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Nonlocality of scale-dependent
eddy mixing at the Kuroshio
Extension

Mingyue Liu1, Ru Chen1*, Wenting Guan1, Hong Zhang2

and Tian Jing1*

1School of Marine Science and Technology, Tianjin University, Tianjin, China, 2The University of
California, Los Angeles, Los Angeles, CA, United States
Although eddy parameterization schemes are often based on the local

assumption, previous studies indicate that the nonlocality of total eddy mixing

is prevalent at the Kuroshio Extension (KE). For eddy-permitting climate models,

only mixing induced by eddies smaller than the resolvable scale of climate

models (L*) needs to be parameterized. Therefore, here we aim to estimate

and predict the nonlocality of scale-dependent eddy mixing at the KE region. We

consider the separation scale L* ranging from 0:2∘ to 2:5∘, which is comparable

to the typical resolution of the ocean component of climate models. Using a

submesoscale-permitting model solution (MITgcm llc4320) and Lagrangian

particles, we estimate the scale-dependent mixing (SDM) nonlocality ellipses

and then diagnose the square root of the ellipse area (Ln,particle). Ln,particle is a

metric to quantify the degree of SDM nonlocality. We found that, for all the

available L* values we consider, the SDM nonlocality is prevalent in the KE region,

and mostly elevated values of Ln,particle occur within the KE jet. As L* decreases

from 2:5∘ to 0:2∘, the ratio Ln,particle=L* increases from 0.8 to 8.9. This result

indicates that the SDM nonlocality is more non-negligible for smaller L*, which

corresponds to climate models with relatively high resolution. As to the SDM

nonlocality prediction, we found that compared to the conventional scaling and

the curve-fitting methods, the random forest approach can better represent

Ln,particle, especially in the coastal regions and within the intense KE jet. The area

of the Eulerian momentum ellipses well capture the spatial pattern, but not the

magnitude, of Ln,particle. Our efforts suggest that eddy parameterization schemes

for eddy-permitting models may be improved by taking into account

mixing nonlocality.

KEYWORDS

scale-dependent eddy mixing, mixing nonlocality, random forest, Kuroshio Extension,
Lagrangian particle
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1 Introduction

Oceanic eddies, which dominate the global ocean kinetic energy

reservoir, modulate the variability of the climate system through

stirring and mixing key tracers (e.g., heat, salt) (Ferrari and

Wunsch, 2009; Gnanadesikan et al., 2017; Wunsch, 2017; Jones

and Abernathey, 2019). Therefore, eddies smaller than the

resolvable scale of the eddy-free or eddy-permitting models need

to be parameterized. Much effort has been devoted to developing

eddy parameterization schemes, which often express eddy

diffusivity or eddy mixing length as a function of local parameters

(e.g., Redi, 1982; Eden et al., 2009; Ferrari and Nikurashin, 2010;

Klocker and Abernathey, 2014; Mak et al., 2018; Wang and Stewart,

2020). For example, the suppressed mixing length theory from

Ferrari and Nikurashin (2010) expresses diffusivity as a function of

local mean flow and eddy properties. However, recent work shows

that the value of eddy diffusivity depends on both local and nonlocal

flow fields (Chen and Waterman, 2017; Guan, 2022), indicating the

need of developing nonlocal eddy parameterization schemes. In

fact, subgrid parameterization schemes for several other physical

processes (e.g., diapycnal mixing and atmospheric boundary layer)

have already included the nonlocality effect (Large et al., 1994; Frech

and Mahrt, 1995; Brown and Grant, 1997; Noh et al., 2003; Hong

et al., 2006; Inoue et al., 2010; Chen et al., 2021). However, relatively

few studies have explored the degree of eddy mixing nonlocality,

which serve as a basis for the potential development of nonlocal

eddy parameterization schemes.

Recently, several studies show that the nonlocality of total eddy

mixing is non-negligible in idealized western boundary extensions or

at the KE region (e.g., Chen et al., 2014; Chen and Waterman, 2017;

Guan et al., 2022). For example, using a barotropic quasigeostrophic

model and Lagrangian particles, Chen and Waterman (2017)

estimated the nonlocality for total mixing in an idealized western

boundary current jet. They demonstrated that the nonlocality for

total mixing is prevalent in the domain, and it is stronger within the

jet compared to the jet flanks. Guan et al. (2022) estimated the

nonlocality for total mixing in the KE region using a high-resolution

simulation, MITgcm llc4320. They found that the domain-averaged

degree of mixing nonlocality is larger than 200 km. In addition, they

identified significant spatial variability of total mixing nonlocality,

which can reach as large as 300km within the KE jet.

Though studies about total eddy mixing prove valuable and

useful, it is also important to study scale-dependent eddy mixing,

i.e., mixing induced by eddies smaller than a specific separation

scale (L*). Because for eddy-permitting models, only mixing

induced by eddies smaller than the resolvable scale needs to be

parameterized. Recently, efforts have been made for developing

scale-dependent eddy mixing parameterizations (Hallberg, 2013;

Bachman et al., 2017; Pearson et al., 2017; Zanna et al., 2017; Jansen

et al., 2019; Nummelin et al., 2021). However, the nonlocality of

scale-dependent eddy mixing remains unclear. In particular, this

question has not been studied using Lagrangian particles. In

analogy to the nonlocality for total mixing (Chen et al., 2014;

Chen and Waterman, 2017), scale-dependent eddy mixing is

probably also noticeably nonlocal. In this study, we estimate and
Frontiers in Marine Science 02
predict the degree of nonlocality for scale-dependent mixing in the

KE region (20oN − 45oN, 110oE − 170oW). For simplicity, we

hereafter use the”TM nonlocality” to denote the nonlocality for

Total Mixing, and use the terminology “SDM nonlocality” to refer

to the nonlocality for Scale-Dependent Mixing.

The KE region is a representative eddy-rich and energetic

region, with a significant effect on regional climate variability

(Qiu and Chen, 2011). Recent studies have successfully estimated

the TM nonlocality in the KE region (Chen et al., 2014; Guan,

2022). The Lagrangian particle approach is effective at providing

converged total eddy diffusivity (e.g., Oh et al., 2000; Zhurbas and

Oh, 2003; Chiswell, 2013; Qian et al., 2013; Griesel et al., 2014; Guan

et al., 2022) and the TM nonlocality (Chen et al., 2014; Chen and

Waterman, 2017). Furthermore, recently, we have extended the

Lagrangian particle framework to the scale-dependent regime and

found it useful for the estimation of scale-dependent eddy diffusivity

(Manuscript submitted to JPO, 2022). Therefore, here we choose to

use the Lagrangian particle approach to estimate the SDM

nonlocality. The widely-used MITgcm llc4320 model output, with

an ultra-high horizontal grid spacing of 1/48°, is employed for this

estimation (Rocha et al., 2016a; Rocha, 2018; Yu et al., 2019).

Besides estimating the SDM nonlocality, the other goal of this

study is to represent and predict the SDM nonlocality. Despite the

lack of prediction studies about the SDM nonlocality, there are

recent efforts devoted to predicting the TM nonlocality. For

example, Chen and Waterman (2017) found that in an idealized

barotropic western boundary current jet, the degree of the TM

nonlocality is related to the product of eddy velocity magnitude and

Lagrangian equilibration time. Thus, they proposed a scaling

linking these two variables with the TM nonlocality. Based on

this idea, Guan (2022) estimated the TM nonlocality in the KE

region using MITgcm llc4320. They found that, if using the

Lagrangian equilibration time and eddy velocity magnitude as

predictands, the curve-fitting method and the Random Forest

(RF) method can both better capture the TM nonlocality than the

conventional scaling approach. However, the skills of these three

approaches (scaling, curve-fitting and RF methods) in representing

and predicting the SDM nonlocality remain unclear. Motivated by

this gap, we extend these three approaches to the scale-dependent

context, and then evaluate their performance in representing and

predicting the SDM nonlocality in the KE region.

Though effective for mixing estimation, the Lagrangian

approach has one disadvantage that it is often computationally

expensive to obtain particle trajectories in high-resolution models.

Therefore, besides using the Lagrangian particle approach to study

the SDM nonlocality, we also consider the possibility of predicting

the SDM nonlocality from the Eulerian perspective. This idea is

inspired by Chen and Waterman (2017), who found that the tilt of

the TM nonlocality ellipse is significantly correlated with that of the

momentum ellipse, especially in regions with small TM nonlocality.

