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Physiological and transcriptomic
analyses reveal critical immune
responses to hypoxia and sulfide
in the haemolymph of clam
Tegillarca granosa

Zhengkuan Yang1†, Yihang Wang1†, Puyuan Jiang1, Feiyu Xia1,
Ying Xu1, Xiaofei Tian1 and Xiumei Zhang1,2*

1Fishery College, Zhejiang Ocean University, Zhoushan, China, 2Laboratory for Marine Fisheries
Science and Food Production Processes, Qingdao National Laboratory for Marine Science and
Technology, Qingdao, China
Hypoxia and sulfide are inducing potential damage to aquatic organisms.

However, the effects of hypoxia and sulfide on their immune systems and

molecular mechanisms are not fully understood. In the present study, the clam

Tegillarca granosa was exposed to hypoxia alone or in combination with sulfide

(0.1, 0.5 mM) to investigate the physiological and transcriptomic responses in

haemolymph. The IBR analysis revealed that moderate sulfide stimulated

immune responses via increasing the total hemocyte counts, phagocytic

activity, antibacterial activity, and antioxidant activity. The transcriptomic

analysis revealed many critical signaling pathways (Toll and Imd, FoxO, NLR)

and biological processes (antimicrobial/antibacterial peptide, interferon,

inter leukin , leukocyte, lymphocyte, mitophagy) involved in the

immunostimulation. Our results would offer insights into the sulfide-tolerant

molecular mechanisms in this species and provide a useful tool for assessing the

integrated biological impacts of hypoxia and sulfide on shellfish.
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1 Introduction

Since the mid to 20 th century, aquatic hypoxia caused by water eutrophication has

expanded more and more quickly in worldwide ocean, especially in gulfs, lakes, estuaries,

and aquaculture farming zones (Diaz, 2001; Bocaniov and Scavia, 2016; Saleh et al., 2021;

Whitney and Vlahos, 2021). Recently, aquatic hypoxia has become a worldwide concern for

environmental issues as it can reduce biodiversity and change community structures in

aquatic ecosystem (Gobler and Baumann, 2016; Zhai et al., 2019). It also has direct impacts

on the behavior, physiology, and immunity of aquatic animals (Kvamme et al., 2013;
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Abdel-Tawwab et al., 2019; Zheng et al., 2022). Sulfide, which is

produced under anaerobic conditions through decomposition of

organic matter and reduction of sulfate, is commonly found in the

bottom layer and sediment of aquatic environments (Cutter and

Krahforst, 1988; Asaoka et al., 2018). According to previous studies,

the content of sulfide could reach to high levels and retained for a

long time under hypoxic condition, which means benthic fauna is

easily co-exposed to both hypoxia and sulfide conditions

(Jørgensen, 1990; Wang and Zhang, 2021). Most commercial

marine bivalves are bred in the coastal areas where sulfide and

hypoxia frequently happen (Bagarinao and Lantin-Olaguer, 1998;

Chang et al., 2013; Kodama et al., 2018; Wang et al., 2021). For

instance, the content of sulfide in the sediment of Gamo Lagoon

could stay at 6.6 mmol/L during warmer months (Kanaya et al.,

2016; Asaoka et al., 2018). Evidences have indicated that high

content of sulfide (1 mmol/L) was likely to become lethal level to

most aquatic fauna including benthic bivalves, nematodes and

polychaete species (Affonso and Rantin, 2005; Hargrave et al.,

2008). Due to limited mobility to escape, these species easily

suffer from the stressors (Aelion and Warttinger, 2009; Asaoka

et al., 2018; Losyuk et al., 2021). Hence, prolonged exposure of

hypoxia and sulfide has become a great threat for coastal farming

organisms (Christensen et al., 2003; Srithongouthai and Tada, 2017;

Meng et al., 2019).

Many studies on marine invertebrates suggested that sulfide

exposure could be related to immunosuppression. For instance,

48 h exposure to 0.4-4 mg/L sulfide decreased the total haemocyte

count (THC) and phagocytic activity of the haemocytes in the

shrimpMacrobrachium nipponense, and higher level of sulfide (1.2-

4.4 mg/L) remarkably restrained the total antioxidant capacity

(Guan et al., 2011). Concentrations of sulfide higher than 528 mg/
L increased the susceptibility of kuruma shrimp Marsupenaeus

japonicus against Vibrio alginolyticus infection by a depression in

immune responses including THC, phenoloxidase activity,

phagocytic activity and bacterial clearance efficiency (Cheng et al.,

2007; Xu et al., 2014; Duan et al., 2018; Jiang et al., 2019; Hu et al.,

2021). Similar effects were also detected in the shrimp Litopenaeus

vannamei and crab Charybdis japonica (Cheng et al., 2007; Xu et al.,

2014; Duan et al., 2018; Jiang et al., 2019; Hu et al., 2021). Although

many researchers have treated sulfide as an adverse factor for

aquatic animals, others found some macrobenthos make use of

sulfide. Recently, increasing evidences confirm the essential roles of

mitochondrial alternative respiration and sulfide oxidation chains

in adaption to sulfide exposure in benthic invertebrates, including

polychaetes, crustaceans and bivalves (Grieshaber and V¨olkel,

1998; Hildebrandt and Grieshaber, 2008a; Hildebrandt and

Grieshaber, 2008b; Huang et al., 2013; Ren et al., 2015). Studies in

the clam Anadara broughtonii revealed that the toxicity of sulfide

could be mitigated by its own physiologic functions including

energy-balancing in the mitochondrial alternative chains, ROS

cleansing, and apoptosis regulating (Wang and Zhang, 2021).

