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Extending regional habitat
classification systems to ocean
basin scale using predicted
species distributions as proxies

Oisı́n Callery* and Anthony Grehan

Earth and Ocean Sciences, University of Galway, Galway, Co. Galway, Ireland
The patchy nature and overall scarcity of available scientific data poses a

challenge to holistic ecosystem-based management that considers the whole

range of ecological, social, and economic aspects that affect ecosystem health

and productivity in the deep sea. In particular, the evaluation of, for instance, the

impact of human activities/climate change, the adequacy and representativity of

MPA networks, and the valuation of ecosystem goods and services is hampered

by the lack of detailed seafloor habitat maps and a univocal classification system.

Tomaximize the use of current evidence-basedmanagement decision tools, this

paper investigates the potential application of a supervised machine learning

methodology to expand a well-established habitat classification system

throughout an entire ocean basin. A multi-class Random Forest habitat

classification model was built using the predicted distributions of 6 deep-sea

fish and 6 cold-water corals as predictor variables (proxies). This model, found to

correctly classify the area covered by an existing European seabed habitat

classification system with ~90% accuracy, was used to provide a univocal

deep-sea habitat classification for the North Atlantic. Until such time as global

seabed mapping projects are complete, supervised machine learning

approaches, as described here, can provide the full coverage classified maps

and preliminary habitat inventories needed to underpin marine management

decision making.

KEYWORDS

habitat modelling, benthic habitats, random forest, ecosystem-based management,
marine spatial planning
1 Introduction

Ecosystem-based management is required to implement international, regional and

local policies promoting the sustainable development of marine resources such that

ecosystems are maintained in a healthy, productive and resilient condition so that they

can provide the services humans want and need (McLeod et al., 2005). Ecosystem-based

management is an integrated approach that considers the full range of ecological, social,
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and economic factors that influence ecosystem health and

productivity. Although scientific knowledge is no longer

considered a limiting factor for the adoption of an ecosystem-

based management approach in shallower waters (Cormier et al.,

2017)), a lack of basic scientific knowledge still hinders its full

realisation in the deep sea (Grehan et al., 2017). For example, while

the advent of acoustic seabed mapping techniques, in particular the

development of multibeam echo-sounders, has revolutionised our

ability to image the seafloor in recent decades (Kenny et al., 2003), it

is estimated that only 23% of the world’s oceans have been mapped

at a high resolution (GEBCO (General Bathymetric Chart of the

Oceans), 2022). Furthermore, mapping benthic habitats requires

the collection and compilation of extensive physical and biological

datasets, and this has only been achieved in a small proportion of

the global ocean (Costello et al., 2010; Sunagawa et al., 2020).

Recognising that, despite this lack of data for the deep-sea, there

is an urgent need for full-coverage benthic habitat maps to underpin

management decision making, predictive modelling techniques

have become widely used and accepted as the best means of

addressing gaps in current knowledge of the seafloor (Brown

et al., 2011). The EUSeaMap (Vasquez et al., 2021), for example,

provides a broad-scale predictive benthic habitat map of European

waters using various habitat classification systems including the

European Union Nature Information System (EUNIS) habitat

classification system (Davies et al., 2004) and Benthic Broad

Habitat Types (BBHT) as defined in the MSFD (Commission

Decision (EU) 2017/848). The EUSeaMap’s utilisation of these

well-established schemas is in line with a wider need for a

univocal system of habitat classification (Galparsoro et al., 2012),

and crucially, allows users to leverage a large existing evidence-base

when addressing fundamental needs in marine management,

including assessments of 1) habitat sensitivity and cumulative

effects (Tillin et al., 2010; Tyler-Walters et al., 2018), 2) the

adequacy and representativity of MPA networks, (Rondinini,

2011), and 3) ecosystem goods and services provided by benthic

habitats (Galparsoro et al., 2014).

Broadly speaking, benthic habitat maps are developed by

classifying the seafloor based on distinct combinations of biotic

and abiotic characteristics which provide a suitable or preferable

environment for a particular species or groups of species (Diaz et al.,

2004); depending on the approach used to integrate these various

components, the specific composition and boundaries of a given

habitat can vary widely (Shumchenia and King, 2010). A

bathymetric survey based on high-resolution acoustic data, for

example as obtained from a multibeam echosounder, serves as the

logical starting point for the mapping of the abiotic (and to some

extent the biotic) environment (Anderson et al., 2007; Brown et al.,

2011). In addition to providing data on depth, derivatives of

bathymetric data support geomorphological classification of the

seabed and the identification of benthic structures at a range of

scales which may be used to characterise seafloor habitats (Wilson

et al., 2007; Dolan et al., 2012; Goes et al., 2019). Multibeam

echosounder backscatter data, along with derivatives thereof, can

also be linked to various seafloor sediment characteristics important

to habitat determination (Brown and Blondel, 2009; Hasan et al.,

2014). Furthermore, bathymetric data provide input to
Frontiers in Marine Science 02
hydrodynamic models which can provide useful predictions for