By comparing the SDM nonlocality ellipses with the momentum

ellipses, we find that the area of the SDM nonlocality ellipse has a

high spatial correlation with that of the momentum ellipse. In

addition, considering that the mixing nonlocality essentially

represents the Lagrangian decorrelation spatial scale, we also
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assess whether the SDM nonlocality can be represented by the

Eulerian decorrelation spatial scale. This is inspired by previous

evidence indicating the link between the Lagrangian and Eulerian

decorrelation time scales (Middleton, 1985; Chiswell et al., 2007;

Chiswell and Rickard, 2008).

To summarize, the goals of this paper are to estimate, represent

and predict the SDM nonlocality in the KE region. The exchange of

water masses between the subpolar and subtropical gyres, which

affects North Pacific climate, is greatly regulated by mixing across

the KE jet (Chen et al., 2014; Chen et al., 2017). Therefore, our study

focuses on the nonlocality of scale-dependent eddy diffusivity in the

cross-stream direction. For estimation, we use the Lagrangian

particle method. For prediction, we use both the conventional

scaling/curve-fitting methods and RF. We also assess the

possibility of predicting the SDM nonlocality from the Eulerian

perspective. Section 2 introduces the MITgcm llc4320,

the numerical particle experiments, and the concept of the

Lagrangian equilibration time for SDM. Section 3 describes the

Lagrangian diagnosis approach about the SDM nonlocality and

presents the corresponding results at the KE. Section 4 introduces

the three approaches (scaling, curve-fitting and RF methods) and

assess their skills in representing and predicting the SDM

nonlocality. Section 5 discusses the SDM nonlocality from the

Eulerian perspective. We summarizes the work in Section 6.
2 Tool and method

2.1 Numerical model

To estimate the SDM nonlocality, we chose to use the widely-

used MITgcm llc4320 solution (Marshall et al., 1997). Specifically,

we use the surface velocity fields from this solution covering the

time period 2011/09/13-2012/11/14 in the KE region. This model

solution has an ultra-high horizontal grid spacing of 1/48° and 90

vertical levels. MITgcm llc4320 is forced by both the 16 most

important tidal constituents and the 6-hourly atmospheric fields

from the 0.14° ECMWF atmospheric operational model analysis

(Rocha et al., 2016b; Savage et al., 2017; Sinha et al., 2019; Yu et al.,

2019; Qiu et al., 2020). For more details of the model configuration,

see Rocha et al. (2016b); Savage et al. (2017), and the website https://

github.com/MITgcm-contrib/llc_hires/tree/master/llc_4320.

This model solution can effectively capture eddy processes

ranging from submesoscale to mesoscale (e.g., Rocha et al., 2016a;

Savage et al., 2017; Qiu et al., 2018; Su et al., 2018; Yu et al., 2019;

Qiu et al., 2020). Previous studies have demonstrated that this

model output is suitable for mixing studies (e.g., Sinha et al., 2019;

Guan et al., 2022; Thakur et al., 2022). For example, using this

model and particle trajectories, Sinha et al. (2019) estimated the

Lagrangian diffusivity and assessed its role in lateral transport. In

the KE region, this solution has been successfully applied to evaluate

the seasonality of both submesoscale processes and total eddy

diffusivities (Rocha et al., 2016b; Guan et al., 2022). Recently, we

analyzed this model output to estimate the scale-dependent eddy

diffusivity in the KE region and test the validity of several relevant

mixing theories (Manuscript submitted to JPO, 2022).
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2.2 Numerical particles

We use the Lagrangian particle approach to estimate the SDM

nonlocality. Previous studies have demonstrated that this approach

is effective at obtaining converged eddy diffusivities (e.g., Davis,

1987; Davis, 1991; Oh et al., 2000; Zhurbas and Oh, 2003; Chiswell,

2013; Qian et al., 2013; Griesel et al., 2014; Chen et al., 2017; Guan

et al., 2022). The particle trajectories we used here are from Guan

et al. (2022). To estimate the annual-mean SDM nonlocality (2011/

09-2012/09), we use the particle trajectories from six particle

tracking experiments, which were conducted by Guan et al.

(2022). Each of these six experiments has a different particle

release day, which help represent mixing in different seasons. In

brief, numerical particles were released every two months from

2011/09 to 2012/07. In experiments 1-5, these released particles

were advected for 180 days. In experiment 6, particles were only

advected for 137 days due to the limited model duration time

period. Specifically, for each experiment, a total of 40,701 particles

were deployed on a 0.2 ° × 0.2 ° grid in the KE region and then

advected offline by the total surface velocity from MITgcm llc4320.

We used the fourth-order Runge-Kutta scheme for the particle

advection, and set a 20-min time step. For details, see Guan et al.

(2022). These trajectories have been proven effective at estimating

both total eddy diffusivities (Guan et al., 2022) and scale-dependent

ones (Manuscript submitted to JPO, 2022). In addition, Guan

(2022) demonstrated that these trajectories can be used to

estimate the TM nonlocality. Building on these previous works,

here we use these particle trajectories to estimate the

SDM nonlocality.
2.3 Lagrangian equilibration time

Eddy fluxes are often parameterized as the product of an eddy

mixing coefficient and the local tracer gradient. However, using the

Green’s function approach, previous studies have demonstrated

that eddy flux actually depends on both local and nonlocal tracer

gradients (Kraichnan, 1987; Chen et al., 2015). Alternatively, one

can interpret mixing nonlocality from the Lagrangian perspective.

In brief, it takes a finite equilibration time before the particle-based

eddy diffusivity asymptotes. During this time period, particles from

one adaptive bin have often traveled to adjacent bins. Therefore,

Lagrangian eddy diffusivity for one adaptive bin essentially contains

flow information in both the local and surrounding bins. These

particle trajectories within the equilibration time are termed as

“effective particle trajectories”.

Chen and Waterman (2017) proposed that the TM nonlocality

can be estimated by inferring a nonlocality ellipse based on these

effective trajectories. Here we extend this diagnostic approach to the

scale-dependent context. To estimate the SDM nonlocality, we first

need to accurately estimate the Lagrangian equilibration time for

scale-dependent eddy diffusivity (teq, Figure 1A, red line). Then we

can identify the effective trajectories for scale-dependent eddy

diffusivity (Figure 1B, light blue area). Finally, we diagnose the

major/minor axes and tilt of nonlocality ellipses based on the

effective trajectories. Different from the equilibration time for
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total mixing in Chen and Waterman (2017), here both the scale-

dependent equilibration time and the SDM nonlocality ellipse

depends on the separation scale L*.

To determine the scale-dependent equilibration time (teq), we
first calculate the scale-dependent eddy diffusivity, i.e., the

diffusivity induced by eddies smaller than the separation scale L*.

We consider L* ranging from 0:2∘ to 2:5∘ ( ≈ 22-275 km). The

Lagrangian formula for scale-dependent eddy diffusivity has an

analogous form to that of total eddy diffusivity (e.g., Griesel et al.,

2010; Chen et al., 2014). As shown in Liu et al. (2023), the scale-

dependent cross-stream eddy diffusivity k∞
⊥ (x, L*) can be diagnosed

from

k∞
⊥ (x, L*) = lim

t!∞
k⊥(x, t , L*) ≈

Z t2

t1
k⊥(x, ~t , L*)d~t

t2 − t1
, (1)

where

k⊥(x, t , L*) =
Z t

0
d~t 〈 u

0
⊥(t0 x, t0)u

0
⊥(t0 + ~t

��� ���x, t0) 〉 : (2)

Equations (1) and (2) can be rigorously derived using the

Green’s function method and based on the scale separation

assumption. For details of the derivation, see Supporting

Information of Liu et al. (2023). Their derivation reveals that

when diagnosing scale-dependent eddy diffusivity, particles need

to be advected by the total flow field, not just by total eddy velocity

or scale-dependent eddy velocity. Note that previous studies have

demonstrated that total eddy diffusivity is also inferred from

particle trajectories advected by the total flow velocity (e.g., Davis,

1991; LaCasce, 2008; Chen et al., 2014; Van Sebille et al., 2018).