Even though it is still not certain how sulfide mediate the

oxidative or immune stress in many of these sulfide-tolerant

invertebrates, sulfide is widely accepted to be a signaling molecule

that exhibits some potentially beneficial therapeutic effects at

physiological concentrations, including attenuating oxidative
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stresses (Kimura and Kimura, 2004; Kimura et al., 2010; Lan

et al., 2011; Yang et al., 2011; Sun et al., 2012; Hu et al., 2018;

Kimura et al., 2019). Most recently, the important roles of sulfide in

inflammation and immunity-related processes have also been

noticed. Researchers put forward new therapeutic approaches

using H2S donors in inflammation and immune response,

regarding H2S as not only a gasotransmitter, but also a key

immunomodulatory factor (Yuan et al., 2017; Li et al., 2021). The

effects of sulfide on marine invertebrate species have not been

adequately investigated, and its impacts on the immunotoxicity of

invertebrates are still unknown and need further investigation.

The blood clam Tegillarca granosa, a typical marine bivalve that

is of commercial importance and widely distributed in the West

Pacific coasts, inhabits flow-retarding mudflat or enclosing mud

ponds (Shi et al., 2017; Zha et al., 2019; Zhai et al., 2019; Bao et al.,

2021). The muddy feature of the habitat makes this species easy to

suffer from hypoxia and sulfide exposure. According to the latest

study, the sulfide concentration of the sediment porewater was

normally 100-200 mmol/L in Chinese typical habitat of blood clams

(Liu et al., 2022). While the concentration could be higher in hot

weather. In other words, this species must find ways to live with

hypoxia and sulfide. In bivalves, the non-specific immune system

plays vital roles in resisting disease and keeping healthy. However,

the immune responses can be greatly affected by the environmental

factors through either ameliorating or exacerbating the disease

(Mishra et al., 2015; Sui et al., 2016; Zanuzzo et al., 2020; Pozzi

et al., 2022). Hence, it is meaningful to uncover how the immune

responses to hypoxia and sulfide happen in this species. Like the

other invertebrates that are lack of specific immune system, T.

granosa depends on the haemocyte phagocytosis and various active

factors released from haemolymph to mediate non-specific immune

responses to virus, bacteria, and pollutants (Su et al., 2018). The

latest study on the clams showed that high sulfide concentration (1

mM, 7 days) induced hemocyte toxicity and microbiota dysbiosis,

as indicated by THC, cell viability, ROS levels, phagocytic activities,

and microbial community structure (Liu et al., 2022). In the studies

on other aquatic invertebrates, the humoral factors including

lysozyme (LZM), peroxidase (POD), acid phosphatase (ACP),

alkaline phosphatase (AKP), superoxide dismutase (SOD),

catalase (CAT) are commonly used indicators of the

immunocompetence (Li et al., 2009; Xia and Wu, 2018; Bao et al.,

2020). These antioxidant, phagocytosis and antibacterial defense

systems coordinate the immune responses to biotic and abiotic

factors (Jiang et al., 2017; Han et al., 2021b; Zhang et al., 2021).

Evidences in some aquatic invertebrates also indicated that immune

responses including phagocytosis of haemocytes could be regulated

by several crosslinked molecular pathways (Huang et al., 2019; Nie

et al., 2020). For instances, activation of mammalian NFkB
signaling pathway not only enhance immune responses, but also

counteract with haemocytes apoptosis signaling in haemocytes by

activating B-cell lymphoma-2 (Bcl-2), which inhibits the activation

of apoptosis executor, the caspases (Vallabhapurapu and Karin,

2009). The study on the clam A. broughtonii found that exposure to

sulfide significantly enriched genes related to apoptosis, TNF and

NFkB signaling pathways which could mediate the inflammation

and immune defense, and two-sided effects of sulfide on
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mitochondrial apoptotic cascade were also detected (Wang et al.,

2019; Wang et al., 2021). These cases provide references for the

studies of immune responses to hypoxia and sulfide in the clam

T. granosa.

Therefore, to better understand the immunotoxic effects of

sulfide and hypoxia on T. granosa, we evaluated the haemocyte

immune function using the cellular and humoral indicators. We

also investigated the underlying molecular mechanisms using

transcriptomic analysis.
2 Materials and methods

2.1 Animal collection and
acclimation conditions

Adult 2-year old clams (shell length of 31.13 ± 0.37 mm, mean ±

SE) were obtained from Xiangshan, China (29°24’ N and 121°25’ E)

in April 2021. The individuals were acclimated in circulating

seawater systems, which were filled with filtered natural seawater

(temperature 19.93 ± 0.22 °C, salinity 25 ± 0.1‰, dissolved oxygen

9.05 ± 0.07 mg/L, PH = 8.1). During the acclimation period, the

clams were fed twice a day with diatom Cylindrotheca fusiformis at a

rate of 5% of the tissue dry weight until one day before the

experiment. The clams were not fed during the experiment, and

three hundred individuals were randomly and evenly assigned to

twelve experimental buckets (25 individuals in each experimental

bucket). Each bucket was sealable and filled with five liters seawater

that has been disinfected and filtered through 0.45 mm
filter membrane.
2.2 Experimental design

The clams were exposed to hypoxia alone or sulfide in

combination for 96 h. According to the results of pre-experiment

and studies on the clams, 0.1mM and 0.5mM was defined as the

mild and moderate level of sulfide, respectively (Liu et al., 2022).

