns out to be

redundant after we add temporal data. Thus, we optimized our

method and produced a more efficient neural network with fewer

parameters and better accuracy.

Thus, in this paper, we propose a novel time-sequence-involved

space discretization neural network (TSI-SD) by taking temporal

influence into consideration, which achieves an accurate and

efficient simulation result of unsteady flow. Specifically, we

produced the proposed neural network based on a classic CONV-

LSTM backbone with careful modification by adding temporal
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information into two-dimensional spatial grids along the x-axis and

y-axis separately at the first step and then fusing them together

through a post-fusion neural network. After that, we combined the

TSI-SD with the finite volume format as an advection solver for

passive scalar advection in a two-dimensional unsteady flow.

Compared with previous methods that only consider spatial

context, our method can achieve higher simulation accuracy,

while computation is also decreased after redundant input

is removed.

Finally, we highlight the contribution of this paper as follows:
Fron
• We optimized the framework of the deep-learning-based

numerical simulation methods of unsteady flow. As far as

we are aware, we are the first to utilize the temporal

relationship to help predict spatial coefficients. Moreover,

we also simplified the neural networks by means of

decreasing the parameter’s scale. Quite simply, our
tiers in Marine Science 03
method achieved better accuracy and efficiency compared

with existing methods.

• We designed a novel neural network TSI-SD and produced

an effective spatial coefficients prediction method that takes

both temporal and spatial perspectives into consideration.

Our novel framework modeled spatial correlations

and temporal correlations and then combined the two

aspects properly with a well-designed post-fusion neural

network.

• Comprehensive comparisons and ablation studies were

carried out with three public datasets, i.e., the numerical

solution datasets of the advection equation based on the

Vanleer format under the random velocity field, deformed

flow velocity field, and the constant velocity field. Sufficient

results and explanations were provided and discussed to

verify the improvement in both the accuracy and efficiency

of the proposed idea.
A

B

C

FIGURE 1

This figure shows three methods used to solve the spatial derivative during spatial discretization. (A) Figure 1(a) shows a traditional numerical
method. (B) Figure 1(b) shows the deep-learning-based method. (C) Figure 1(c) shows our method. (A) The traditional numerical method: in the
spatial discretization part, the central difference method is used to calculate the spatial derivative with a fixed spatial discretization coefficient, and
then the temporal derivative is calculated in the temporal discretization process to obtain the numerical solution. (B)The Deep-learning-based
method: In the spatial discretization part, predict the spatial discretization coefficient and calculate the spatial derivative based on the deep learning
algorithm and the grid value at time t-1, and then calculate the temporal derivative in the temporal discretization process to obtain a numerical
solution. (C). Our method: In the spatial discretization part, predict the spatial discretization coefficient and calculate the spatial derivative based on
the deep learning algorithm and the grid value of the time series {t − n, …, t − 1}, and then calculate the time derivative in the time discretization
process to obtain a numerical solution.
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2 Related work

2.1 Traditional discretization methods of
fluid flow simulation

Many researchers have made outstanding contributions in the

field of traditional discretization methods of fluid flow simulation

Bristeau et al. (1985); Ferziger et al. (2002); Peyret and Taylor

(2012); Fletcher (2012); Toro (2013). Based on these theories,

Molenkamp et al. Molenkamp (1968) calculated the numerical

solution of the convection equation using various finite-difference

approximations, and determined that only the Roberts–Weiss

approximation convected the initial distribution correctly, but

required a huge computational cost. Mikula et al. Mikula et al.

(2014) proposed an inflow implicit/outflow explicit finite volume

method based on finite volume space discretization and semi-

implicit time discretization to solve advection equations. The

basic idea is that outflows from cells are handled explicitly, and

inflows are handled implicitly. The method achieved outstanding

results in terms of stability and computational accuracy. Zhao et al.

Zhao et al. (2019) proposed a new improved finite volume method

for solving one-dimensional advection equations under the

framework of the second-order finite volume method. The

method first applied the scalar conservation law to the elements

in the finite volume method (FVM) to ensure its conservation in

time and space and to ensure advection (i.e., conservation of

transport physical quantities); then the time integral values of

adjacent grid boundaries are equalized; finally, the equation is

established to obtain a numerical solution. Experiments showed

that this method has better stability and fewer disspation than the

traditional FVM and can maintain the accuracy of the solution.