other parameters of ocean physics and chemistry which contribute

to habitat delineation (Lucieer et al., 2016), thus addressing gaps in

empirical measurements of such parameters (Cooper and

Spearman, 2017; Ramiro-Sánchez et al., 2019). Finally, ground

truthing, in the form of bottom sampling or in-situ surveys, is a

crucial component of creating high-confidence benthic habitat

maps (Lamarche et al., 2016). Ground truthing enables

model predicted characterisations of the seafloor substrate/

sediment to be confirmed (and models thus refined) using

physical samples obtained with equipment such as grabs and

corers (Narayanaswamy et al., 2016), and in situ surveys of the

in- and epifauna (Schiele et al., 2014) and benthic/benthopelagic

fish communities present (Auster et al., 2001; Borland et al., 2021)

can help ensure that any habitat maps developed are

ecologically meaningful.

Single species habitat mapping is a special case of habitat

mapping whose objective is to define the niche (sensu

(Hutchinson, 1944)) inhabited by a particular species (Brown

et al., 2011); usually this would be a “focal species”, i.e. one of a

set of species whose collective environmental preferences/tolerances

hypothetically encompass the requirements of all other species in a

given landscape or ecosystem of interest (Lambeck, 1997). Species

occur in three-dimensional geographical space, but their occurrence

can also be conceptualised within a hyperdimensional space of ‘n’

environmental parameters (e.g. temperature, salinity, food

availability, oxygen concentration, etc.) within which there exists

an n-dimensional hypervolume (Hutchinson, 1957) bounded by

species’ tolerances to those environmental parameters, i.e. their

fundamental niche (Begon and Townsend, 2020). The process of

using environmental data collected at locations of recorded species

occurrences to model species’ fundamental niches (or rather as

much of the fundamental niche as is possible based on the observed

data) as distinct regions of the environmental space is referred to as

species distribution modelling, and Species Distribution Models

(SDMs) can be used to map these niches onto the geographical

space for which environmental data are available, thus describing

species’ potential distributions (their realised distributions may

differ, as the modelled niche describes only the environment in

which a species could occur based previous observations, without

taking account of important considerations such as, for example,

connectivity, competition, and predation etc.). In much the same

way that integrated ocean models can be calibrated with empirical

observations and used to produce full-coverage spatial data layers

for a range of physical and biogeochemical variables pertinent to

mapping marine habitats (Fennel et al., 2022), SDMs based on

relatively sparce species occurrence data can be used to address gaps

in our knowledge of species distributions (Franklin, 2013).

This paper explores the potential use of a supervised machine

learning methodology to extend well-established habitat

classification systems from an area which is, compared to most in

the world’s ocean, highly studied and well characterised, to an area

for which there is a considerably greater paucity of empirically

observed environmental/biological data. Given the surge in interest

in species distribution modelling in recent years (Melo-Merino

et al., 2020), SDMmodel outputs which, in effect, integrate physical,
frontiersin.org
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chemical, and biological data about the marine environment are

increasingly readily available (Scarponi et al., 2018), and the

hypothesis that such SDM outputs could serve as proxies for

benthic habitat (as determined according to a pre-existing

classification scheme) is explored. Such a highly flexible and

globally applicable methodology could serve a wide range of

purposes, from supporting conservation efforts and marine policy

implementation to facilitating the effective management of

maritime activities.
2 Materials and methods

2.1 Seabed habitats data – EUSeaMap 2021

The European Marine Observation and Data Network’s

(EMODnet) EUSeaMap is a broad-scale map of physical seabed

habitats in European waters, with the EUSeaMAP 2021 being the

fifth iteration produced by EMODnet since the start of their seabed

habitat mapping initiative in 2009. Since its inception, the

EUSeaMap has classified European seabed habitats according to

the i) EUNIS 2007 and ii) MSFD “Benthic Broad Habitat Type”

classifications, and, as of the 2021 version (Vasquez et al., 2021), an

additional classification for European waters is now also included in

the form of an updated “EUNIS 2019” marine habitat classification

system (“EUNIS marine habitat classification 2019 including

crosswalks — European Environment Agency,” n.d.; Evans et al.,

2016). The EUSeaMap has been developed, as described in detail by

(Populus et al., 2017), by using generalised linear modelling

techniques (logistic regression) to elucidate links between

observed biological sample data and environmental predictor

variables, or, in the absence of biological data, with fuzzy

classification rules using thresholds obtained from literature and

expert judgement. For use as model training data, the most recent

available update of the EUSeaMap broad-scale seabed habitat map

for the European Atlantic and Arctic regions (updated September

2021) was downloaded as a Geodatabase from the EMODnet

Seabed Habitats Spatial Data Downloads portal (https://

www.emodnet-seabedhabitats.eu/).
2.2 Species distribution model outputs

As part of the H2020 ATLAS project (eu-atlas.org), basin-scale

SDMs were developed for six species of deep-sea fish

(Coryphaenoides rupestris, Gadus morhua, Helicolenus

dactylopterus, Hippoglossoides platessoides, Reinhardtius

hippoglossoides, and Sebastes mentella), three species of

scleractinian corals (Desmophyllum dianthus, Lophelia pertusa,

and Madrepora oculata), and three species of Octocoral (Acanella

arbuscula, Acanthogorgia armata, and Paragorgia arborea) (Morato

et al., 2020). These species were selected for their ecological

significance as well as their wide distributions throughout the

North Atlantic Basin, characteristics which also mark their

suitability for the present study. SDMs were developed for each

species using three commonly applied approaches: i) Maxent
Frontiers in Marine Science 03
(infinitely-weighted logistic regression) (Phillips et al., 2006;