Therefore, the requirement of particle advection by total velocity for

scale-dependent eddy mixing here is consistent with the total

mixing case in literature.
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In Eq. (2) above, u
0
⊥(t0 + ~t jx, t0) is the scale-dependent cross-

stream eddy velocity at time t0 + ~t for the particle that passes

location x at time t0. Cross-stream direction is the direction

perpendicular to the mean flow. Note that different from Chen

et al. (2014), u
0
⊥ in this study denotes the scale-dependent, not total,

eddy velocity in the cross-stream direction. These scale-dependent

eddy velocity is obtained through spatially filtering the total eddy

velocity. As an example, Figure S1 in Supplementary Materials

shows snapshots of scale-dependent meridional velocity. 〈 · 〉
represents averaging over all the particles in the bin centered at x.

We use pseudo-trajectories, generated from the original particle

trajectories, and adaptive bins to obtain converged eddy diffusivity.

This approach have been proven effective in estimating converged

eddy diffusivity at high spatial resolution (Koszalka and LaCasce,

2010; Klocker et al., 2012; Chen et al., 2014).

As shown in Figure 1A, when t reaches the Lagrangian

equilibration time teq (Figure 1A, red line), the particle velocity

decorrelates from its initial velocity, and k⊥(x, t , L*) levels off. This
phenomenon is called the convergence of k⊥(x, t , L*), and the

converged value is considered to be the scale-dependent eddy

diffusivity k∞
⊥ (x, L*). In practice, we chose ½t1, t2� to be ½teq −

15, teq + 15� days. For further details of estimating Lagrangian

equilibration time teq, see Chen et al. (2014) and Chen and

Waterman (2017). Note that for some adaptive bins, the

Lagrangian autocorrelation function from Eq. (2) has a negative

lobe following the positive lobe (e.g., Figure S2 in Supplementary

Material). This negative lobe can lead to a decrease of eddy

diffusivity (Figure S2B). We found that using our criteria about

the teq diagnosis, we have already included the effect of negative

lobes on the eddy diffusivity magnitude. This is because teq denotes
the earliest time when k⊥ levels off over a 30-day time period, not

the time of the first zero-crossing where the negative lobe starts.

Over the time-lag range with the negative lobe, k⊥ generally has not
A B

FIGURE 1

An illustration of the diagnosis procedure of k∞
⊥ (x, L*) [Section 2.3, Eqs. (1) and (2)] and the scale-dependent mixing (SDM) nonlocality ellipse (Section

3.1). Here the adaptive bin is centered at (182:45oE, 25:00oN ) and L* = 1∘ . (A) The change of k⊥(x, t , L*) [Eq. (2), black solid line] with t (the abscissa).
k⊥ levels off at the equilibration time teq (red vertical line). The gray shaded area indicates uncertainties at the 95% confidence level. (B) Sample

pseudo-trajectories passing the adaptive bin centered at x (red dot), indicated by dark blue. Only 10% of the pseudo-trajectories are shown here to
make these tracks visible. The light blue tracks represent the effective trajectories, corresponding to t < teq . The remaining part of the pseudo-

trajectories is indicated by black. The yellow ellipse is the SDM nonlocality ellipse centered on the track centroid (yellow dot), inferred from the
effective trajectories.
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yet converged, i.e., leveled off. In other words, the Lagrangian

equilibration time teq, based on our criteria, is generally no

smaller than the timelag where the negative lobe locates (e.g.,

Figure S2B).

Concerning convergence, the percentage of adaptive bins with

converged k⊥ ranges from 99.86-100% for all L*. Specifically, the

diffusivity in all bins can reach convergence for L* ranging from 0:2∘

to 1:8∘. For L* = 2∘ and 2:5∘, only one of the adaptive bins does not

have converged eddy diffusivity. This high convergence rate is

partially attributed to the sufficient numerical particles we

deployed. The usage of pseudo-trajectories and the adaptive bin

clustering method also contributes to the high convergence rate

(Chen et al., 2014). First, for each particle trajectory, we consider the

particle positions every 3 days as a new starting point. Then, we

track the particle forward for 115 days from the new starting point

to obtain a new trajectory, which is termed a pseudo-trajectory.

Through repeating this procedure, we obtain many pseudo-

trajectories from one original particle trajectory. This method

help convert tens of thousands of original trajectories to millions

of pseudo-trajectories. Two, Eq. (2) is the ensemble average of the

autocorrelation functions over all the pseudo-trajectories passing

through a chosen finite area. The number of pseudo tracks passing

each geographic bin can vary greatly because of the flow

inhomogeneity, leading to a low convergence rate of diffusivity

(Chen et al., 2014). In contrast, adaptive bins, with irregular shapes

and spatially varying sizes, can ensure that the number of pseudo-

trajectories in each bin is roughly the same, leading to improved

convergence rate (Chen et al., 2014). We divide the KE region into a

number of adaptive bins, using the K-means clustering algorithm

and the starting points of these pseudo-trajectories (Koszalka and

LaCasce, 2010; Chen et al., 2014).

Particle trajectories in the time range t < teq are considered to

be effective trajectories (Figure 1B, light blue area). Note that

diagnosing eddy diffusivity for an adaptive bin requires the

information of all the effective trajectories, which covers a larger

area than the adaptive bin itself (Figure 1B, dark blue area). This

indicates that, similar to Eulerian eddy diffusivity, Lagrangian eddy

mixing is essentially a non-local concept.
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3 Nonlocality of scale-dependent
mixing: estimation

3.1 Nonlocality ellipse

The area enclosing these effective trajectories can indicate the

degree of mixing nonlocality (Figure 1B, light blue area). However,

this area generally has an irregular shape, making it challenging to

depict the basic characteristics of mixing nonlocality. To address

this issue, Chen and Waterman (2017) introduced the concept of

nonlocality ellipse to quantify the TM nonlocality based on effective

trajectories. Inspired by this study, to quantify the SDM nonlocality,

we introduce the concept of the SDM nonlocality ellipse

(Figure 2A). Specifically, the squares of the semimajor axis length

(s1,n) and the semiminor axis length (s2,n) of the SDM nonlocality

ellipse can be quantified as follows,

s 2
1,n =

1
2
½s2

x + s 2
y +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s 2

x − s 2
y )

2 + 4(s 2
xy)

2
q

�, (3)

s 2
2,n = (s2

x + s 2
y ) − s 2

1,n, (4)

where

s 2
x =

Z teq

0
oN

i=1½xi(t) − xc�2dt
Nteq

,

s 2
y =

Z teq

0
oN

i=1½yi(t) − yc�2dt
Nteq

,

s 2
xy =

Z teq

0
oN

i=1½xi(t) − xc�½yi(t) − yc�dt
Nteq

:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(5)

Here s 2
x , s 2

y and s 2
xy respectively represent the zonal,

meridional and cross variance of each particle position on the

effective trajectory relative to the track centroid. These effective

trajectories are for the scale-dependent eddy mixing (Section 2.3).

(xi, yi) denotes the particle position on the effective trajectory at the

ith time. (xc, yc) is the track centroid, which is the average of all
BA

FIGURE 2

(A) The scale-dependent mixing (SDM) nonlocality ellipse with the centroid locating at (182:45oE, 25:00oN), i.e., the yellow ellipse in Figure 1B. (B) The
momentum ellipse with the centroid locating at (182:40oE, 25:00oN). The semimajor axis length s1,n, semiminor axis length s2,n and tilt qn of the SDM
nonlocality ellipse are respectively defined in Eqs. (3), (4) and (6), while those for the momentum ellipse (s1,M, s2,M and qM) are defined in Eqs. (14)-(16).
frontiersin.org

https://doi.org/10.3389/fmars.2023.1137216
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2023.1137216
particle positions of effective trajectories in an adaptive bin. N is the

total number of these particle positions.

Following Chen and Waterman (2017), we chose to remap the

converged diffusivity values and the nonlocality ellipse center from

the adaptive bin centroid [x in Eq. (2), red dot in Figure 1B] to the

track centroid [(xc, yc), yellow dot in Figure 1B]. Our rationale is as

follows. The nonlocality ellipse is inferred from effective trajectories.

As stated in section 2.3, the adaptive bin is composed of the

geographic location of the starting points of pseudo-trajectories

(dark blue area in Figure 1B). However, as t increases, particles for

these trajectories gradually drift away from the bin centroid, and

thus the effective trajectories, used to diagnose diffusivity for each

bin, could cover a larger area than the bin itself. As a result, these

diffusivity estimates are essentially nonlocal, representing mixing in

the area covered by the effective trajectories centered at the track

centroid. Therefore, the track centroid can better represent the

spatial location of the diffusivity and its nonlocality estimates than

the bin centroid (Chen and Waterman, 2017).