Akitoshi Takayasu et al. Takayasu et al. (2019) proposed a

verification calculation method for one-dimensional advection

equations with variable coefficients, which was based on spectral

methods and semigroup theory. They mainly provided a method for

verification calculation using the C0 semigroup on the complex

sequence space l2,which comes from the solution of the Fourier

series. Experiments showed that the given strict error proved the

correctness of the exact solution, and the solution has high precision

and fast solution speed. Although traditional discretization method

shave achieved high solution accuracy, they have the problem of

high computational cost if outstanding solution accuracy is desired.
2.2 Traditional discretization acceleration
techniques for fluid flow simulation

To solve the problem of high computational cost while

calculating high-precision solutions in traditional discretization

methods, researchers have proposed acceleration techniques to

speed up the numerical discretization solution. Multigrid

technology stood out among various approaches Dwyer et al.

(1982); Brown (1982); Berger and Oliger (1984); Phillips and

Schmidt (1984); Phillips and Schmidt (1985); Zhang (1997);

Mazhukin et al. (1993); Jin et al. (2014). Among them, Brown
Frontiers in Marine Science 04
et al. Brown (1982) used the multigrid mesh-embedding technique

to solve three-dimensional transonic potential flow. They used

small grids to model regions of large local gradients and large-

scale grids to model regions with relatively small gradients. Their

method improved the speed of solving equation discretization

schemes. Phillips et al. Phillips and Schmidt (1984) proposed a

multilevel multigrid method combined with a Taylor series

interpolation scheme as the best discretization acceleration

scheme after comparing the use of simple multigrid and

multilevel multigrid methods. Based on the previous method,

Phillips Phillips and Schmidt (1985) used multigrid combined

with multilevel acceleration technology to realize the accelerated

solution of scalar conservation equations. In addition, they

proposed a fast finite difference solution to the passive scalar

advection-diffusion equation. Although these acceleration

methods reduced the computational cost while maintaining high

accuracy, high computational cost remained a problem due to the

need to retain high solution grid modeling in some complex

fluid regions.
2.3 Discretization methods and
acceleration techniques combining
deep-learning with traditional
numerical methods

In recent years, machine learning has been used in the

numerical solution of partial differential equations, which have

made enormous progress. The combination of machine learning

and traditional discretization methods improved the accuracy of the

solution and accelerated the numerical calculation Raissi et al.

(2019); Ji et al. (2021); Vinuesa and Brunton (2021); Patel et al.

(2021); Eliasof et al. (2021); Cai et al. (2022). Based on these

methods, O. Obiols-Sales et al. Obiols-Sales et al. (2020) proposed

a coupled deep learning and physics simulation framework

(CFDNet) to accelerate the convergence of Reynolds-averaged

Navier–Stokes simulations. CFDNet was designed to use a single

convolutional neural network at its core to predict the main

physical properties of fluids, including velocity, pressure, and

eddy viscosity. In this paper, CFDNet was evaluated for various

use cases, and the results showed that CFDNet significantly speeded

up the numerical solution and proved that CFDNet generalized

well. Vadyala Shashank Reddy et al. Vadyala et al. (2022)

determined the numerical solution of the one-dimensional

advec t ion equat ion us ing d i ff e rent fini te -d i ff e rence

approximations and physical informatic neural networks

(PINNs). They trained a neural network to solve supervised

learning tasks that obeyed any given laws of physics described by

general non-linear partial differential equations. The PINNs

approximation was compared with other schemes through

experiments, and the results showed that the prediction results

obtained by the PINNs approximation were the most accurate.

Pathak et al. Pathak et al. (2020) proposed a hybrid ML-PDE solver

that combined machine learning and traditional solving methods of

the partial differential equation. It can obtain meaningful high-

resolution solution trajectories while solving system PDEs at lower
frontiersin.org
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resolutions. The ML part of the solver extracted spatial features by

using u-net as the model structure to predict the error accumulated

in the short time interval between the evolution of the coarse grid

and the solution of the system at a higher resolution. The predicted

error can optimize the solution generated by the coarse grid to

obtain a solution close to that generated by the fine grid, enabling

high-precision solutions at low accuracy. Y. Bar-Sinai Bar-Sinai

et al. (2019) designed a data-driven discretization scheme using a

deep-learning algorithm. They used neural networks to estimate

spatial derivatives that were optimized end-to-end to best satisfy

equations on low-resolution grids. The resulting numerical method

was very accurate, eventually achieving the same computational

accuracy as the standard finite difference method at 4 to 8 times

coarser resolution than the standard finite difference method.

Zhuang [38] improved the model structure and loss function

based on Y. Bar-Sinai and applied it to passive scalar advection in

a two-dimensional unsteady flow. They used a convolutional neural

network to learn spatial discretization coefficients to calculate

spatial derivatives. Then, they combined them with traditional

numerical methods to calculate time derivatives to obtain the

numerical solution of partial differential equations. This method

achieved a high-precision solution with a low computational cost.