Phillips et al., 2017) , ii) Generalized Additive Models (Hastie and

Tibshirani, 1987), and iii) the Random Forest machine learning

algorithm (Breiman, 2001), with ensemble model predictions

subsequently generated by combining these outputs; these

ensemble outputs were downloaded for use as model training/

testing data from the PANGAEA data repository (Morato

et al., 2019).
2.3 Species distribution model inputs

As described previously, SDMs are developed in an attempt to

describe the fundamental niche of species and thus their outputs

represent an integrated map of physical, chemical, and biological

environmental data relevant to species geographic distributions.

The environmental data layers used to develop the ensemble SDM

outputs detailed above were also downloaded from the PANGAEA

data repository (Wei et al., 2020) for use as auxiliary model training/

testing data; this allowed for comparisons to be made between

classification models developed solely with SDM outputs as

predictors, and models developed with SDM outputs and their

inputs as predictors.
2.4 Modelling habitat

2.4.1 Preparing model training and
testing datasets

The raster R package (Hijmans and van Etten, 2016) was used to

combine the gridded SDM outputs and auxiliary spatial data layers

as a “raster stack” object, which was then converted to a

“SpatialPointsDataframe” object using the centroids of the pixels

of the raster stack as the x- and y-coordinates of the spatial points.

These spatial points were overlain on the EUSeaMap shapefile, and

the habitat data underlying each point was extracted from the

shapefile polygons using the “over” function of the SP R package

(Pebesma et al., 2022). This results in the polygon directly under the

centroid of each pixel being selected in instances where a single

pixel in the SDM/auxiliary data layers covered multiple polygons in

the EUSeaMap, however any other treatment of such cases would be

computationally costly, and the benefit (if any) to model

performance would be marginal.

The EUNIS system has a hierarchical structure, and the

EUSeaMap classifies different areas to different levels (L1-L4) of

that hierarchy; EUNIS classifications for each hierarchical level were

computed for each datum, as the EUSeaMap provides only the

highest EUNIS level possible for each habitat classified. For

example, if the EUSeaMap classified a habitat as A5.611

(Sabellaria spinulosa on stable circalittoral mixed sediment), this

would be considered a EUNIS L4 classification, and classifications

of A5.61 (Sublittoral polychaete worm reefs on sediment), A5.6

(Sublittoral biogenic reefs), and A5 (Sublittoral sediment) would be

calculated for EUNIS L3, EUNIS L2, EUNIS L1 respectively. There

were several EUNIS habitats for which there were too few records

for them to be modelled in any meaningful way, however the
frontiersin.org
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hierarchical structure of the EUNIS classification system allowed for

these data to be merged with data at a higher (i.e. less specific) level

of the EUNIS hierarchy rather than discarding them. Finally, the

data were split using a ratio of 80:20 for model training and model

testing datasets, respectively (Gholamy et al., 2018); this was

achieved using the “createDataPartition” function of the caret R

package (Kuhn et al., 2022) to randomly sample data from within

each habitat class, thus ensuring that the overall class distribution of

the original dataset was preserved in both the training and

testing datasets.

Using the EUNIS classification as an example, the vast majority

of the area of the North-East Atlantic that is classified by the

EUSeaMap is comprised of deep-sea bed (A6) habitats, with

Sublittoral sediment (A5), Circalittoral rock and other hard

substrata (A4), and Infralittoral rock and other hard substrata

(A3) making up a comparatively small fraction of the habitats

assigned EUNIS classifications. This results in a severe class

imbalance and so poses an impediment to the development of a

RF classifier capable of predicting minority classes (in this case A5,

A4, and A3 habitats) with similar accuracy to the majority class

(A6). One way of dealing with this problem of class imbalance is to

oversample minority cases in the training dataset, however this too

can cause problems; simply resampling the training data randomly

(i.e. selecting duplicate instances of the minority class(es) to achieve

a balanced number of each class can result in model overfitting,

hindering the model’s ability to generalise and thus predict classes

for data outside the original training dataset. Conversely, randomly

undersampling the majority class(es) to obtain a balanced training

data set could result in important information being lost, especially

when the majority class data are comprised of subclasses (as is the

case with the EUNIS hierarchy – e.g. A6 is comprised of sub-classes

A6.1, A6.2,… etc.); such within-class imbalance could very likely

result in instances of poorly represented minority subclasses being

completely excluded from the training dataset if the dataset is

simply randomly undersampled. To address these issues, more

sophisticated means of under- and oversampling the training

dataset are necessary. To deal with the paucity of data available

for minority classes in the EUSeaMap, the Synthetic Minority Over-

sampling Technique (SMOTE) proposed by (Chawla et al., 2002)

was used to oversample the training dataset, thus generating

“synthetic” instances of the minority class(es). A k-means based

clustering approach was simultaneously applied to undersample the

majority classes, after sub-dividing the data; this combination of

SMOTE and cluster-based under-sampling techniques (SCUT) was

proposed by (Agrawal et al., 2015) and was implemented using the

scutr R package (Ganz, 2021). This methodology was applied for

each habitat classification system modelled.