The tilt qn (Figure 2A) and the eccentricity En respectively

represents the orientation and anisotropy of the SDM nonlocality

ellipses,

qn = arctan  (
s 2
1,n − s 2

x

s 2
xy

), qn ∈ ½− p
2
,
p
2
�, (6)

En =
s 2
1,n − s2

2,n

s 2
1,n + s2

2,n
: (7)

The metric Ln,particle refers to the square root of the SDM

nonlocality ellipse area,

Ln,particle =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

ffiffiffiffiffiffiffiffi
s2
1,n

q ffiffiffiffiffiffiffiffi
s 2
2,n

qr
: (8)

In this study Ln,particle is an important metric we use to quantify

the degree of the SDM nonlocality. We estimate the spatial structure

and magnitude of Ln,particle in Section 3.2 and evaluate the

predictability of Ln,particle in Section 4. Ln,particle measures the area

of the effective trajectories for each bin, which often extend beyond

the bin boundary. Since eddy diffusivity is calculated from velocity

fields along these effective trajectories, with a characteristics length

scale of Ln,particle, the Ln,particle information is implicitly included in

the eddy diffusivity formula [Eqs. (1) and (2)]. In other words, the

value of eddy diffusivity from Eqs. (1) and (2) depends on flow field

within a distance on the order of magnitude of Ln,particle.
3.2 Results

3.2.1 Description about SDM nonlocality
Using the method from Section 3.1, here we estimate the SDM

nonlocality ellipses for the separation scale (L*) ranging from 0:2∘ −

2:5∘.

3.2.1.1 Spatial pattern

As shown in Figure 3, the area of the SDM nonlocality ellipses has

noticeable magnitude in the entire KE region, indicating that the
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SDM nonlocality is prevalent. The spatial pattern of Ln,particle is

insensitive to L*, though. For all the available L* values, the SDM

nonlocality share the following features. One, larger nonlocality

ellipses are mainly located within the KE jet, corresponding to

larger magnitude of Ln,particle. Two, nonlocality ellipses are zonally

elongated in the upstream KE jet, with semimajor axis much longer

than semiminor axis. In contrast, in the downstream KE jet, as the jet

flow weakens and eddies gets more energetic, numerical particles

actively move in both meridional and zonal directions. Therefore, the

length of the semiminor axis increases and gets closer to that of the

semimajor axis. Three, in the upstream region with intense jet, the

ellipses on the jet flanks tend to tilt toward the jet (e.g., around 145oE

). This phenomenon is related to the cross variance s 2
xy, which is

positive (negative) on the southern (northern) side of the KE jet.

Consistent with the insensitivity of the SDMmixing nonlocality to L*

, the SDM nonlocality features summarized above resemble those of

the TM nonlocality, which has been previously reported (Chen and

Waterman, 2017; Guan et al., 2022).

3.2.1.2 Domain Averaged Ln;particle

The Ln,particle magnitude is only weakly dependent on L*. For

example, as L* increases from 0:2∘ to 2:5∘, the domain-averaged

Ln,particle only increases from 182 to 213 km (Figure 4A).

Considering that Ln,particle is a metric closely linked with the

Lagrangian equilibration time teq (Section 3.1), the insensitivity of

Ln,particle to L* may be related to the weak dependence of teq on L*

(Figure 5). In addition, the fact that these particle trajectories are

convoluted rather than straight further weakens the dependence of

Ln,particle on teq. Chen et al. (2014) found that in the KE region from

a 0:1∘ resolution model, the domain-averaged square root of the TM

nonlocality ellipse area at all depth levels is less than 200 km. This

number is on the same order of magnitude as Ln,particle for L* = 2:5∘

in our study.

3.2.1.3 Nonlocality ellipse properties

To further assess the dependence of the nonlocality ellipse

properties on L*, we diagnosed their probability density functions

(PDFs) (Figure 5). For all the available L*, the PDF peak of the

equilibration time teq occurs at time shorter than 20 days. As L*

increases, the PDF distribution of teq shifts to longer days

(Figure 5A). The PDFs for the semimajor axis length (s1,n),

semiminor axis length (s2,n) and Ln,particle share similar right-

skewed distributions, consistent with those for the TM

nonlocality [8,26]. When L* increases from 0:2∘ to 2:5∘, the PDFs

of s1,n, s2,n and Ln,particle get lower and wider, especially for L* =

2:5∘ (Figures 5B, C, F). For s1,n (s2,n), its value at the PDF peak

increases from 95 (78) to 120 (89) km (Figures 5B, C) as L*

increases. As to Ln,particle, its value at the PDF peak increases from

155 to 187 km (Figure 5F). The PDFs of the ellipse tilt (qn) are
insensitive to the choice of L*, with the peaks occurring at around

− 8∘ (Figure 5D). The PDF distribution of qn is consistent with that

for the TM nonlocality (Chen and Waterman, 2017; Guan, 2022).

Finally, similar to that of the TM nonlocality (Chen and Waterman,

2017; Guan, 2022), the PDF of the eccentricity (En) is left-skewed,

ranging from 0.2 to1 (Figure 5E). As L* increases, the En value at the

PDF peak increases from 0.65 to 0.73.
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BA

FIGURE 4

(A) Domain-averaged Ln,particle for all the choices of L* we consider. (B) The ratio between the domain-averaged Ln,particle and L*.
B

C

A

FIGURE 3

The scale-dependent mixing (SDM) nonlocality ellipse (black contours) and Ln,particle in km [color, Eq. (8)] for the annual-mean scale-dependent

cross-stream eddy diffusivity in the KE region. (A) L* = 0:2∘, (B) L* = 1∘ ,and (C) L* = 2:5∘. The blue horizontal line represents the scale of the SDM

nonlocality ellipses in each panel. Gray contours are the barotropic streamlines defined as gf−1�h (Chen et al., 2014), where g is the gravitational
acceleration, f denotes the Coriolis parameter, and �h is the annual-mean sea surface height during 2011/09/13-2012/09/12.
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Here we assess whether the spatial structures of these

nonlocality ellipse properties are sensitive to the choice of L*. We

carried out the spatial correlation analysis between the nonlocality

ellipse properties for L* = 2:5∘ and those for other L* values ranging

from 0:2∘ − 2∘ (Figure 6). For the semimajor axis length, semiminor

axis length, eccentricity and Ln,particle, the correlation coefficients are

insensitive to the choice of L*, with values ranging from 0.75 to 0.88.
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Therefore, for these four metrics, their spatial structures are only

weakly dependent on the choice of L*. However, the correlation

value for teq increases as L* increases. Its maximum, occurring at

L* = 2∘, is only 0.44. As to the ellipse tilt qn, the correlation values

range from 0.38 to 0.59. Note that Ln,particle is an important metric

for one to assess the validity of the local assumption inherent in

eddy parameterization schemes (Section 3.2.2). The insensitivity of
FIGURE 6

Spatial correlation coefficients of the SDM nonlocality ellipse properties between L* = 2:5∘ and the other L* values ranging from 0:2∘ − 2:0∘ (the
abscissa). As indicated by the legend, these nonlocality ellipse properties are the same as those in Figure 5 [Figure 1A, Eqs. (3), (4), and (6)-(8)]. Error
bars indicate uncertainties at the 95% confidence level based on a bootstrapping method (Chernick, 2011; Chen et al., 2014; Schulte et al., 2016;
Ivanova et al., 2021).
B

C D

E F

A

FIGURE 5

Probability density functions (PDFs) of the SDM nonlocality ellipse properties. (A) Equilibration time, teq [Figure 1A], (B) semimajor axis length, s1,n [Eq.

(3)], (C) semiminor axis length, s2,n [Eq. (4)], (D) tilt, qn [Eq. (6)], (E) eccentricity, En [Eq. (7)], and (F) the degree of nonlocality, Ln,particle [Eq. (8)]. The

legend indicates the four cases we present here: L* = 0:2∘, 0:5∘, 1:0∘, and 2:5∘.
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Ln,particle to L*, shown in Figure 6, may potentially simplify this

validity task.