Four experimental groups were designed in triplicate, including (1)

control group (DO = 9 mg/L, C); (2) hypoxia group (DO ≤ 0.5 mg/

L, Q); (3) hypoxia and mild-sulfide group (DO ≤ 0.5 mg/L, 0.1 mM

sulfide, QD); (4) hypoxia and moderate-sulfide group (DO ≤ 0.5

mg/L, 0.5 mM sulfide, QG). The hypoxic seawater was prepared by

bubbling with pure nitrogen until DO ≤ 0.5 mg/L in a storage tank

which was connected to the experimental buckets. The

concentration of sulfide was acquired by adding the sulfide stock

solution (0.1 M, pH = 8.0 ± 0.1), which was prepared with

Na2S·9H2O in oxygen-free water and were determined by the

methylene blue method (Reese et al., 2011). Based on our

preliminary experiment on the clam, to maintain target DO and

sulfide levels (100% ± 10% of target concentration), and water

quality (nitrite< 0.01 mg/L, ammonia nitrogen< 0.2 mg/L) at the

given loading density with clams, the experimental water was

completely renewed every 4–6 h.
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2.3 Analyses of THC and
phagocytic activity

After 96 h of exposure, three individual clams from each

replicate bucket were randomly selected to collect the

haemolymph. The samples were immediately used for

measurements of THC and phagocytic activity by using the

method described by Tang et al. (Tang et al., 2020). Briefly, a

volume of 100 μL haemolymph extracted individually from the

cavity using a 1 milliliter syringe. The extract that was used for the

THC was diluted with 100 μL 2.5% glutaraldehyde and 800 μL of

phosphate buffered saline (PBS, pH at 7.4) in a 1.5 mL centrifuge

tube. The THC was estimated with a hemocytometer under an

microscope at magnification of 400 ×. The extract that was used for

phagocytic analysis was mixed with 100 μL Alsever’s solution. The

mixtures was added yeast suspensions (5.80 ± 0.03 × 107/mL) at a

haemocyte: yeast ratio of 10: 1 and followed by an incubation at 25°

C for 30 min. After fixation with 100 μL 2.5% glutaraldehyde, blood

smears were made and stained with Wright’s Gimesa stain, and the

phagocytic rate and phagocytic index of haemocytes were

determined at magnification of 400 × under a microscope. To

ensure data accuracy of experiments, more than 200 haemocytes

were calculated for each sample. The phagocytic rate refers to the

number of 200 haemocytes participating in phagocytosis divided by

the total number of haemocytes in the visual field. The phagocytic

index refers to the total number of phagocytosed yeast divided by

the total number of haemocytes participating in phagocytosis in the

visual field.
2.4 Measurement of immune-related
enzyme activities

The haemolymph samples that were extracted from nine

individuals in each group were centrifuged at 800 g for 10 min.

The supernatant was collected to determine the activities of immune-

related enzymes including SOD, CAT, ACP, AKP, POD, LZM. The

supernatant was either immediately used for measurements or snap-

frozen in liquid nitrogen and stored at -80 °C for later usage.

According to the methods described and tested by Bao et al. (Bao

et al., 2020), Nan Xiang et al. (Xiang et al., 2017) and Cui et al. (Cui

et al., 2020), we use spectrophotometric assays (Jiancheng

Bioengineering Institute, Nanjing, China) with a microplate reader

(SPARK, Groding, Austria) to determine the activities or contents.

SOD, CAT and POD were expressed as U/mL, ACP and AKP

activities were expressed as U/L, LZM contents were expressed as

mg/mL, respectively.
2.5 Integrated biological response index
analysis on the biomarkers

The integrated biomarker response (IBR) index analysis was

performed for all immune-related biomarkers measured, and the

IBR was calculated according to the method described by Beliaeff and
frontiersin.org
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Burgeot (Beliaeff and Burgeot, 2002). The IBR index was computed as

follows: (1) Calculation of the mean value (X) for per biomarker at

each treatment and sampling time, as well as the total mean value (m)

and standard deviation (s) for each biomarker. (2) Standardization of

the response data for per biomarker: Y = (X - m)/s, where Y is the

standardized value of the biomarker. (3) Use standardized value, the

Zi was defined as +Yi or -Yi if a biomarker in the case of activation or

inhibition, and the absolute minimum value (|Z min|) of per

biomarker at all sampling times was obtained. (4) The score Si for

per biomarker was calculated as Si = Y + |Z min|, where Si can be

shown by the length of the radiation line in the star plots. (5) The

corresponding IBR value was calculated according to the following

formula:

Ai =
Si
2
sinb(Si​   cos b + Si + 1   sin b),  b

= arctan
Si + 1  sina

Si-Si + 1   cosa

� �
 and a =

2p
n

, IBR =oAi,

where n represented the number of biomarkers.
2.6 RNA extraction and
samples preparation

The haemolymph from three individuals of C (here in after

referred to as N), Q, QG groups were sampled after 24 h challenge,

respectively. The total RNA was extracted following the

manufacturer’s instructions (Invitrogen) and treated with DNase

(Promega RQ1 DNase I, Madison, WI, USA) to remove genomic

DNA contamination. RNA degradation and contamination were

monitored on 1% agarose gels. RNA concentration and quality were

determined using the Agilent Bioanalyzer 2100 system (Agilent

Technologies, Palo Alto, CA, USA).
2.7 Library construction and
Illumina sequencing

Nine cDNA libraries were constructed from T. granosa in the

sulfide challenged group QG (QG1, QG2 and QG3), hypoxia

challenged group Q (Q1, Q2 and Q3), and normoxia control

group N (N1, N2 and N3) for RNA-seq analysis. The RNA-seq

libraries were performed at Biomarker Technologies Co., Ltd.