Ranade et al., 2021 developed DiscretizationNet, a machine

learning-based PDE solver that combined essential features of

existing PDE solvers with ML techniques. They used a

discretization-based scheme to approximate spatiotemporal

partial derivatives and a CNN-based generative encoder-decoder

model with PDE variables as input and output features for

iteratively generating equation solutions. Although these methods

addressed the problem of traditional methods, their solution

accuracy was limited due to the problems of ignoring

spatiotemporal characteristics and input redundancy.
3 Proposed method

3.1 Problem description

If the velocity field is divergence-free, the advective form of the

scalar concentration field C(~x, t) for a given velocity field~u(~x, t) is as

follows Zhuang et al. (2021):

∂C
∂ t

+~u ·∇C = 0 (4)

The objective of the numerical solution for the passive scalar

advection in 2-D unsteady flow is to predict the concentration field

distribution at each time step in the future under the influence of

the randomly changing velocity field given the initial concentration

field. In this paper, we predict the concentration field distribution

results in the 32 time steps to demonstrate the ability of our model

to make multi-step predictions. We employ a rolling forecasting

scheme in which we input multiple velocity fields between t0 and t1
into the prediction model and combine the concentration field

distribution at t0 to predict the concentration field distribution at t1
.Then, we input multiple velocity fields between t1 and t2 into the

model and combine the concentration field distribution at t1,
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predicted by our model to predict the concentration field

distribution at t2. According to this calculation rule, we use

multiple velocity fields between tn and tn+1 and the concentration

field distribution predicted at time tn to predict the concentration

field distribution at tn+1.By repeating this process, we can get the

passive scalar advection solution at each time in the future.

Therefore, the key to our multi-step prediction method is to

recursively predict the concentration field distribution at a single

step, i.e., the numerical solution of passive scalar advection at the

next time step. We propose the time-sequence-involved space

discretization neural network (TSI-SD) to predict the space

discretization coefficient for the space derivative and then

combine the finite volume method to calculate the numerical

solution of the next time step.
3.2 Main framework of TSI-SD

The framework of the proposed method is shown in Figure 2.

This is a fusion framework of deep learning (TSI-SD) and a

traditional numerical method (FVM) for end-to-end numerical

solutions of passive scalar advection equations. It consists of three

modules: the spatial discretization coefficient prediction module

(SDCPM), the concentration template extraction module (CTEM),

and the concentration solver module based on finite volume

numerical format (CSM). For the set of multiple velocity fields

between the time steps tn and tn+1, wedecompose each velocity field

into two sub-velocity fields in the horizontal and vertical directions

(along the x-axis and y-axis) to obtain the velocity field set in the

two directions. In the next step, we build the time-sequence-

involved space discretization neural network (TSI-SD) in the

SDCPM. TSI-SD extracts the spatiotemporal features from the

decomposed velocity field sets in the two directions separately

and then fuses them to obtain the spatial discretization coefficient

of each grid point. After that, we input the coefficients into the CSM

and combine them with the surrounding point concentration

template of each grid point obtained by the CTEM to calculate

the spatial derivative. Finally, we could calculate the concentration

of each grid point at the next moment tn+1,, that is, the

concentration field of tn+1 by the FVM in the CSM.

The equation-solving process can be roughly described in the

following three steps:
1. Extract spatiotemporal features from the input velocity

fields and predict spatial discretization coefficients;

2. Extract the surrounding point concentration template for

each grid point; and

3. Fuse the predicted spatial discretization coefficient and the

concentration template to obtain the spatial derivative,

which is used to calculate the distribution of the

concentration field, i.e., the numerical solution of the

equation at the next time step by the finite volume method.
Next, we will provide details of our proposed framework for

end-to-end numerical solutions of passive scalar advection

equations. First, we introduce the SDCPM and the TSI-SD in the
frontiersin.org
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section entitled ‘Spatial Discretization Coefficient Prediction

Module’. Then, we describe in detail our proposed CTEM and

CSM modules in the Concentration Template Extraction Module’

and ‘Concentration Solver Module Based on Finite Volume

Numerical Format’ sections, respectively. Finally, we discuss the

loss function in the ‘Loss Function’ section 3.6
3.3 Spatial discretization coefficient
prediction module

In this module, we design the time-sequence-involved space

discretization neural network to predict the spatial discretization

coefficients, and the prediction function is

~a = f (U ,W), (5)

where U s the set of multiple two-dimensional velocity fields

between t nd t+1, of which size is nW s the weight of our neural

network. The time interval between the velocity fields is 1
n

U = ut , ut+1
n
,…, ut+1−1

n

n o
(6)