3.2.2 The validity of the local mixing assumption
We estimated the ratio between the domain-averaged Ln,particle

and the domain-averaged L* (Figure 4B). Note that in practice, the

separation scale L* can be interpreted as the resolvable scale of an

ocean model or the oceanic component of a coupled model. For

example, coarse-resolution climatemodels, e.g., the ocean component

of the CMIP5 coupled models with 2∘ resolution (Taylor et al., 2012),

corresponds to relatively large L*. In contrast, eddy-permitting (not

eddy-resolving) models correspond to small L*. Therefore, Ln,particle
=L* can be used to assess whether the effect of mixing nonlocality

needs to be included in eddy parameterization schemes. If Ln,particle is

larger than L*, mixing nonlocality cannot be ignored. On the other

hand, if L* is larger than Ln,particle, eddy mixing can be considered to

be approximately local. In this case, the local assumption often used

in existing eddy parameterization schemes (e.g., Gent and

Mcwilliams, 1990; Ferrari and Nikurashin, 2010; Chen et al., 2015;

Jansen et al., 2015; Wang and Stewart, 2020) are reasonable.

As shown in Figure 4B, as L* increases from 0:2∘ to 2:5∘, the ratio

between the domain-averaged Ln,particle and the domain-averaged L*

decreases from 8.9 to 0.8. Assuming that this result is roughly valid

across the entire ocean and for various climate scenarios, it would be

reasonable to implement eddy parameterization schemes with the

local assumption in coarse-resolution climate models, whose L* is

relatively large (Redi, 1982; Liu et al., 2012; Jansen et al., 2015). red On

the other hand, for the eddy-permitting models, the higher (smaller)

the resolution (L*), the more non-negligible mixing nonlocality is.

From a domain-average perspective, mixing nonlocality can be

ignored in coarse-resolution climate models (Figure 4B). However,

considering that mixing nonlocality has significant spatial

variability (Figure 3), whether the local assumption holds depends

on both L* and the geographical location. For example, Ln,particle is

smaller than 200 km in the area away from the KE jet, whereas it is

larger than 300 km in the KE jet. This suggests that for a coarse-
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resolution model with 2∘ resolution, the local assumption breaks

down in the KE jet, but it still holds in the area away from the jet.

Nevertheless, our findings show that both the magnitude and spatial

pattern of Ln,particle are relatively insensitive to L*. This is a positive

sign implying that it may be possible to develop a nonlocal

parameterization scheme suitable for all L*.
4 Nonlocality of scale-dependent
mixing: representation and prediction

4.1 Method

Here we evaluate the skill of several methods in representing

and predicting the SDM nonlocality, including the scaling method,

curve-fitting method and RF. A schematic about the overall

procedure is provided in Figure 7. The details of each method are

provided next.
4.1.1 Scaling method
Considering that the nonlocality ellipse area essentially

represents the spreading area of particles within the equilibration

time, Chen and Waterman (2017) proposed a scaling method to

represent the degree of the TM nonlocality. They considered that

the square root of the TM nonlocality ellipse area can be

represented by a linear function of teq,T · ueddy , where teq,T is the

Lagrangian equilibration time for total mixing. The variable ueddy
denotes the time mean of eddy velocity magnitude, i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u

0 2 + v
0 2

p
,

where u and v are zonal and meridional velocities and the prime

denotes the deviation from its time mean. This linear empirical

model, from Chen and Waterman (2017), is based on the

assumption that the particle trajectories are straight lines. They

found that this method can effectively represent the TM nonlocality.

Specifically, we express the square root of the SDM nonlocality

ellipse area as follows
B

CA

FIGURE 7

Schematic illustrating the procedure to represent and predict Ln,particle using the scaling method, curve-fitting method and Random Forest (RF). The

two input predictors are (A) total velocity magnitude (urms , ms−1) and (B) the Lagrangian equilibration time for SDM (teq , days). Example from (B) is teq
(red line) in the adaptive bin with centroid locating at (182:45oE, 25:00oN) for L* = 1∘(Figure 1A). The predictand is the square root of the SDM
nonlocality ellipse area (km). As an example, panel (C) shows Ln,particle[Eq. (8)] for L* = 1∘(Figure 3B).
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Ln,scaling = a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p (teq · urms=2)

2
q

+ b0, (9)

where Ln,scaling measures the square root of the SDM nonlocality

ellipse area based on the scaling method. Here teq represents the

Lagrangian equilibration time for scale-dependent eddy mixing. For

any L*, the Lagrangian particles are advected by the total flow.

Therefore, in our scaling, instead of using eddy velocity magnitude,

we chose to use the time-mean total velocity magnitude (urms); that is,

the time mean
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 + v2

p
averaged over the time period of 2011/09/13

∼ 2012/09/12. Here u and v are total velocity in the zonal and

meridional directions. The variables a0 and b0 are obtained through

linear least squares fitting between
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(teq · urms=2)2

q
and the particle-

based estimate Ln,particle. Note that the coefficients a0 and b0 depend

both on L* and on the dataset used for the least squares fitting.

4.1.2 Curve fitting method
Although the scaling method captures the link betweenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p(teq · urms=2)
2

q
and the SDM nonlocality, this simple linear

model may have relatively low accuracy. Given that the nonlinear

curve-fitting approach proves useful in eddy mixing studies (e.g.,

Wang and Stewart, 2020), we employ this method to construct

nonlinear functions between the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(teq · urms=2)

2
q

and Ln,particle.

Through trial and error, we choose the complex function [Eq. (11)]

and the quadratic function [Eq. (10)] to represent and predict

Ln,particle,

Ln,fitting1 = a1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(teq · urms=2)

2
q

+ b1 log  (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(teq · urms=2)

2
q

)

+ c1, (10)

Ln,fitting2 = a2(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(teq · urms=2)

2
q

)2 + b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(teq · urms=2)

2
q

+ c2, (11)

where Ln,fitting1 denotes the represented/predicted value of the

SDM nonlocality using the complex function, and Ln,fitting2 denotes

those using the quadratic function. Their corresponding optimal

fitting coefficients (i.e., a1, b1, a2 and b2) can be obtained through

least squares fitting between
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(teq · urms=2)

2
q

and the particle-

based estimate Ln,particle. These coefficients depend on both L* and

the dataset used for the least squares fitting.

4.1.3 Random forest
Although the curve-fitting method may be more accurate than

the scaling method, identifying an appropriate fitting function and

determining the optimal coefficients can be both challenging and

time-consuming. In contrast, the RF method, which is a widely-

used algorithm of machine learning (Ho, 1995), is computationally

efficient with relatively few parameters and little configuration (Biau

and Scornet, 2016; Li et al., 2016; Serras et al., 2019). RF can capture

the complex nonlinear relation between the predictands and

predictors, and can achieve high prediction accuracy. Therefore, it

has been successfully applied in several oceanic and atmospheric

prediction problems (e.g., Li et al., 2016; Gregor et al., 2017; Tong

et al., 2019). RF has also been proven useful to predict the seasonal
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variability of total mixing lengths lengths (Guan et al., 2022) and the

TM nonlocality in the KE region (Guan, 2022). Here we use the RF

method to predict Ln,particle using the two predictors: teq and urms.

For more details of RF, see Biau and Scornet (2016) and

Breiman (2001).

We chose to use the RF code employed in several previous

studies (e.g., Wang et al., 2016; Meng et al., 2018; Yadav et al., 2018;

Liu et al., 2021; Guan et al., 2022), available at https://

code.google.com/archive/p/randomforest-matlab/downloads. Our

RF approach is expressed as

Ln,RF = F(teq, urms), (12)

where Ln,RF represents the square root of the SDM nonlocality

ellipse area from RF. The predictors (input) for the RF model are teq
and urms, and the predictand (output) is Ln,particle (Figure 7). The

dataset, including both predictors and predictand, can be split into a

training dataset and a test dataset. F denote the RFmodel constructed

between the two input predictors and Ln,particle. This RF model

changes with both L* and the amount of data used for training.

Before running the RF model, a Z-score normalization is applied to

the dataset. To test the representation and prediction skill of RF

respectively, we carried out two types of experiments (schematic

available in Figure S3 from Supplementary Materials). Here

“representation skill” means the degree of fit of the training dataset,

whereas “prediction skill” means the degree of fit of the testing

dataset. Specifically, to assess the representative skill of RF, we use the

entire dataset as the training dataset to train the RF model. Then urms

and teq from the same training dataset is used as the input of the

trained model. Comparing the corresponding output of the trained

model (Ln,RF) with Ln,particle reveals the RF representation skill.