(Beijing, China) following the manufacturer’s recommendations.

The mRNAwas isolated by Oligo (dT) and fragmented by NEBNext

First Strand Synthesis Reaction Buffer. The fragments were

amplified for the synthesis of first- and second-strand cDNA

using random hexamers. The cDNA libraries were built after the

PCR products being purified using the AMPure XP system and

were then assessed on the Agilent Bioanalyzer 2100 system. At last,

the libraries were sequenced on an Illumina Hiseq 2500 platform.
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2.8 Assembling and functional annotation

Clean reads were obtained by removing reads containing

adapters, ploy-N and low-quality reads from raw data. The

remaining high quality clean reads were assembled using Trinity

for transcriptome assembly without reference genome (Grabherr

et al., 2011). The longest transcript of each single gene was selected

as a unigene. For annotation analysis, unigenes were BLASTX-

searched against eight databases, including the NCBI non-

redundant protein sequence (Nr), Protein family (Pfam), Clusters

of Orthologous Groups (KOG/COG), Gene Ontology (GO), Kyoto

Encyclopedia of Genes and Genomes (KEGG) Orthology (KO),

Evolutionary Genealogy of Genes: Non-supervised Orthologous

Groups (eggNOG), TrEMBL, and the Swiss-prot database, using a

cut-off E-value of 10−5.
2.9 Differential expression and
enrichment analyses

Differentially expressed genes (DEGs) were measured by

counting tags from hypoxia/sulfide treated samples against the

control, which were normalized using the RNA Sequence

Expected Maximization (RSEM) method (Li and Dewey, 2011).

Unigenes with adjusted P-value (Padj)< 0.05 and |log2 (fold

change)| > 0 were set as the DEGs. The annotated DEGs were

further assigned to GO, KEGG enrichment analysis, and the

annotated unigenes were performed gene set enrichment analysis

(GSEA) based on the GO and KEGG database. GSEA ranks genes

based on the degree of differential expression between two groups,

followed by testing whether the gene set is significantly enriched at

the top or bottom of the ranking list. Rather than focusing on

individual genes, this analysis evaluates the expression of the whole

transcriptome, which enables the inclusion and analysis of genes

with more subtle changes (Aravind Subramanian et al., 2005).
2.10 Validation of DEGs by quantitative
real-time PCR

Six DEGs were randomly selected for the validation of DGE

data by quantitative real-time PCR (qRT-PCR) in the QG vs. C

groups. The 18s rRNA of T. granosa (GenBank accession no.

JN974506.1) was used as the internal control (Han et al., 2021a).

Each sample with a total mixture of 20 ml was reacted by the

following program: denaturation at 95°C for 5 min, followed by 40

cycles of amplification (95°C for 10 s, 60°C for 20 s for annealing,

and 72°C for 30 s for extension). The primer sequences of the tested

genes used in the qRT-PCR study were designed by Primer Premier

5 software (Table 1). The expression level of different genes was

analyzed using the 2−DDCT method (Pfaffl, 2001).
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2.11 Statistical analysis

Indicators of the humoral factors were analysed using one-way

ANOVA followed by Tukey’s post-hoc tests. For all analyses,

Levene’s tests and Shapiro-Wilk’s tests were used to verify the

homogeneity of variances and normality, respectively. The

statistical analyses were carried out using Origin-Pro 8.0 software

package, and P value< 0.05 was described as significant difference.
3 Results

3.1 Effects of hypoxia and sulfide
on the THC and phagocytic
activity of haemocytes

THC levels in all treatment groups showed similar temporal

trends. In Q, QD, and QG group, THC reached to the maximum

level during 12 h - 24 h and was significantly higher than initial level

(P< 0.05). Since then, THC gradually dropped to the minimum level

at 96 h and was significantly lower than the control level (P<

0.05) (Figure 1A).

In the C and Q groups, the phagocytic rate and phagocytic

index showed no significant difference. However, the phagocytic

rate and phagocytic index in the QD group significantly increased

during 12 h - 24 h. The phagocytic rate and phagocytic index in the

QG group significantly increased during 24 h - 48 h (P< 0.05)

(Figures 1B, C).
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3.2 Effects of hypoxia and sulfide on the
activities of immune-related enzymes

SOD activities in the C and Q groups remained stable in 96 h

(28.66 ± 0.31). SOD in the QD group gradually increased since 24 h

and was significantly higher than the Q and QG levels at 96 h (P<

0.05). SOD in the QG group only increased at 24 h and was

significantly higher than that in Q group (P< 0.05) (Figure 2A).

CAT activities in all treatment groups reached to their maximum

levels at 24 h and have significant differences with the initial levels (P<

0.05). Besides, CAT in the QD group also significantly increased at

96 h (P< 0.05). At 48 h, CAT in the QG group was significantly lower

than that in the other groups (Figure 2B).