We decompose U into velocity field groups Ux in the horizontal

direction (along the x-axis) and Uy in the vertical direction (along

the y-axis),

Ux = uxt , u
x
t+1

n
,…, uxt+1−1

n

n o
(7)
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Uy = uyt , u
y
t+1

n
,…, uyt+1−1

n

n o
(8)

Then, we extract the spatiotemporal features separately for the

decomposed velocity field sets in the two directions. TakingUx as an

example, we input the velocity field at each time step from the

velocity field set fuxt , uxt+1
n
,…, uxt+1−1

n
gas the spatial feature of each

time step into the different conv-lstm structural unit,

Sk = uxk , (9)

and Sk is regarded as the spatial feature at time t + 1
k. A CONV-

LSTM structural unit contains convolution operations and long-

short-term memory unit processing operations. The calculation

steps can be written in the following form,

ik = Sigmoid(Conv(Sk;wxi) + Conv(hk−1;whi) + bi) (10)

fk = Sigmoid(Conv(Sk;wxf ) + Conv(hk−1;whf ) + bf ) (11)

gk = Tanh(Conv(Sk;wxg) + Conv(hk−1;whg) + bg) (12)

ck = fk⊙ck−1 + ik⊙gk = fk · ck−1 + ik⊙gk (13)

ok = Sigmoid(Conv(Sk;wxo) + Conv(hk−1;who) + bo) (14)

hk = ok⊙Tanh(ck) (15)

where ik is the input gate, which is used to calculate how much

information of the current state to retain. fx is the forget gate, and its
FIGURE 2

The framework of our approach. This framework is utilized for the solution of the passive scalar advection equation in a two-dimensional unsteady
flow. It contains three modules: SDCPM, CTEM and CSM. SDCPM: This module receives multiple velocity field information at different times, extracts
spatiotemporal features in two spatial dimensions (along the x-axis and y-axis), and finally fuses them in the spatial dimension to predict the spatial
discretization coefficient of each grid point; CTEM: This module extracts the surrounding point concentration template of each grid point
corresponding to the size of its spatial discretization coefficient template; CSM: This module calculates numerical solutions to the advection
equations based on the finite volume method(FVM).
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function is to calculate how much of the output information of the

previous moment is discarded. gx is theinformation extracted from

the current state. Ck-1 is the information of the previous moment. Ck

is the final state at the current moment, calculated by fk, ck-1, gk, and

ik. oki the output gate, which is used to calculate how much

information needs to be output (to the cell at the next moment).

hk is the final output information of the state, which is calculated by

ok and ck. wxi,whi,wxf,whf,wxg,whg,wxo,who,bi,bf,bg,and bo are the

weights designed in our neural network, and these weights will be

updated during the model training process.

After the information processing and transmission of n conv-

lstm structural units, the information ht+1−1
n
output by the last unit

is obtained. The final spatiotemporal fusion information Ix of the

horizontal velocity field is calculated by using the output

information.

Ix = conv(ht+1−1
n
) (16)

In the same way, we obtain the final spatiotemporal fusion

information Iy f the vertical velocity field.

After obtaining the spatiotemporal fusion information Ix and Iy
in two directions, it is necessary to re-fuse the spatiotemporal

features in the horizontal and vertical directions on Ix and Iy
concat(), is a feature merging operation that integrates two

features in a new dimension. After the feature merging operation,

convolution is performed on the merged features to process the

spatial information of the merged spatiotemporal features. Finally,

the spatial discretization coefficient matrix a is obtained.

a = conv(concat(Ix , Iy)) (17)

The dimension of the a matrix is (s,s,template_size*2) , where s

is the side length of the input two-dimensional velocity field, and (s,

s) is the dimension of the two-dimensional velocity field.

template_size is the number of weights required for each grid
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point. We divide a into the grid upper boundary space

discretization coefficient aup and the grid right boundary space

discretization coefficient aright with dimensions (s, s, template_size).
3.4 Concentration template
extraction module

This module and the next module follow the numerical solution

part of the traditional advection equation adopted by Zhuang et al.

Zhuang et al. (2021), and adopt the spatial derivative of the classical

Euler algorithm.