2.4.2 Random forest seabed habitat classification
Decision trees are a supervised machine learning algorithm

commonly employed to address classification and regression

problems. Starting at a single root node which contains all the

available training data, the decision tree branches, based on the

values of some feature (i.e. an independent variable) in the input

data that is most capable of separating classes of interest (i.e. the
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dependent variable), thus splitting the data into two nodes. This

process is repeated, until the model reaches terminal “leaf” nodes

which contain data from only a single class; at this point the

decision tree may be used as a model to make class predictions

for new data. An individual decision tree is a “weak learner”,

however there are multiple ensemble methods that use multiple

trees to obtain better predictions, one example being the Random

Forest (RF) algorithm proposed by Breiman (2001). Each tree

making up the RF ensemble is trained on a dataset obtained by

random sampling of the original input data with replacement, a

process called bootstrap sampling. The final RF model is based on

combining the votes of all decision trees in the ensemble, making

the RF algorithm a form of “bagging”, i.e. a combination of the

processes of bootstrap sampling and aggregating votes from

multiple weak learners. Initially, the potential of various

modelling strategies was investigated using the EUNIS 2007

habitat classification: i) a “flat” approach, in which RF models

were used to directly classify habitats to the highest (i.e. most

specific) possible level of the EUNIS classification without

consideration of its hierarchical structure, and ii) a successive

approach, whereby habitats were classified at successively higher

levels of EUNIS using separate RF classifiers at each level, with each

subsequent classifier taking the output of the previous classifier as

input. Flat and successive RF models were developed with and

without any over-/undersampling to explore the effects of class

imbalance on model performance. All RF models were developed

using the randomForest R package (Cutler and Wiener, 2022) with

default hyperparameter settings. RF is known to be one of the least

tunable machine learning algorithms (Probst et al., 2019a), though

to confirm this, the potential effect of hyperparameter tuning was

explored using a grid search methodology (Probst et al., 2019b) and

a subsample of the training/testing datasets. Based on the results of

these preliminary analyses, it was determined that the default

settings were close to optimal, and any potential benefit that

could be obtained from tuning of the RF hyperparameters was

not significant enough to warrant the computational cost that

would be required when using the full datasets to develop models.

2.4.3 Model performance assessment
A confusion matrix is an ‘n x n’ matrix of label counts per class

(n being the number of classes modelled), with columns

representing actual labels in the testing dataset, and rows

representing model predictions. Assuming the rows and columns

are arranged in the same order, elements along the main diagonal of

the matrix represent instances where the predicted class matches

the actual class in the testing dataset, with off-diagonal elements

representing misclassifications. A number of performance metrics

were used to assess model performance, with all of these metrics

being calculated according to the methods outlined in Grandini et

al. (2020), i.e. on the basis of the confusion matrices obtained by

comparing model predictions of habitat to the actual habitat classes

within the test datasets. It is important to note that each of the

confusion matrices (and therefore the various performance metrics

used to assess each model) were obtained using a single 20%

validation set. This method of model validation was selected to
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minimise the considerable computational expense of assessing

multiple models trained on very large datasets, however in a

practical application it would be advisable to use validation

approaches based on repeated resampling of the available data

(e.g. k-fold cross-validation) to obtain estimates of model

performance (James et al., 2013).

Overall accuracy, the ratio of correct predictions to the overall

number of observations in the test set, is one of the most commonly

used metrics used to evaluate classification tasks implemented using

machine learning algorithms (Sokolova and Lapalme, 2009),

however depending on the nature of the training/testing data and

intended use of the model, other metrics of model performance may

be more appropriate; this is particularly true when there is a class

imbalance present in the training and testing datasets. For example,

according to the 2007 EUNIS classification, almost 60% of the

EUSeaMap is identified as A6: Deep-sea bed, and therefore a model

which simply classifies all habitats as A6 would still be considered

~60% accurate despite offering no real predictive power. It may be

preferable then to have a model with a lower overall accuracy, but,

for example, a higher recall for certain minority classes (recall being

defined as the ratio of correctly predicted instances of a class relative

to the total number of observations of that class in the test data set).