POD activities were significantly inhibited in all treatment

groups at 12 h (P< 0.05). Since then, POD in the Q group was

stable at 7.19 ± 0.11, and that in the QD and QG groups gradually

increased to initial levels. At 96 h, POD in the QD group was

significantly higher than that in the Q group (P< 0.05) (Figure 2C).

ACP activity in the Q group was significantly inhibited at 12 h,

24 h, 48 h (P< 0.05), while was recovered at 96 h. ACP in the QD

group gradually decreased to the minimum level (0.45 folds, P<

0.05) at 24 h and was recovered to initial level since then. ACP in the

QG group was significantly inhibited since 12 h (P< 0.05) and

remained at relatively low level (0.37 folds - 0.48 folds) (Figure 2D).

AKP activity in the Q group was relatively stable in 48 h (5.42 - 7.66

U/L), but significantly dropped to 0.55 folds lower than the initial level

at 96 h (P< 0.05). AKP in the QD group was relatively stable (5.74 -

8.02 U/L) while that in the QG group significantly dropped at 12 h

(0.42 folds) and 48 h (0.45 folds) (P< 0.05) (Figure 2E).
TABLE 1 Primer sequences and internal reference used for qRT-PCR validation.

Genes Forward/Reverse Sequences (5’ to 3’) Log2(fold change)
of qRT-PCR Log2(fold change) of RNA-seq

18S
CTTTCAAATGTCTGCCCTATCAACT

None None
TCCCGTATTGTTATTTTTCGTCACT

Sequestosome-1-like
CAGTGGATGTAGGTGGGG

1.48 1.59
GCTGTGTGCCTTGGGTCT

homocysteine S-methyltransferase
CACCAAGACATCCTACAGGC

2.25 2.05
AAAGAAACGATTCATCAACA

Protein toll
GGAGAGAAAACGCCGAAC

3.61 3.42
GCAGAGAAACACGAAACC

Thioredoxin reductase (NADPH)
ATCATACCAACTTTCAACC

1.63 1.49
CTATCACTTTTTCCTTTTC

Baculoviral IAP repeat-containing protein 2/3
GGGACGAGGTTGTCTGTT

2.53 1.73
ACTTTCTGCTTCGGTTAG

Apoptosis-inducing factor 3
TGCTGCTGGTGATGTTGT

2.18 1.29
TGCTGTAGGCTGCTGTTC
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LZM activity in the Q group had a significant decrease at 12 h

(0.67 folds, P< 0.05). In the QD group, LZM significantly increased

since 48 h (1.25 - 1.76 folds, P< 0.05). In the QG group, LZM

increased significantly at 12 h (1.86 folds) and 48 h - 96 h (1.42 -

1.56 folds) (P< 0.05) (Figure 2F). At 24 h, LZM in the QD and QG

groups were significantly higher than that in the Q group (P< 0.05).
3.3 Integration of biomarker responses in
immune-related biomarkers

By comparing the coverage areas of the star plots, the IBR indexes

of Q and QG groups (the control value was standardized to 0)

fluctuated with increasing time (Figure 3). To further investigate the

integrated responses, the biomarkers were assembled into 3

categories, including cellular immune indexes (THC, PR, PI),

antioxidant indexes (SOD, CAT, POD), and antibacterial indexes

(ACP, AKP, LZM). The IBR values for cellular immune, antioxidant,

and antibacterial responses in the Q group stay low for 96 h. While in

the QD and QG groups, the IBR values for the cellular immune

indexes were remarkably high at 24 h (QD=2.13, QG=2.45). In the

QG group, antibacterial response was inhibited at 12 h and the
Frontiers in Marine Science 06
antioxidant response was also decreased at 48 - 96 h. At 96 h, the

cellular immune responses, antibacterial responses, and antioxidant

responses in the QD group were much higher than those in

other groups.
3.4 Sequencing assessment, gene
identification, and annotation of DEGs

To better understand the underlying molecular mechanism of

the immunostimulation that was induced by moderate sulfide (0.5

mM, 24 h), a transcriptomic analysis was carried out. The Illumina

sequencing yielded more than 60 million reads from the control,

hypoxia and moderate-sulfide groups (Table S1). A total of 57,583

unigenes were obtained with an average length of 1417 bp (N50

length: 2351 bp). The statistics of the unigenes annotated in public

databases were shown in Table 2. In the distribution of annotated

unigenes in Nr, 22.60% unigenes have similarities with Pecten

maximus, followed by Mizuhopecten yessoensis (21.04%), Mytilus

coruscus (14.92%), Crassostrea gigas (14.66%) (Figure 4A). A total

of 536 DEGs were detected from all the stressed groups. Among

them, 102 DEGs were detected between N vs. Q groups, 423 DEGs
B C

A

FIGURE 1

Total count of haemocytes (A), phagocytic rate of haemocytes (B), and phagocytic index of haemocytes (C). C, Q, QD, and QG stand for the control
group, hypoxia group, hypoxia and mild-sulfide group, hypoxia and high-sulfide group, respectively. The asterisk * and ** indicate significant
difference (P< 0.05) and highly significant difference (P< 0.01) compare to the control.
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were detected between N vs. QG groups, 123 DEGs were detected

between Q vs. QG groups, and only 7 DEGs were commonly

annotated in the stressed groups (Figure 4B). The heatmap and

hierarchical clustering of the DEGs revealed differences between the

control, hypoxia, and sulfide groups (Figure 4C).
3.5 Enrichment analysis of DEGs