Concerning the evaluation of the RF prediction skill, following the

approach from Guan et al. (2022), we randomly split the entire

datasets into a training dataset and a testing dataset, which

respectively account for a% and 1-a% of the entire dataset. The

former is used to generate a trained RF model. Then using urms and

teq from the testing dataset as the RF model input, we can obtain the

corresponding Ln,RF , whose comparison with Ln,particle from the

testing dataset reveals the RF prediction skill. In this study, we

evaluate the prediction skill of RF for the choice of a% ranging

from 1% to 99%. For all available L*, there are over 30,000 effective

samples in the original dataset.

In analogy, to evaluate the prediction skill of the scaling and

curve-fitting methods (Section 4.2.2), we use the approach similar to

RF described above. Specifically, we use the randomly sampled

training dataset, which is a% of the entire dataset, and the least

squares fitting approach to determine the uncertain parameters ai, bi
and ci in the scaling and curve-fitting models [Eq. (9)-(11)].With the

trained model [Eq. (9)-(11)] and the predictors from the remaining

dataset, one can obtain the predictand Ln,scaling , Ln,fitting1 and Ln,fitting2.

Comparing these predictand values with the corresponding Ln,particle
reveals the prediction skill of the scaling and curve-fitting models.

Similarly, to obtain the representation skill of the scaling and curve-

fitting methods, we use the entire dataset for training and then

compared the trained values with Ln,particle (Section 4.2.1).
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4.2 Results

4.2.1 Representation skill
We compare the degree of the SDM nonlocality inferred from

the particles (Figure 3) with that based on the three methods

(Figures 8A, B, C). All the three methods (scaling, curve-fitting

and RF methods) can well represent the spatial structure of Ln,particle.

For example, large nonlocality mainly occurs within the KE jet

(Figures 8A–C). We also quantified the error of these three methods

in representing Ln,particle (Figures 8D–F). The absolute difference

between Ln,RF and Ln,particle is overall the smallest, with most values

smaller than 30 km (Figure 8F). In contrast, both jLn,scaling −
Ln,particlej and jLn,fitting1 − Ln,particlej are large in the coastal regions,

upstream KE jet and the topographic regions (e.g., Japan island,

Shatsky Rise and Emperor Seamounts) (Figures 8D, E). Results for

Ln,fitting2 are similar to those of Ln,fitting1 (not shown). The findings

described above are insensitive to the choice of L*. RF outperforms

the scaling and curve-fitting methods for all the L* we consider.

Concerning the large representation errors for Ln,scalingand

Ln,fitting1 in several spots (e.g., coastal and topographic regions),

we hypothesize that the large error may be related to the large

spatial variability of the flow field. Note that both the scaling and

curve-fitting approaches are essentially based on a single variable

[i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(teq · urms=2)

2
q

]. Thus, these two methods roughly assume

that particles are advected by a constant speed urms. This

assumption apparently breaks down in the regions where the flow

field changes direction abruptly (e.g., coastal regions, Japan island,
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Shatsky Rise and Emperor Seamounts). In these areas, particle

trajectories are highly convoluted. Thus, using teq and urms as two

separate predictors and constructing more complex predicting

models, like RF, reduces the representation errors.

We calculated the correlation coefficient between Ln,particle and

the degree of nonlocality predicted by the three methods

(Figure 9A). RF captures the spatial pattern of Ln,particle much

better than curve-fitting and scaling methods, with correlation

coefficients larger than 0.96 for all the available L*(Figure 9A).

The two curve-fitting functions [Eqs. (10), (11)] have similar

representation skills, with correlation values of nearly 0.85 for all

the L* values. In contrast, the scaling method is overall inferior to

the other methods, with correlation values within the range of [0.81,

0.84]. Despite such difference, all these methods have correlation

values larger than 0.8. Therefore, all the three methods have

reasonable skill in representing the spatial distribution of Ln,particle,

with RF method being the best.

The Root Mean Square Error (RMSE) between the degree of

nonlocality for each method and Ln,particle (Figure 9B) indicates that

RF also best captures the magnitude of Ln,particle. The ranking of

these methods in representing the Ln,particlemagnitude is consistent

with their skill in capturing the spatial pattern (Figure 9B). RMSE

for RF, ranging from 13.5 to 14.7, is much smaller than those of the

scaling and curve-fitting methods, which are within the range of

[26.4, 34.1]. The RMSE values for the two curve-fitting functions,

which almost overlap with each other, are slightly smaller than

those of the scaling method.
B
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FIGURE 8

The degree of the SDM nonlocality from the scaling, curve-fitting and RF methods (A-C), and the corresponding absolute error (D-F). Results shown
here are for L* = 0:2∘ . Spatial distribution of (A) Ln,scaling [Eq.(9)], (B) Ln,fitting1 [Eq.(10)], (C) Ln,RF [Eq.(12)], (D) jLn,scaling − Ln,particlej, (E) jLn,fitting1 − Ln,particlej
and (F) jLn,RF − Ln,particlej in km. Here Ln,particle is the particle-based SDM nonlocality [Eq.(8)]. Color bars on the left (right) are for the left (right) panels.

The black lines are the barotropic streamlines as those in Figure 3. The topographic features “Shatsky Rise” and “Emperor Seamounts” are indicated
in (A) and (D).
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4.2.2 Prediction skill
Besides the representation skill, we also evaluate the skill of each

method in predicting the SDM nonlocality (Figure 10). As described

in Section 4.1.3, a randomly selected a% of the dataset is used to

train the model (scaling, curve-fitting and RF) and the remaining
Frontiers in Marine Science 12
dataset is used for the prediction skill evaluation. We estimate the

RMSE and R-squared (the square of the correlation coefficients)

between Ln,particle and the corresponding predicted values

(Figure 10). Among all the four methods, the RMSE (R-squared

value) of RF is generally the smallest (largest), indicating that RF
BA

FIGURE 9

The skill of the scaling, curve-fitting and RF methods in representing the SDM nonlocality. (A) Correlation coefficients and (B) Root Mean Square Error
(RMSE) between Ln,particle and the degree of the SDM nonlocality based on each method as indicated at the legend. The horizontal axis L* (degree)

means different separation scales. In the legend, Ln,scaling represents the degree of the SDM nonlocality based on the scaling method [Eq. (9)], Ln,fitting1
and Ln,fitting2 are those based on the curve-fitting approach [Eqs. (10) and (11)], and Ln,RF denotes that based on RF [Eq. (12)]. Error bars are uncertainties

at the 95% confidence level using the bootstrapping method (Chernick, 2011; Chen et al., 2014; Schulte et al., 2016; Ivanova et al., 2021).
B

C D

A

FIGURE 10

The skill of the scaling, curve-fitting and RF methods in predicting the SDM nonlocality. (A) RMSE, for L* = 0:2∘, between Ln,particle and the predicted

counterparts based on each method. (B) is the same as (A) but for L* = 2:5∘, (C) Correlation coefficients, for L* = 0:2∘, between Ln,particle and the

predicted values, (D) is the same as (C) but for L* = 2:5∘. The abscissa indicates the percentage of dataset used for the model training. The four terms in
the legend apply for all the four panels. As stated in Figure 9, Ln,scaling in the legend represents the degree of the SDM nonlocality based on the scaling

method [Eq. (9)], Ln,fitting1 and Ln,fitting2 are those based on the curve-fitting approach [Eqs. (10) and (11)], and Ln,RF denotes that based on RF [Eq. (12)].
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outperforms the other methods. For a given value of L*, both RF

and the curve-fitting methods outperform the scaling method for

most choices of a%. The performance of the two curve-fitting

functions are similar, better than scaling but only slightly inferior

to RF. We also found that their prediction skills for large L* are

better than those for small L*. The R-squared and RMSE values are

overall insensitive to the choice of a% within the range of

[10%, 60%].