While recall (also referred to as “sensitivity”) is evaluated

independently for each class, by taking the arithmetic mean of the

recalls for all classes we can obtain the macro-averaged recall (RMA),

a single metric which gives equal importance to all classes regardless

of their prevalence, (Manning and Schutze, 1999). An important

metric to consider in conjunction with recall is precision, defined as

the ratio of correctly predicted instances of a class to the total

number of predictions made for that class. Generally (though not

always) there is a trade-off between model recall and model

precision (Alvarez, 2002); a model can achieve high recall for a

particular class by simply overpredicting that class, however this

results in a low precision score, and conversely a model which

achieves high precision for a particular class may tend to

underpredict that class, thus resulting in a poor recall. As with

recall, a macro-averaged precision (PMA) can be calculated for a

given multiclass classification model by taking the arithmetic mean

of the precision scores for each class. Given the importance of

considering recall and precision together, the F1-score, defined as

the harmonic mean of recall and precision (or zero if precision and

recall are both zero (Opitz and Burst, 2019) given that the harmonic

mean is undefined in such an instance), provides a convenient

single metric which is often used to evaluate, and more specifically

to compare, models. As with recall and precision, a macro-averaged

F1-score (F1MA) can also be obtained by calculating the arithmetic

mean of the F1-scores scores for each class.

Where there is a significant class imbalance in model training/

testing datasets, e.g. as is the case with EUSeaMap habitats classified

according to EUNIS 2007, there is an implicit importance given to

rarer classes when assessing model performance with macro-

averaged metrics, as each class contributes equally to the

calculation of the metric regardless of its prevalence in

the datasets. This may or may not be appropriate depending on

the intended end use of the classification model, however the use of

macro-averaged metrics in the context of assessing a habitat
Frontiers in Marine Science 05
classification model does seem justified, given that habitat rarity is

an important factor to be considered in marine spatial planning

(Foley et al., 2010) and conservation planning (Hiscock, 2020).
3 Results and discussion

A total of 38 RF models were developed; reference IDs for each

model and various metrics of model performance are presented

in Table 1.
3.1 Identification of optimal benthic habitat
modelling strategy

Initially, to establish the optimal strategy for classifying benthic

habitats with the available data, several modelling approaches were

trialled. The EUNIS 2007 classification as provided by the

EUSeaMap was used as an example target habitat classification

system, and all of the data from the species distribution model

inputs and outputs described previously in sections 2.2 and 2.3 were

used as inputs to these models. RF classifiers were developed using

both “flat” and “sequential” modelling approaches with the

unaltered (unbalanced) training dataset as well as a balanced

training dataset obtained using SCUT. Individual classifiers were

developed for the highest level of EUNIS 2007 available in the

EUSeaMap data, as well as the habitat descriptors of substrate and

biozone and, where applicable, the lower “parent” levels of the

EUNIS hierarchy derived as described previously. Based on model

classification of the retained test dataset, all of these RF classifiers

(M1-M22) were capable of classifying habitat descriptors and

benthic habitats according to EUNIS 2007 across all levels of the

classification system’s hierarchy with very high overall accuracy

(mean 0.956 ± 0.027). When using the original unbalanced data for

model training, both flat and successive modelling approaches had

almost identical performances in terms of accurately predicting

EUNIS 2007 habitats in the test dataset, however for models trained

using the balanced datasets obtained with SCUT, the successive

approach achieved slightly higher accuracy than the flat approach

(0.937 vs 0.907 respectively). Compared to models trained on the

unaltered (unbalanced) datasets, all models trained on the datasets

obtained with SCUT exhibited higher RMA values, but lower values

of accuracy and PMA. The model with the highest PMA (0.635) was

M6, which was a flat model trained on the original unaltered

training dataset; this model had an RMA of 0.499 and a F1MA of

0.540. The model with the highest RMA (0.600) was M17, which was

a flat model trained on the SCUT balanced training dataset; this

model had a PMA of 0.475 and a F1MA of 0.516. As as RF model is

simply an ensemble of decision trees, it is possible to combine RF

models to obtain a single large ensemble comprised of all the

decision trees from all constituent RF models. Combining RF

models M6 and M17, a large ensemble model (M27) was

obtained which predicted EUNIS habitats in the EUSeaMap test

data set with an accuracy of 0.952, a RMA of 0.578, a PMA of 0.570,

and a F1MA of 0.571; while these accuracy, RMA, and PMA metrics

are between the ranges of values obtained for RF models M6 and
frontiersin.org
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TABLE 1 With all available data.

cro Avg. Precision Macro Avg. F1

CUT w/ SCUT w/o SCUT w/ SCUT

S F S F S F S

– 0.951 – 0.960 – 0.958 –

0.730 0.747 0.676 0.698 0.688 0.757 0.716

0.819 0.768 0.751 0.746 0.778 0.795 0.783

0.662 0.522 0.553 0.598 0.585 0.579 0.593

0.618 0.499 0.531 0.555 0.551 0.542 0.561

0.595 0.475 0.511 0.540 0.532 0.516 0.540

CUT) F (w/ SCUT) F (w/o SCUT) F (w/ SCUT)