∂C
∂ x

∣x=xi =o
n

j=0
ajCi+j (18)

In the previous part, we calculated the spatial discretization

coefficient templates aup and aright, the dimensions of which are (s,

s, template_size). Therefore, we need to find the surrounding grid

point concentration templates Cup and Cright corresponding to the

position of the coefficient template, the dimensions of which are

both (s, s, template_size), which indicates that the number of

surrounding grid point concentrations required for each point in

the two-dimensional space field is template_size. As shown in

Figure 3, we input the two-dimensional concentration field Ct at

time t, and its dimension is (s, s). We model the upper and right

boundaries of each point in the two-dimensional matrix and obtain

the concentration values of m*n grid points around it as the grid

point concentration template, where

template _ size = m*n, (19)

m and n are the length and width of the two-dimensional grid

point concentration template. Finally, we obtain Cup and Cright with

dimensions (s, s, template_size).
3.5 Concentration solver module based on
finite volume numerical format

In this module, we first calculate the upper boundary

concentration Cup_edge and the right boundary concentration

Cup_edge

Cup _ edge = SUM(aup ⊙Cup) (20)

Cright _ edge = SUM(aright ⊙Cright) (21)

SUM() is the defined summation of the last dimension of the

matrix, i.e., after the matrix of (s, s, template_size) is obtained

through the dot product operation, the last dimension is summed to

obtain the boundary concentration Cedge with dimension size (s, s)

.The lower boundary concentration Clower_edge and the left boundary

concentration Cleft_edge of the grid point can be directly obtained

from the upper boundary concentration of the adjacent grid below

its position and the right boundary concentration of the adjacent

grid to the left of its position. Then, we can obtain the boundary

velocity uedge bythe same method as the calculation of the
FIGURE 3

Design of the initial concentration field. The size of the
concentration field is [0,1]×[0,1], and the concentration value is
between 0 and 1.
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concentration boundary and boundary flux via Cedge uedge. After

obtaining the flux at the four boundaries of the grid, the traditional

finite volume method is used to calculate the time derivative to

obtain the concentration field distribution at the next time step, as

shown in Figure 2.
3.6 Loss function

The format of the mean absolute error (MAE) used to train our

model is as follows:

MAE =
1
no

n

i=1
∣ Ĉ t+1 − Ct+1 ∣ (22)

where Ct+1 is the concentration field at time t+1 redicted by our

model, and Ĉ t+1 is the high-precision numerical solution at 16*16

low resolution grids. The numerical solution is calculated using

128*128 high resolution grids by the second-order Vanleer format

and then transformed to the solution at 16*16 low resolution grids

by the dimensionality reduction method Zhuang et al. (2021).
4 Experiments

In this section, we first briefly describe the datasets and

implementation details. Additionally, we carry out a number of

experiments, including comparisons with state-of-the-art (SOTA)

methods and sufficient ablation studies, to demonstrate the

excellent performance and advantages of our method.
4.1 Datasets

We used the theory of divergence-free velocity field described

by Saad and Sutherland (2016) to generate a divergence-free

random velocity field set with the resolution of 128*128. Then,

the set was divided into two parts of divergence-free random

velocity field sets: the training part and the test part. These two

parts were completely different to ensure the generalization of

the model.

For the training set, we generated a variety of random initial

concentration fields and used the second-order Vanleer numerical

format to calculate the numerical solution of the equation, i.e., the

concentration fields at multiple time steps with the resolution of

128*128 based on the set of divergence-free random velocity fields

in the training part. It is worth noting that for the Ct+1) to be

generated, our model needs to input the velocity field i at time t, t +
1
n ,…, t + 1 − 1

n. Therefore, we set the time step length of the velocity

field to be smaller than the concentration field in the generation

process to ensure that the velocity field in the time interval from t to

t+1 could be generated. Next, we sampled both the velocity field and

the concentration field at intervals to obtain a high-precision

velocity field and concentration field with a resolution of 16*16

using the dimensionality reduction method Zhuang et al. (2021).

Each training sample included an input part and an output part.
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The input part was the velocity field and the concentration field Ct

at time t at multiple time steps in the time interval from t to t+1,and

the output part was the concentration field Ct+1. The test set

generation process was consistent with the training set, but it was

necessary to ensure that the random initial concentration field

generated in the test set was different from the training set.