Many genes related to immuno-regulation and apoptotic process

were detected in the DEGs (Additional file 1). In N vs. Q groups, we

found immuno-related gene tollo, which plays key role in Toll and

Imd signaling pathway, was significantly up-regulated. While the

immuno-related genes nlrp3, hmcn1 were significantly down-

regulated. We also noticed that calcium-binding related gene

eip63F-1 was significantly inhibited. In N vs. QG groups, many

immuno-related genes, including cd22, tollo, foxo, gimap4, sting,
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ileu, birc2/3, gadd45a, src, sqstml, trim56, dhx15, lbp, irf2, and

klhl20, were significantly up-regulated. Besides, genes involved in

MAPK signaling pathway (dusp1/10, gadd45a, jun, aifm3) and

calcium signaling pathway (cckar, octb2) were significantly up-

regulated. In Q vs. QG groups, genes involved in immunity (cd22,

tlr13, irf1/2, birc2/3, sqstml), MAPK signaling pathway (dusp1,

gadd45a, aifm3) and calcium signaling pathway (cckar) were

significantly up-regulated.

GO classification was performed to identify the cellular,

biological and molecular processes associated with hypoxia and

sulfide exposure in T. granosa. DEGs of three comparisons (N vs. Q;

N vs. QG; and Q vs. QG) were assigned to three GO categories

(biological process, BP; cellular components, CC; molecular

functions, MF) and 60 GO terms (Figure S1). In N vs. QG and Q

vs. QG groups, cellular process, integral component of membrane

and protein binding significantly enriched in the biological process,

cellular components, molecular functions, respectively.
B

C D

E F

A

FIGURE 2

The activities of immune-related enzymes after 96 h of exposure to hypoxia alone or sulfide in combination (C, Q, QD, and QG stand for the control
group, hypoxia group, hypoxia and mild-sulfide group, hypoxia and high-sulfide group, respectively). Different letters indicate values that are
significantly different among the treatments within each time point, and the asterisk *, ** and *** indicate significant difference (P< 0.05) and highly
significant difference (P< 0.01, P< 0.001) under the same treatment conditions. (A): SOD activity; (B): CAT activity; (C): POD activity; (D): ACP activity;
(E): AKP activity; (F): LZM content.
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KEGG pathway analysis was performed to identify the broad

functional categories of DEGs. Several signaling pathways were

enriched in glutathione metabolism, arachidonic acid metabolism,

FoxO, MAPK, NOD-like receptor (NLR), and Toll and Imd (Figure

S2). These pathways were related to processes of metabolism,

apoptosis, and immunity.

We used GSEA analysis to dig the responsive immuno-related

pathways based on the KEGG and GO annotation on the gene set of

unigenes. In the GO database, the gene set was significantly
Frontiers in Marine Science 08
enriched (|NES| > 1, Pvalue< 0.05, qvalue< 0.25) in many

immuno-related “biological process” (Additional file 2). In N vs.

Q group, a total of 10 immuno-related terms, involving in

autophagy, macrophage activation, and toll-like receptor signaling

pathway (Toll), were identified in 78 positively and significantly

enriched terms (NES > 1, Pvalue< 0.05, qvalue< 0.25). Moreover,

the cellular response to virus (GO:0098586) was identified as

negatively and significantly enriched terms (NES< -1, Pvalue<

0.05, qvalue< 0.25). In N vs. QG group, over a third (125/353) of

positively and significantly enriched terms had clear connection

with immune responses, involving the responses of antimicrobial/

antibacterial peptide, interferon, interleukin, leukocyte, lymphocyte,

and Toll. Moreover, only two immuno-related terms were identified

in the negatively and significantly enriched terms. In Q vs. QG

group, over a forth (119/440) of positively and significantly

enriched terms involved in the similar immune responses to those

in N vs. QG group, and only six immuno-related terms were

identified in the negatively and significantly enriched terms. In

the N vs. QG and Q vs. QG groups, many terms related to MAPK,

TNF, and Apoptotic signaling pathways were also positively and

significantly enriched. The top 10 most enriched immuno-related

“biological process” were shown in the Figure 5.

In the KEGG database, the gene set was significantly enriched in

FoxO signaling pathway (FoxO, ko04068) in all compared groups

(Figure 6). In Q vs. QG groups, the gene set was also enriched in

NOD-like receptor signaling pathway (NOD, ko04621) and

Apoptosis (ko04210). The FoxO signaling pathway was predicted

to be the main immuno-related pathway in the clam in response to

hypoxia and sulfide.
TABLE 2 Summary statistics of functional annotation of Tegillarca
granosa unigenes in public databases.

Public
database

Annotated
Number 300≤length Length≥1000

COG 5,204 876 4,328

GO 17,937 3,746 14,180

KEGG 15,443 2,854 12,589

KOG 11,951 2,004 9,947

Pfam 17,155 3,118 14,037

Swissprot 8,999 1,474 7,525

TrEMBL 21,034 4,651 16,383

eggNOG 16,301 2,978 13,323

Nr 21,650 4,920 16,730

All
Annotated

22,515 5,463 17,041
FIGURE 3

Star plots and the integrated biomarker response (IBR) of immune-related biomarkers in the adult Tegillarca granosa exposed to hypoxia and sulfide.
Zero, Q, QD, QG, stand for the control level, hypoxia group, hypoxia and mild-sulfide group, hypoxia and high-sulfide group; THC, Total count of
haemocytes; PR, phagocytic rate; PI, phagocytic index; SOD, superoxide dismutases; CAT, catalase; POD, peroxidase; ACP, acid phosphatase; AKP,
alkaline phosphatase; LZM, lysozyme.
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4 Discussion

4.1 Cellular and humoral immune
responses to hypoxia and sulfide

In marine invertebrates, cellular and humoral immune systems

play crucial roles in antimicrobial defense and immuno-regulation.