6 0.672 0.711 0.691

3 0.541 0.611 0.582

Combined Combined

0.570 0.571

0.734 0.719

0.646 0.638

acro Avg. Precision Macro Avg. F1

CUT) F (w/ SCUT) F (w/o SCUT) F (w/ SCUT)

4 0.391 0.441 0.440

2 0.586 0.627 0.611

2 0.426 0.520 0.469

Combined Combined

0.487 0.497

0.657 0.649

0.553 0.555
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A) Initial Model Ref. IDs Overall Accuracy Macro Avg. Recall Ma

w/o SCUT w/ SCUT w/o SCUT w/ SCUT w/o SCUT w/ SCUT w/o S

F S F S F S F S F S F S F

Biozone M1 – M12 – 0.975 – 0.972 – 0.955 – 0.965 – 0.967

Substrate M2 M7 M 13 M18 0.956 0.956 0.946 0.931 0.673 0.668 0.779 0.773 0.764

EUNIS Ll M3 M8 M14 M19 0.996 0.996 0.995 0.995 0.697 0.747 0.828 0.827 0.832

EUNIS L2 M4 M9 M15 M20 0.962 0.962 0.921 0.938 0.550 0.550 0.691 0.649 0.726

EUNIS L3 M5 M10 M16 M21 0.961 0.961 0.907 0.937 0.515 0.518 0.628 0.603 0.649

EUNIS M6 M11 M17 M22 0.961 0.961 0.907 0.937 0.499 0.499 0.600 0.582 0.635

B) Additional Model Ref. IDs

F (w/o SCUT) F (w/ SCUT) F (w/o SCUT) F (w/SCUT) F (w/o SCUT) F (w/ SCUT) F (w/o

MSFD BBHT M23 M25 0.969 0.958 0.672 0.726 0.77

EUN IS 2019 M24 M26 0.913 0.838 0.572 0.691 0.70

C) Combined model Ref. IDs Combined Combined

EUNIS 2007 M27 (M6 + M17) 0.952 0.578

MSFD BBHT M28 (M23 + M25) 0.968 0.711

EUNIS 2019 M29 (M24 + M26) 0.904 0.656

With only SDM output layers

Overall Accuracy Macro Avg. Recall M

F (w/o SCUT) F (w/ SCUT) F (w/o SCUT) F (w/ SCUT) F (w/o SCUT) F (w/ SCUT) F (w/o

EUNIS 2007 M30 M33 0.913 0.814 0.399 0.560 0.54

MSFD BBHT M31 M34 0.948 0.926 0.581 0.668 0.72

EUN IS 2019 M32 M35 0.874 0.753 0.471 0.603 0.65

D) Combined model Ref. IDs Combined Combined

EUNIS 2007 M36 (M30 + M33) 0.900 0.514

MSFD BBHT M37 (M31 + M34) 0.945 0.644

EUNIS 2019 M38 (M32 + M35) 0.863 0.571

F = Flat Classification; S = Successive Classification.
S

S
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M11, the F1MA for M27 is higher than that of either constituent

model, suggesting that this combined model achieves a more

optimal balance between recall and precision than either M6

or M11.

As discussed previously, macro-averaged metrics assign equal

importance to all classes, resulting in less prevalent classes having a

disproportionately large impact on the metrics relative to their

representation in the test dataset. This effect is illustrated in

Figure 1, which shows step-wise evaluations of the macro-averaged

precisions, recalls, and F1-scores for models M6, M11, and M27 (y-

axis) against the sum of the prevalences of classes considered at each

step (x-axis), i.e. 1
non

i=1mivson
i=1pi with points plotted for each i of

n total classes ordered by decreasing prevalence in the test dataset,

where mi is the by-class precision, recall, or F1-score of the i
th class,

and pi is the prevalence of the i
th class. As can be observed, 10 habitat

classes comprise ~99% of the test dataset, and there is a substantial

difference in macro-average metrics calculated on the basis of this

99% compared to macro-averaged metrics calculated using the entire

test dataset; taking model M27 as an example, PMA falls from 0.801 to

0.570, RMA falls from 0.846 to 0.578, and the F1MA falls from 0.821 to

0.571. This again highlights the complexity of evaluating model

performances and demonstrates that no single metric considered in

isolation can adequately evaluate model performance.
3.2 Classification errors

As described previously, all off-diagonal elements of the confusion

matrices used for model evaluation were considered classification

errors. While this is the usual manner of determining

misclassifications for the purposes of model evaluation, there are

several confounding factors which might result in model

performance being underestimated as a result of this. For example,

because of its hierarchical structure, habitats can be labelled at different

levels of the EUNIS classification, meaning there are multiple labels

which could be correctly applied to any given habitat, however this is

not considered by any of the metrics calculated to assess model

performance. Taking as an example the confusion matrix for model

M27 (Figure S3) which shows that ~68% of habitats classified as A5 in

the EUSeaMap test dataset were identified as such by the model, with

A5.15 accounting for ~15% ofmodel predictions, A5.14 for ~4%, A5.27

for ~3%, and A5.34 and A5.611 for ~1% each. In effect, this means that

92.6% of habitats classified as A5 in the EUSeaMap test dataset were

identified by the model as A5 or subsets thereof, however without better

testing data (e.g. derived from ground truthing) it would be impossible

to determine the true accuracy of these predictions. A similar case

exemplifying this issue is that, while ~64% of the instances of A6.611

(Deep-sea Lophelia pertusa reefs) in the test dataset were correctly

classified by model M27, ~27% were classified as A6 (Deep-sea bed);

while this is not technically incorrect per se, it was considered a

misclassification for the purposes of model evaluation. Confusion

matrices for models M28, M29, M36, M37, and M38 are also

provided in the supplementary material as Figures S4–S8, respectively.