Despite the significant advantage of RF in representing Ln,particle,

the prediction skill of RF is only slightly superior to the curve-fitting

methods (Figure 10). However, compared to the curve-fitting

methods, one advantage of RF is that it can provide reasonable

prediction while saving time and manpower. One might be able to

further improve the performance of RF by further considering the

under ly ing phys ics of SDM nonloca l i ty and adding

additional predictors.
5 Discussion

Although the SDM nonlocality can be reasonably estimated and

predicted based on the information of Lagrangian particles

(Sections 3 and 4), obtaining these particles are computationally

expensive. Therefore, here we consider the possibility of

representing Ln,particle from the Eulerian perspective.
5.1 Momentum ellipses

5.1.1 Method
Chen and Waterman (2017) found that the particle-based TM

nonlocality ellipse is closely related to the Eulerian momentum

ellipse in an idealized barotropic quasigeostrophic model.

Specifically, they found that in the regions with small nonlocality,

the tilt and eccentricity of the TMnonlocality ellipses resemble those

of the momentum ellipses. Guan (2022) extended their analysis to

the realistic KE region using MITgcm llc4320 output. Guan (2022)

found that in this realistic KE scenario, the area of the TM

nonlocality ellipses is highly correlated with that of momentum

ellipses. However, the tilt and eccentricity of the TM nonlocality

ellipses match poorly with their counterparts in momentum ellipses.

Here we extend the comparison about mixing nonlocality and

momentum ellipses to the scale-dependent context. Since the

nonlocality ellipse for all L* is based on numerical particles

advected by the total flow field, we mainly chose to compare the

SDM nonlocality ellipse (Figure 2A) with the total momentum

ellipse, i.e., the momentum ellipse inferred from total velocity

fluxes (Figure 2B).

For the ease of comparison, in analogy to the definition of

Ln,particle , we define LM as the square root of the total momentum

ellipse area,

LM =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

ffiffiffiffiffiffiffiffiffi
s 2
1,M

q ffiffiffiffiffiffiffiffiffi
s2
2,M

qr
, (13)
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where s1,M and s2,M denote the semimajor axis length and

semiminor axis length of the total momentum ellipses (Figure 2B).

We calculate them based on previous approach approach

(Preisendorfer and Mobley, 1988; Waterman and Lilly, 2015;

Chen and Waterman, 2017),

s 2
1,M =

1
2
½u2 + v2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(u2 − v2)2 + 4(uv)2

q
�, (14)

s 2
2,M = u2 + v2 − s 2

1,M : (15)

Here u and v represent the zonally and meridionally total flow

velocity, respectively.   ·  represents the annual average (2011/

09/13 to 2012/09/12). The tilt qM and the eccentricity EM of the total

momentum ellipse can be calculated by

qM = arctan  (
s 2
1,M − u2

uv
), qM ∈ ½− p

2
,
p
2
�, (16)

EM =
s 2
1,M − s2

2,M

s 2
1,M + s2

2,M
: (17)

For completeness, we also compare the SDM nonlocality ellipse

with the scale-dependent momentum ellipse. One can then obtain

the scale-dependent momentum ellipse using the formulas similar

to the total momentum ellipse, simply replacing u and v from Eqs.

(13)-(17) with us and vs. Here us (vs) refers to the component of

zonal (meridional) velocity with scales smaller than L*, obtained

through spatial filtering.

5.1.2 Results
Figure S4(A) in Supplementary Materials shows the spatial

pattern of the total momentum ellipse. We found that the spatial

pattern of LM is similar to those of Ln,particle. For example, large

values of LMand Ln,particle are mainly concentrated within the KE jet.

To quantitatively compare the SDM nonlocality ellipse with the

total momentum ellipse, we estimate the correlation of the ellipse

properties between these two ellipses (Figure 11). Results are overall

insensitive to the choice of L*. The correlations of the square root of

ellipse area are relatively high, ranging from 0.69 to 0.78 for the L*

values we consider. The correlations about eccentricity and tilt are

much lower, though. For eccentricity, they are no larger than 0.47,

and for the tilt, they are around 0.1, with a maximum value of 0.16.

Therefore, although the total momentum ellipse cannot well

capture the eccentricity and tilt of the nonlocality ellipse, it can

effectively represent the spatial distribution of Ln,particle. The

disadvantage, however, is that the total momentum ellipse cannot

directly predict the magnitude of Ln,particle.

We also provide a comparison between the SDM nonlocality

ellipse and the scale-dependent momentum ellipse (Figures S4 S5 in

Supplementary Materials). The ellipse area decreases as L*

decreases. Comparing Figure 11 with FigureS5 reveals that the

area of the total momentum ellipse can better represent Ln,particle
than that of the scale-dependent momentum ellipse, especially for

small L*. This result is consistent with the fact numerical particles
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for the scale-dependent eddy mixing and its nonlocality diagnosis

are advected by the total velocities, not scale-dependent ones

[rationale available in Supporting Information from Liu et al.

(2023)]. The degree of mixing non-locality is related to the area

enclosing effective trajectories, which is thus closely linked with the

total velocity and total momentum ellipse area.
5.2 Eulerian decorrelation approach

5.2.1 Method
Ln,particle essentially represents the Lagrangian spatial

decorrelation scale. Previous studies considered that there is a

link between the Lagrangian decorrelation time scale (TL) and the

Eulerian decorrelation time scale (TE) (Middleton, 1985; Chiswell

et al., 2007; Chiswell and Rickard, 2008). Specifically, if particles

pass through only a small portion of an eddy in the Eulerian

decorrelation time (i.e., the eddy length scale is larger than the

distance traveled by particles), TL ≈ TE . This is because in this

regime, the temporal decorrelation of Lagrangian velocity is mainly

due to that of eddies. In contrast, if particles are fast advected

through several eddies, the Lagrangian velocity reaches

decorrelation more quickly and thus TL < TE . Given these

previous findings, we hypothesize there might be a link between

the Lagrangian and Eulerian decorrelation spatial scales. We assess

whether the Ln,particle can be represented by the Eulerian

decorrelation spatial scale. If yes, one would be able to infer

Ln,particle directly from the Eulerian flow fields, without the need of

calculating particle trajectories.

For this purpose, we need to estimate the Eulerian decorrelation

spatial scale. Several methods have been proposed to diagnose the

Eulerian decorrelation spatial scale (e.g, Cholemari and Arakeri,

2006; Chiswell et al., 2007). Here we propose the following simple

method to estimate the Eulerian decorrelation spatial scale for scale-

dependent mixing (LE) (Figure 12). Specifically, we first estimate the

autocorrelation between the time series (2011/09/13-2012/09/12) of
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the scale-dependent cross-stream eddy velocity [i.e., u
0
⊥ in Eq. (2)]

at a given point and those at the surrounding points (Figure 12).

Then we identify the points with significantly positive

autocorrelation coefficients (Figure 12, black and gray dots).

Finally, we estimate the area only including the given point and

the connected identified points (Figure 12, black dots). LE is defined

as the square root of the area covering these connected points.
FIGURE 12

A schematic illustrating the procedure diagnosing the Eulerian
decorrelation spatial scale LE (Section 5.2.1). Here we show the

results of the scale-dependent cross-stream eddy velocity (u
0
⊥) for

L* = 2:5∘ as an example. Color represents the autocorrelations

between u
0
⊥ at the initial center point (green pentagram) and those

at the surrounding points. Dots indicate the gird points with
significantly positive autocorrelation at the 95% confidence level.
Among these dots, the black ones are the grid points which include
the initial center point (green) and are spatially connected with each
other. The gray dots represent the remaining points, which are
disconnected with the black dots. The square root of the area
covered by the black dots is the Eulerian decorrelation spatial scale
LE for the initial center point.
FIGURE 11

Spatial correlation coefficients of the ellipse properties, indicated on the legend, between the nonlocality ellipse and the momentum ellipse. In the
legend, “Eccentricity’’ refers to En [Eq. (7)] and EM [Eq. (17)], “Tilt’’ refers to qn [Eq. (6)] and qM [Eq. (16)], and “Sqrt (ellipse area)’’ represents Ln,particle [Eq.

(8)] and LM [Eq. (13)]. Error bars indicate uncertainties at the 95% confidence level based on a bootstrapping technique (Chernick, 2011; Chen et al.,
2014; Schulte et al., 2016; Ivanova et al., 2021). The horizontal axis L* (degree) means different separation scales.
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5.2.2 Result and discussion
Comparing LEwith Ln,particle reveals the skill of the Eulerian

decorrelation approach in representing the SDM nonlocality. We

found that LE differs much from Ln,particle in the KE region. As

shown in Figure 13), jLE − Ln,particlej is mostly below 2∘ for L* = 2:5∘.