The THC and phagocytosis of haemocytes are the commonly used

indicators of cellular immune responses in invertebrates (Loker

et al., 2004; Allam and Raftos, 2015). Previous studies on many

marine invertebrates, including the bivalves Perna perna, M.

coruscus, Perna viridis (Wang et al., 2014; Sui et al., 2016;
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Nogueira et al., 2017; Shen et al., 2019) and the crustaceans

Eriocheir sinensis, Carcinus aestuarii, Nephrops norvegicus,

Macrobrachium rosenbergii (Cheng et al., 2002; Hernroth et al.,

2015; Qin et al., 2016; Qyli et al., 2020), showed that exposure to

prolonged hypoxia could decrease THC and phagocytic activities.

The results indicated that the cellular immune responses were

intervened by hypoxia exposure. In the present study on T.

granosa, THC might be rapidly stimulated by hypoxia but the

stimulation did not last more than 24 h. Interestingly, hypoxia with

additional sulfide significantly induced both the THC and

phagocytic levels around 24 h, which indicated that the cellular

immune response of T. granosa was stimulated by certain
FIGURE 5

The critical GO pathways associated with immune response to hypoxia and sulfide in haemolymph of Tegillarca granosa were explored by gene set
enrichment analysis.
B

C

A

FIGURE 4

Nr homologous species distribution of the annotated unigenes (A); Venn diagram of the differentially expressed unigenes (DEGs) (B); Hierarchical
cluster of the DEGs (C).
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concentration of sulfide. This finding was different from previous

reports in various marine species (Cheng et al., 2007; Sun et al.,

2014; Xu et al., 2014).

Humoral factors such as agglutinins (e.g., lectins), lysosomal

enzymes (e.g., acid phosphatase, lysozyme), and various

antimicrobial peptides (Canesi et al., 2002) are considered as

important indicators to investigate the humoral immunity of

invertebrates. Prolonged hypoxia causes significant decrease of

antioxidant and other humoral immune responses has been

demonstrated in many invertebrates including the bivalves

Arctica islandica, P. perna, M. coruscus and Hyriopsis cumingii

(Philipp et al., 2012; Hu et al., 2015; Sui et al., 2016; Nogueira et al.,

2017; Li et al., 2022b), as well as the crabs M. japonicus, Callinectes

sapidus, and Scylla paramamosain (Tanner et al., 2006; Cheng et al.,

2020; Wang et al., 2022). In this study, hypoxia significantly

increased CAT at 24 h. However, POD and ACP in hypoxia

group significantly decreased in 12-96 h. Besides, AKP and LZM

in hypoxia group also decreased to a certain extent. The results

indicated that hypoxia significantly enhanced the CAT activity at

24 h, but the overall humoral immunity might be suppressed within

96 h. After adding sulfide, SOD (24-96 h), CAT (24 h, 96 h), POD

(48 h, 96 h), ACP (96 h), AKP (96 h), and LZM (12-96 h)

significantly increased compared to the hypoxia group. The

results indicated that sulfide could stimulate the humoral

immunity to some extent under hypoxic conditions. However,

after adding sulfide, only SOD (24-96 h), CAT (24 h, 96 h), and

LZM (12 h, 48 h, 96 h) significantly increased compared to the

normoxia control group, CAT (48 h), POD (12 h), ACP (12-96 h),

and AKP (48 h) were still significantly lower than the normoxia

control group. This indicated that sulfide have certain limitations

and specificity in stimulating the humoral immunity under

hypoxic conditions.

We inferred that moderate exogenous sulfide attenuated the

immunosuppression caused by hypoxia through both cellular and

humoral immune responses. The attenuation through cellular way

happened around 24 h while the humoral way took effects mainly at

48 - 96 h.
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4.2 Integration of biomarkers using IBR

To support our infers, we induce IBR method. The IBR index

proposed by Beliaeff and Burgeot (2002) (Benoit Beliaeff and

Burgeot, 2002) novelly integrated biomarkers of CAT, GST and

AchE in Mytilus edulis and showed diverse stress levels along the

coasts of Baltic Sea. Recently, the IBR has been addressed as an

integrative method for the assessment of environmental stress, as

well as for the measurement of the sensitivity of organisms after

exposed to toxicants (Broeg and Lehtonen, 2006; Pytharopoulou

et al., 2008; Raftopoulou and Dimitriadis, 2010; Ji et al., 2018; Chang

et al., 2020). By using IBR method, we found that CAT and LZM

were the most sensitive antioxidant and antibacterial indexes in the

haemolymph of T. granosa in response to hypoxia and sulfide. The

IBR analysis also demonstrated that moderate sulfide had a

remarkable effect in attenuating the immunosuppression caused

by hypoxia exposure through multiple ways, including stimulating

the cellular immune response at around 24 h, and stimulating the

antibacterial and antioxidant responses by low level sulfide at

around 96 h. Although no similar studies of sulfide have been

reported in invertebrates, H2S has been regarded as not only a

gasotransmitter, but also a key factor in immunity-related processes

in clinical medicine (Yuan et al., 2017; Li et al., 2021).