For some habitat classes, the paucity of data available for model

training and testing is also a significant limitation. For example, class

A3.3, Atlantic and Mediterranean low energy infralittoral rock, was
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very sparsely represented in the training and test data with only 29

and 7 instances in the respective datasets. As the confusion matrix for

model 27 (Figure S3) shows, no instances of A3.3 in the test set were

correctly predicted; of the 7 instances of A3.3 in the test set, 4 (~43%)

were predicted as A4.33, Faunal communities on deep low energy

circalittoral rock, 1 (~14%) was predicted as A4.3, Atlantic and

Mediterranean low energy circalittoral rock, 1 (~14%) was

predicted as A5.43, Infralittoral mixed sediments, 1 (~14%) was

predicted as A3.2 Atlantic and Mediterranean moderate energy

infralittoral rock, and 1 (~14%) was predicted as A5.25 or A5.26,

Circalittoral fine sand or Circalittoral muddy sand. Model 27 thus

correctly predicted a rock seabed substrate in ~71% of cases, but

confused the infralittoral and circalittoral zones. The infralittoral zone

is defined as being the area of the photic zone which is permanently

submerged, while the circalittoral extends from the bottom of the

infralittoral to the wave-base (the maximum depth at which there is

wave disturbance) (Coggan et al., 2011). In the EUSeaMap, the

transition between the infralittoral and circalittoral zones is

necessarily delineated by hard thresholds, however given the high

spatiotemporal variability of both the photic zone (Lee et al., 2007;

Saulquin et al., 2013) and the depth to the wave-base (Roland and

Ardhuin, 2014; Henriques et al., 2015), this transition in reality occurs

across a gradual environmental gradient, so any model confusion in

differentiating between these zones given limited input data is

perhaps unsurprising.
3.3 Models for other habitat
classification systems

With an optimal modelling strategy identified, two further RF

models were developed using the same methodology to classify

habitats according to i) the MSFD BBHT classification and ii) the

EUNIS 2019 classification. Combining RF models M23 and M25, a

large ensemble model (M28) was obtained which predicted MSFD

BBHTs in the EUSeaMap test data set with an accuracy of 0.968, a

RMA of 0.711, a PMA of 0.734, and a F1MA of 0.719; while these

accuracy, RMA, and PMA metrics are between the ranges of values

obtained for RF models M23 and M25, the F1MA for M28 is higher

than that of either constituentmodel, as was the case for the combined

EUNIS 2007 model, suggesting that this combined model for MSFD

BBHT also achieved a more optimal balance between recall and

precision than either model M23 or M25 alone. Similarly, combining

RF models M24 and M26, a large ensemble model (M29) was

obtained which predicted benthic habitats in the EUSeaMap test

data set according to the EUNIS 2019 classification system with an

accuracy of 0.904, a RMA of 0.654, a PMA of 0.646, and a F1MA of 0.638,

and again, these accuracy, RMA, and PMA metrics were between the

ranges of values obtained for RFmodels M24 andM26, with the F1MA

for M29 also being higher than that of either constituent model.
3.4 Models built solely with species
distribution model outputs

RF models were also developed using only SDM outputs as

proxies for habitats. Combining RF models M30 and M33, a large
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ensemble model, M36, was obtained, which predicted benthic

habitats in the EUSeaMap test data set according to the EUNIS

2007 classification system with an accuracy of 0.900, a RMA of 0.514,

a PMA of 0.487, and a F1MA of 0.497. Similarly, combining RF

models M31 and M34, a large ensemble model, M37, was obtained,

which predicted MSFD BBHTs in the EUSeaMap test data set with

an accuracy of 0.945, a RMA of 0.644, a PMA of 0.657, and a F1MA of

0.649. And finally, combining RF models M32 and M35, a large

ensemble model, M38, was obtained, which predicted benthic

habitats in the EUSeaMap test data set according to the EUNIS

2019 classification system with an accuracy of 0.863, a RMA of 0.571,

a PMA of 0.563, and a F1MA of 0.611. As observed previously, in all

cases the accuracy, RMA, and PMA values observed for the large

ensemble models were between the ranges of values obtained for

their constituent RF models, however the F1MA scores were always

higher than that of either constituent model. Given that RF models

had significantly fewer features to use as predictors, some reduction

in these metrics would be expected, and as can be seen in Figure 2,

the accuracy and macro averaged metrics for models developed

with only the SDM output data to classify habitats according to the

EUNIS 2007 classification system were lower than those developed
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using both the SDM input and output data, but only slightly so; in

absolute terms, when considering all habitat classes, the accuracy of

M36 was reduced by just 0.052 compared to M27, with the RMA,

PMA and F1MA reduced by 0.064, 0.083, and 0.079 respectively.
3.5 Extending habitat classification systems
across ocean basins