However, as L* decreases, jLE − Ln,particlej increases, especially

within the KE jet. As shown in Figure 14A, the RMSE between LE
and Ln,particle increases from 0:9∘ to 1:56∘, as L* decreases from 2:5∘

to 0:2∘. Concerning the spatial correlation between LEand Ln,particle,

the correlation coefficient is statistically indistinguishable from zero

for L* = 0:2∘ and 0:4∘. For L* > 0:4∘, the correlation coefficients are

also small, with values no larger than 0.22 (Figure 14B). These low

correlation values indicate that LEpoorly represents the spatial

structure of Ln,particle.

To summarize, despite its computational efficiency and ease of

diagnosis, the Eulerian decorrelation approach is not ideal for the

representation of SDM nonlocality. One, both jLE − Ln,particlej and
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RMSE increase as L* decreases (Figures 13, 14). However, as shown

in Section 3.2.2, the effect of nonlocality becomes more significant

as L* decreases. In other words, the error of LE in representing

Ln,particle is large for the range of L*, where the SDM nonlocality

cannot be ignored. Two, the large error is mainly concentrated

within the KE jet (Figure 13). Yet, in this region, reasonable eddy

parameterization scheme is crucial; because eddies there are rich

and the SDM nonlocality is strong (Figure 3). Therefore, the

Eu l e r i an decor r e l a t i on method canno t r ep l a ce the

computationally expensive Lagrangian approach for the SDM

nonlocality estimation.

The link between the Eulerian decorrelation scale and SDM

nonlocality might be further investigated. First, the Eulerian

decorrelation scale based on our approach essentially measures

the square root of the area within the contour where the Eulerian

correlation coefficient reaches their first zero-crossing over space.

Yet, eddy diffusivity is obtained by integrating the Lagrangian
B

C

A

FIGURE 13

Spatial structure of jLE − Ln,particlej in degree for (A) L* = 0:2∘, (B) L* = 1∘ and (C) L* = 2:5∘. LEdenotes the Eulerian decorrelation spatial scale (Section

5.2.1) and Ln,particle represents the degree of the SDM nonlocality [Eq. (8)].
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autocorrelation function over the time lag range [0, teq]. The value
of teq generally differs from the first zero crossing of the Lagrangian

autocorrelation. One may resolve this inconsistency by estimating a

corresponding Eulerian decorrelation scale where the integral of the

Eulerian autocorrelation function over space starts leveling off in

the space coordinate. Further effort is left for future work. In

addition, LaCasce (2008) has shown that the Eulerian

decorrelation scale and the Lagrangian decorrelation scale can be

linked through the ratio of the Eulerian integral time and advection

time. Yet, no explicit analytical formula about this link has been

provided. Further effort in this aspect might contribute to the

prediction of mixing nonlocality based on tracer fields readily

available in numerical models.
6 Summary

Motivated by the need to accurately parameterize subgrid eddy

mixing processes in eddy-permitting climate models, here we

estimate the degree of the SDM nonlocality (Ln,particle) in the KE

region. We use the Lagrangian particle trajectories from the

MITgcm llc4320 output to estimate Ln,particle. The spatial pattern

of Ln,particle is insensitive to L*. Though Ln,particle is noticeable in the

entire study domain, its large values are mainly concentrated within

the KE jet. Although Ln,particle is only weakly dependent on L*, the

ratio between the domain averaged Ln,particle and L* increases from

0.8 to 8.9 as L* decreases from 2:5∘ to 0:2∘. This suggests that the

local assumption often inherent in eddy parameterization schemes

roughly holds in coarse-resolution models. However, this

assumption breaks down in models with relatively high resolution

(e.g., the eddy-permitting, but not eddy-resolving ones). We also

represent and predict Ln,particle using the conventional scaling

method, empirical curve-fitting method and a commonly used

data-driven machine learning approach(RF). Among all these

approaches, RF best represents and predicts both the spatial

pattern and magnitude of Ln,particle. The curve-fitting method

ranks second, and the scaling method has the worst performance.

In particular, compared to the scaling and curve-fitting methods, RF
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has much better skill in representing the Ln,particle magnitude in the

coastal region and within the intense KE jet. The coastal region is

critical for fisheries and human survival, whereas the KE jet plays a

key role in modulating regional climate. Besides its reasonable

performance, another advantage of RF is that it is less time

consuming than the curve-fitting methods, which involve much

trial and error searching the appropriate functions. However,

caveats must be taken when choosing the predictors for RF. The

choice of predictors needs to be based on the physical mechanism of

the SDM nonlocality. For example, if we replace the total flow

velocity magnitude by the scale-dependent eddy velocity magnitude

as the input predictor in Section 4, the performance of RF gets

relatively poor, especially for small values of L*(not shown). This is

because particles are advected by the total flow field, but not by the

scale-dependent flow field.

This work can be further extended in several ways. One, we only

consider the annual-mean SDM nonlocality using the MITgcm

llc4320 output covering a relatively short time period (2011/09-

2012/09). The seasonal or interannual variability of the SDM

nonlocality remains unclear. Two, it would be worthwhile to

revisit this problem in other ocean regions. Three, the approaches

to estimate, represent and predict the SDM nonlocality needs to be

further improved. The Lagrangian particle approach can provide

the reasonable SDM nonlocality estimation and RF has reasonable

skill in representing and predicting the SDM nonlocality. However,

both methods require much information about the Lagrangian

particles, which are not readily available in climate models. On

the other hand, the momentum ellipse method can well represent

the spatial pattern but not the magnitude of Ln,particle. As to the

simple Eulerian decorrelation approach, its representation error is

large especially for small L* and within the KE jet.

This study only considers eddy mixing nonlocality from a

Lagrangian and time-mean perspective. Qian et al. (2019) has

successfully demonstrated that in a transformed spatial

coordinate related to quasi-conservative tracer contours, both

Lagrangian single-particle diffusivity and relative diffusivity can be

reconciled with the tracer-based effective diffusivity (Nakamura,

1996). This conceptual equivalence is valid from an instantaneous
BA

FIGURE 14

The (A) Root Mean Square Error (RMSE) (degree) and (B) the correlation coefficients between the Eulerian decorrelation spatial scale LE (Section
5.2.1) and the degree of the SDM nonlocality inferred from particles (Ln,particle) [Eq. (8)]. L* (degree) means the condition of different separation scales.
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perspective. Since effective diffusivity represents eddy mixing across

a specific tracer contour, it can be interpreted as eddy mixing

averaged over each tracer contour. Whether the nonlocality of eddy

mixing is noticeable and easily measurable in the context of the

tracer-based effective diffusivity, in the transformed spatial

coordinate or in the case of relative diffusivity is worth further

theoretical consideration.

One limitation of this study is that we focus on estimating and

predicting the degree of the SDM nonlocality, not developing eddy

parameterization schemes including this nonlocality. Directly

inferring realistic eddy mixing coefficients through data

assimilation is an alternative approach towards improving eddy

parameterization schemes. For example, Liu et al. (2012) has

provided a novel approach to inferring eddy tracer mixing

coefficients using an adjoint-based inversion model. They found

that mixing coefficients from several existing schemes based on local

parameters (e.g., Redi, 1982; Visbeck et al., 1997) need to be

adjusted in order to obtain the best model-data fit. This approach

from Liu et al. (2012) may offer further insights for developing and

evaluating non-local eddy parameterization schemes. Our work has

the following implications for improving eddy parameterization

schemes. One, existing eddy parameterization schemes express

eddy diffusivity as a function of local variables (e.g., Ferrari and

Nikurashin, 2010; Mak et al., 2018; Wang and Stewart, 2020). Yet,

our work indicates that eddy diffusivity could depend on both local

variables and nonlocal variables in the surroundings areas within

the distance of nonlocality scale. Future effort could be devoted to

developing parameterization schemes expressing diffusivity as a

function of both local and nonlocal parameters. Two, we found that

as the separation scale L*decreases, scale-dependent mixing is more

nonlocal relative to L*. Therefore, it is especially important to

develop nonlocal parameterization schemes for eddy-permitting

models. Three, the success of RF in predicting the SDM nonlocality

suggests that employing appropriate machine learning methods

may help estimate the nonlocality scale, which is key information

for developing nonlocal eddy parameterization schemes.
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