The initial and boundary conditions for the velocity and

concentration fields were set as follows. The size of the two-

dimensional velocity field and the two-dimensional concentration

field were both [0,1] × [0,1]. Our velocity field was a divergence-free

random velocity field, and the magnitude of the velocity was limited

between -1 and 1. The concentration field used periodic boundary

conditions, and its initial condition is to

set the concentration value range between 0 and 1. The

calculation process is shown in formulas (23)-(27).

r(x, y) = min(1, 4*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x −

1
4
)2 + (y −

1
4
)2

r
) (23)

C1(x, y) =
1
2
½1 + cos(pr)� (24)

C2(x, y) = 0:9 − 0:8*C
2
1 (25)

C3(x, y) = 1 (26)

C(x, y) = 1 − 0:3*(C1 + C2 + C3) (27)

The C(x, y) is as shown in Figure 3. C represents the

concentration value.
4.2 Comparison with SOTA methods

In this part, four SOTA numerical solution methods for passive

scalar advection in a two-dimensional unsteady flow were selected

as our baseline: (1) traditional solvers based on 16*16 resolution

grids using the second-order Vanleer discretization format(Vanleer

16*16) Lin et al. (1994); (2) traditional solvers based on 32*32

resolution grids using the second-order Vanleer discretization

format (Vanleer 32*32) Lin et al. (1994); (3) traditional solvers

based on 64*64 resolution grids using the second-order Vanleer

discretization format (Vanleer 64*64) Lin et al. (1994); and (4) a

hybrid solver based on a CNN and the finite volume method (CNN

+FVM) Zhuang et al. (2021).

We first compared our TSI-SD method with traditional solvers,

in which TSI-SD uses a 16*16 low-resolution grid. As shown in

Figure 4, the TSI-SD method maintained the smallest prediction

error over 32 time steps, which demonstrates that our method

achieved a higher solution accuracy than the traditional method at a

resolution of 4× lower than the traditional method.

Then, we compared TSI-SD with the CNN-FVM solver trained

based on the previous spatial discretization scheme Zhuang et al.

(2021). The CNN-FVM method is currently one of the most

outstanding methods for solving partial differential equations in

deep learning. It has been proven to achieve very good prediction
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and solution results in various partial differential equations, such as

Burgers’ equation Bar-Sinai et al. (2019), and the advection

equation Zhuang et al. (2021), Additionally, the method has been

proven effective at solving complex Navier–Stokes equations

Kochkov et al. (2021),and results are as accurate as baseline

solvers, with 8–10× finer resolution in each spatial dimension,

resulting in 40- to 80-fold computational speedups. The original

CNN-FVM solver has a prediction error of 0.0043, a single-step

prediction time of 0.2712s, and a single-sample training time of 4

ms per round during the training process. Our single-step solver

had an error of 0.0029, a single-step prediction time of 0.2474s, and

a single-sample training time of 2ms per round during training. Our

single-step error was 32.56% lower than the previous method, and

the iterative prediction error after 32 steps was greatly reduced. As

shown in Figure 5, our method also outperformed the CNN-FVM

solver in continuous prediction results within 32 time steps.

The reason why our solver outperformed the CNN-FVM solver

in training time, prediction time, and prediction accuracy is as

follows. In the spatial discretization coefficent prediction part, the

inputs of the CNN solver’s prediction deep-learning model are the

concentration field with (batch_size,1,grid,_size,grid_size) and the

two velocity field (along the x-axis and y-axis) at a time step with

(batch_size,2,grid,_size,grid_size). The input to our TSI-SD was the

horizontal velocity fields along the x-axis at two time steps with

(batch_size,2,grid,_size,grid_size) and the vertical velocity fields

along the y-axis at two time steps with (batch_size,2,grid,_size,

grid_size), so our input size was larger than the previous input size.

However, in the model part, the CNN-FVM solver used a five-layer

convolutional neural network to process the data collected by the

concentration field and the velocity field with (batch_size,3,grid,

_size,grid_size) .We used the structure of a 1-layer

convolutional neural network to process the horizontal and

vertical velocity fields respectively, and then a one-layer

convolutional neural network was used to process the integrated

features. After inference analysis, our model parameters were fewer
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than the original model parameters, which resulted in a shorter

training time and prediction time in our model compared with the

original model training time. This was also confirmed by a saved

parameter file size comparison.

Finally, we demonstrated the evolution prediction effect of an

initial concentration field under different models after 32 iterations.

As shown in Figure 6, the third row shows the prediction effect of

our model. The first row is our high-precision numerical solution

generated using a 128*128 high-resolution grid. The second row

shows how we use the averaging operation to obtain a high-

precision numerical solution at a low resolution of 16*16, which

is used as the ground truth of our model. The fourth and fifth rows

are the results obtained using the second-order Vanleer 16*16 and

CNN-FVM solvers. Figure 5 shows that our model is better than the

CNN-FVM and traditional second-order Vanleer 16*16 solvers. In

Figure 6, C represents the concentration value.
4.3 Comparison between models using
velocity fields at different times as
spatiotemporal features

In this part, we used different sets of time steps as the time series

information input to TSI-SD, so that our model could extract

different time features to predict the spatial discretization

coefficient. The best prediction result represents the velocity fields

at the selected time steps that have the greatest influence on the

coefficients. Figure 7 shows that when the set of fine velocity fieldd

fut , ut+1
n
,…, ut+1−1

n
g was selected to replace velocity field set {ut−n+1,

…,ut−1,ut} to predict ut+1 could reduce the prediction error of the

model. The experimental result demonstrates that the set of fine

velocity fields extracts spatiotemporal features more effectively.