As a demonstration of the methodology’s utility, the habitat

classification systems used by the EUSeaMap were subsequently

extended to the entire North Atlantic Basin using the best performing

models for each classification system. Figure 3 shows the EUNIS 2007

habitat classification of the North Atlantic Basin using model M27,

while Supplementary Figures S1, S2 show the MSFD BBHT and EUNIS

2019 habitat classifications of the North Atlantic Basin using models

M28 and M29, respectively. Due to the scale of the maps and the large

number of habitats presented, these maps are intended only to indicate

the extents of the areas classified with the legends intended only to

indicate the number and variety of habitat classes.
A

B D

E

F

C

FIGURE 1

Comparison of changes in model evaluation metrics based on ordering habitats from highest to lowest prevalence and computing macro-averaged
precision, recall and F1-scores sequentially for a combined model (M27) and its constituent models (M6 and M17) classifying benthic habitats
according to the EUNIS 2007 habitat classification system. (A, C, E) show changes in precision, recall, and F1-score, respectively. For a closer look,
(B, D, F) show zoomed-in views of these graphs, respectively, with the x-axes truncated at 99%.
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While the models were shown to have excellent predictive power

on the test dataset, it is very important to note the caveat that the

North Atlantic Basin comprises many distinct biogeographic regions

(Schumacher et al., 2022), and, as the habitat classifications

represented in the EUSeaMap were developed for benthic habitats

in the North East Atlantic, they may not be applicable outside

European waters (Galparsoro et al., 2012), especially if the input

data used to train the RF models are not representative of the full

range of biogeographic conditions found throughout the basin. To

address this issue, it might be necessary to develop separate models for

different parts of the North Atlantic Basin and possibly to expand the

habitat classification systems used, however, despite these limitations,

marine habitats in different biogeographical regions can be highly

similar in many ways, and thus can react similarly when subjected to

pressures concomitant with human activities. For example, despite

their very distinct biogeographies, shallow tropical coral reefs and their

deep-sea cold-water counterparts share many similarities in terms of

ecosystem function and habitat sensitivity to anthropogenic impacts;

both habitats provide important habitat for a diverse array of marine

species, and both are sensitive to anthropogenic impacts, such as

physical disturbance, pollution, and climate change.
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Notwithstanding the caveats above, this study demonstrates

that the species composition in a given area (or rather a subset

thereof) can serve as a useful indicator of habitat, and this is not

solely predicated on the presence or absence of given species in that

area, but rather the unique “fingerprint” of modelled relative

probabilities of species occurrences therein. Thus, the relative

probability of species occurrence whether low or high, provides

useful information for the purposes of habitat classification.
4 Conclusions

Knowledge of seabed habitat distribution provides an essential

foundation for the conservation and sustainable utilisation of

marine resources as well as the effective management of maritime

activities. Maps of the areal extents and distributions of benthic

habitats allow for informed decision making regarding the

management of living and non-living resources present on the

seafloor, enabling relevant authorities to 1) optimally manage

spatial and temporal overlaps between multiple human activities

and habitats/species particularly sensitive to the anthropogenic
A

B D

E

F

C

FIGURE 2

Comparison of changes in model evaluation metrics based on ordering habitats from highest to lowest prevalence and computing macro-averaged
precision, recall and F1-scores sequentially for a model developed using all available data as RF inputs (M27) and a model developed using only SDM
outputs as RF inputs (M36) to classify benthic habitats according to the EUNIS 2007 habitat classification system. (A, C, E) show changes in precision,
recall, and F1-score, respectively. For a closer look, (B, D, F) show zoomed-in views of these graphs, respectively, with the x-axes truncated at 99%.
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impacts associated therewith (Andersen et al., 2018; Baker and

Harris, 2020), 2) design Marine Protected Areas which are, as

recommended by the Convention on Biological Diversity,

“ecologically representative and well-connected” (CBD, 2021), and

3) use environmental accounting approaches to integrate the

ecological and socio-economic value of natural capital into

Marine Spatial Planning processes (Picone et al., 2017; Bouwma

et al., 2018). The use of species distribution modelling to develop

full-coverage maps of species habitat suitability over wide areas has

become ubiquitous, however there is still the need for marine

habitats to be classified according to widely used, univocal habitat

classification systems. This study presents a globally applicable,

easily reproducible supervised machine learning approach by which

to use the outputs of species distribution models to extend existing

habitat classification systems over larger areas, thus maximizing the

potential use of current evidence-based management decision tools.
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Maps comparing the EUSeaMap classified according to the EUNIS 2007
habitat classification (top) with the output of RF model M27, which
extends this classification across the North Atlantic Basin (bottom).
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