That is because the time interval of the velocity field set we chose

was close to the time of the predicted concentration field, so the

correlation between the velocity field set and the predicted
FIGURE 4

Results of our solver compared to traditional solvers. The yellow line represents our error in the 32-step iteration prediction, and the remaining three
lines represent the error of the traditional solver at different resolutions.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1132640
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Song et al. 10.3389/fmars.2023.1132640
concentration field was strong. The model could learn the

spatiotemporal influence of the velocity field on the concentration

field from this set of velocity fields, which could accurately predict

the spatial discretization coefficient. Meanwhile, the prediction

error of the velocity field using fut , ut+1
2
g is the best, and

experiments demonstrated that it involves lower computational

cost; therefore, so we finally choose the
Frontiers in Marine Science 10
velocity field of fut , ut+1
2
g as the velocity field input of our final

model. We think that for the 16*16 lower resolution grid, the model

learned the time-space correlation between the velocity field set and

the concentration field well through the analysis of the velocity

fields at two times through a large amount of training data, which is

also consistent with the experimental results as shown. In future

studies, we will conduct more experiments on higher-resolution
FIGURE 6

Visualization of evolution prediction effect of an initial concentration field under different models after 32 iterations. The first row represents the
change in the concentration field calculated after 32 steps using a traditional 128*128 high-resolution solver. The second row represents the
transformation of the 128x128 high-resolution solver solution into a 16x16 training set. The third row represents the prediction results of our model
after training. The fourth row represents the prediction results of the CNN-FVM solver. The fifth row uses a traditional 16*16 low-resolution solver to
calculate the change in the concentration field after 32 steps.
FIGURE 5

Results of our solver compared to CNN-FVM solvers by Zhuang Zhuang et al. (2021). The orange line represents our error in the 32-step iteration
prediction, and the blue line represents the error of CNN-FVM solver.
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grids to obtain the optimal number of time steps after increasing

computing power.
4.4 Performance and analysis of TSI-SD
with other flow fields

In this section, we carried out an experiment to prove the

excellent performance of our model under a constant velocity field

and a two-dimensional deforming flow velocity field. We generated

the concentration under a constant velocity field, and the two-

dimensional deformation flow concentration field under the

velocity field:

u(x, y, t) = sin2(px)sin(2py)cos(
p t
T

) (28)

v(x, y, t) = sin2(py)sin(2px)cos(
p t
T

) (29)

The predicted performance is shown in Figure 8 and Figure 9. C

represents the concentration value. Our model achieved

outstanding prediction results in the iterations of 32 time steps.

However, at the same time,

there are also the following problems: even under a simple constant

velocity field, the prediction effect will become worse and worse with

the long-term iteration due to the accumulation of errors predicted by

the model at each time step. We will try to fix this in the future.
4.5 Comparison of the performance of
models with or without the concentration
field as an input feature

In this part, we verified the advantage of only taking the velocity

field as the input feature on our model. A contrast model that adds the

concentration field as feature input was designed to prove our

inference. The contrast model was identical to ours except that the
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concentration field features were fused with the spatiotemporal

features extracted from the horizontal and vertical velocity fields

(along the x-axis and y-axis) in the fusion module. Figure 10 shows

that the iteration errors on 32 time steps of our model are lower than

those of the contrast model. Therefore, we proved that the input of the

concentration field information was redundant and verified our

conclusion: the spatial discretization coefficients are strongly

correlated with the velocity field at multiple time steps before, while

the concentration field information becomes redundant when

predicting the coefficients. In other words, the change in the velocity

field is the main factor for the change in the concentration field. Our

model extracts effective spatiotemporal features from the velocity field

set to learn the influence of the change of the velocity field set on the

change of the concentration field, which is very helpful for predicting

the spatial discretization coefficient.
4.6 Experimental exploration of whether
TSI-SD has up-wind properties

In this part, we proved that the spatial discretization coefficients

predicted by our model have upwind properties on a constant

velocity field. A two-dimensional velocity field U1 with a horizontal

velocity field (along the x-axis) of +1 and a vertical velocity field

(along the y-axis) of +1, and a two-dimensional velocity field U2

with a horizontal velocity field of -1 and a vertical velocity field of

-1, were designed to prove our model’s upwind properties on a

constant velocity field. Under the two velocity fields, the

visualization process of the concentration coefficients of the upper

and right boundaries of grid points A and B was completed.

As shown in Figure 11, C represents the concentration value and

Coefficient represents the coefficient value. For the upper boundary,

the concentration on the right boundary of the constant velocity field

is mainly determined by the concentration of the two adjacent grids.

When the horizontal speed is +1 (i.e., the direction is to the right), the

grid coefficient on the left of the right boundary of grid A is greater
FIGURE 7

Mean absolute error comparison of the prediction results of models using different sets of time steps as the time series information input to TSI-SD.
For the y-axis, the different colors represent different input sets of time steps. The legend represents mean absolute error and the red box shows the
best result ( fut ,ut+1

2
g).
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than the grid coefficient on the right; when the horizontal speed is −1

(i.e., the direction is to the left), the grid coefficient on the left of the

right boundary of grid A is smaller than the grid coefficient on the

right. For the right boundary, the concentration on the upper

boundary of the constant velocity field is also mainly determined

by the concentration of the two adjacent grids. When the vertical

speed is +1 (i.e., the direction is downward), the grid coefficient above

the lower boundary of grid A is greater than the grid coefficient

below; when the horizontal speed is −1 (i.e., the direction is upward),

the grid coefficient above the lower boundary of grid A is smaller than

the grid coefficient below.

The concentration coefficient of another spatial grid point B is

almost the same as that exhibited by A. Therefore, our grid

coefficient has nothing to do with the distribution of the

concentration field, but only with the distribution of the velocity

field. The concentration field distributions at point A and point B

are completely inconsistent, but under the same velocity field, the

predicted spatial discretization coefficient distributions are basically

the same, which proves that there is no significant correlation
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between the concentration field distribution and the spatial

discretization coefficient.
5 Conclusion

We have presented a time-sequence-involved space

discretization neural network of passive scalar advection in a two-

dimensional unsteady flow. It can obtain adaptive spatial

discretization derivatives according to the spatiotemporal

property of the current environment. Then, we combined it with

the finite volume method to form an advection equation solver that

can calculate high-resolution solutions on low-resolution grids.

The highlight of our approach is the transformation of a novel

deep neural network from the classic CONV-LSTM backbone. The

network resolves spatiotemporal features by adding temporal

information to a two-dimensional spatial grid along the x- and y-

axes, and then fuses them through a post-fusion neural network.

Through spatiotemporal feature fusion, we can predict more
FIGURE 9

The predicted performance of our model in a deforming flow velocity field. The first row is the iterative solution of our 128*128 high-resolution
solver after 32 time steps, and the second row is the iterative solution of our 16*16 solver after 32 time steps.
FIGURE 8

The predicted performance of our model in a constant velocity field of vx=1 and vy=1. The first row is the iterative solution of our 128*128 high-
resolution solver after 32 time steps, and the second row is the iterative solution of our 16*16 solver after 32 time steps.
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accurate spatial discretization coefficients and more accurate

solutions. Additionally, we have made improvements in reducing

computational costs. Finally, we compared our method with other

traditional SOTA methods and demonstrated that it achieves better

accuracy than traditional solvers on meshes with 4× lower

resolution. In addition, compared with other deep-learning
Frontiers in Marine Science 13
methods, our method has advantages in terms of both

computational cost and accuracy.

The following problems were also encountered: (1) the problem

of iterative error being too big after multiple time steps—we have

proposed some solutions, such as re-iteration with ground-truth

values after iterating over some time steps, which will be
FIGURE 10

Results of our solver compared to the solver of adding concentration field as the model input. The orange line represents our error in the 32-step
iteration prediction, and the blue line represents the error of the contrast model.
FIGURE 11

The comparison of prediction results of models using different temporal layers as features. The first line selects two spatial points with significant
differences in surrounding concentrations from the spatial field and extracts the upper and right boundaries of the two points. The second row is the
spatial discretization coefficient predicted by each boundary. The third row is a heat map made according to the different position coefficients in the
coefficient template when the horizontal velocity field is +1, and the vertical velocity field is +1. The third row is a heat map made according to the
different position coefficients in the coefficient template when the horizontal velocity field is -1, and the vertical velocity field is -1.
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implemented in future work; and (2) low computing power leads to

poor model generalization—in the future, we will seek to obtain

more computing power to make our model more generalizable.
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