Even though IBR discriminates the stress types or levels, it

provides a simple method for the quantitative evaluation of the

combination effects of hypoxia and sulfide in this study, and it can

be recommended for future quantified risk assessment of hypoxia

and sulfide on aquatic organisms.
4.3 Transcriptomic analysis revealed
immunomodulatory effects of sulfide

Studies had confirmed that the clams had extremely tolerance to

hypoxia and sulfide with different adaptive mechanisms (Joyner-

Matos et al., 2006; Kodama et al., 2018; Wang et al., 2019; Wang and

Zhang, 2021; Wang et al., 2021). In the present study, our findings
FIGURE 6

The critical KEGG pathways associated with immune response to hypoxia and sulfide in haemolymph of Tegillarca granosa were explored by gene
set enrichment analysis.
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supplemented the immune response mechanisms to hypoxia and

sulfide in the clam T. granosa. During the hypoxia, the clam

downregulated DEGs involved in NLR signaling pathway (nlrp3)

and activated autophagy (mTOR), which might alleviate cell

damages and inflammation (Cosin-Roger et al., 2017). Hypoxic

challenge also inhibited DEGs involved in calcium-binding

signaling pathways (eip63F-1), while hypoxic challenge with

additional sulfide significantly induced both NLR and calcium-

binding signaling pathways. The result suggested the potential

immunostimulation effects of sulfide, as it has been reported that

NLR and calcium-binding signaling pathway play important roles

in recognizing pathogen-associated molecular patterns (PAMPs)

and regulation immune responses (Wen et al., 2013; Horng, 2014;

Zhao and Zhao, 2020).

After treated with exogenous sulfide, the clam positively

enriched many biological processes that were involved in

antimicrobial/antibacterial peptide, interferon, interleukin,

leukocyte and lymphocyte, according to the GSEA analysis. Those

factors play significant roles in the defense against pathogens

infection and elimination of bacterial action. For instance,

antimicrobial peptides (AMPs) are important component of the

innate immune system and executive antibacterial activity in

mollusks. AMP that was isolated from M. coruscus displayed

strong antimicrobial activity against gram-positive bacteria (Liao

et al., 2013; Oh et al., 2020). Interferon is a cytokine mainly

produced by lymphocytes, involving the activation of

macrophages and control of cell proliferation and apoptosis

(Schoenbom and Wilson, 2007; Pereiro et al., 2019). The

activation of those biological processes explained the stimulation

of THC, phagocytic activity, and LZM after the 24 h exposure

to sulfide.

We also identified many other stimulated immuno-related

signaling pathways and genes such as Toll and Imd (tollo), FoxO

(foxo, gadd45a, klhl20, egfr), TLR (tlr13), NF-kB (vps9d1), TNF

(c1ql3), MAPK (dusp1/10, jun), apoptosis (aifm3, birc2/3). Toll and

Imd signaling pathway have been paid great attention in

immunomodulatory (Tanji and Ip, 2005; Rances et al., 2013).

These pathways are critical to the expression of antimicrobial

peptides, which fight against fungi, Gram-negative bacterial and

Gram-positive bacterial (Tanji and Ip, 2005; Tanji et al., 2007). In

the mud crab S. paramamosain and the Pacific white shrimp L.
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vannamei, Toll and Imd signaling pathways are activated in innate

immune responses to white spot syndrome virus (WSSV) and

sulfide exposure (Li and Xiang, 2013; Duan et al., 2017; Chen and

Wang, 2019; Li et al., 2022a). FoxO signaling pathway is involved in

mitochondria-dependent processes of apoptosis by triggering the

expression of TNF apoptosis ligand and Bcl-XL from Bcl-2 family

members (Farhan et al., 2017). In aquatic animals, such as grass

carp (Ctenopharyngodon idellus), Asian clam (Corbicula fluminea),

and sea cucumber (Apostichopus japonicus), genetic and

transcriptomic analysis revealed that activation of FoxO could

regulate antioxidant and apoptosis pathways (Wang et al., 2015;

Jin et al., 2017; Zhang et al., 2019). Toll-like receptors (TLRs)

signaling pathway also plays an important role in innate immunity

in invertebrates, and the activation of TLR can activate multiple

inflammatory pathways (Brown et al., 2011). In the present study, a

variety of genes related to TLRs and NF-kB, TNF and MAPK

signaling pathway was significantly upregulated by exposing to

sulfide, which indicated that TLRs signaling pathway activated the

downstream MAPK, NF-kB, TNF signaling pathways (Figure 7).

The present results were consistent with the transcriptomic profile

of the clam A. broughtonii that was exposed to hypoxia and sulfide

for 24 h (Wang et al., 2019), in which MAPK and TNF signaling

pathways were significantly enriched, and some genes related to

TLRs and NF-kB signaling pathways were also upregulated. In the

clam, the active apoptosis signaling pathway indicated that sulfide

might regulate cell apoptosis through TLR, MAPK, NF-kB, and
TNF, as the connection of apoptosis and TLR, MAPK, NF-kB, TNF
has been described in many invertebrates (Cao et al., 2018; Wang

et al., 2020). Wang et al. (2021) also suggested the possible ways of

MAPK that regulated sulfide-induced apoptosis in the clam

A. broughtonii.
5 Conclusion

In conclusion, our study found that hypoxia alone suppressed

the overall immune response, while additional sulfide attenuated

the immunosuppression through multiple cellular and humoral

ways. Besides, Toll, NOD, FoxO, MAPK, TNF, and Apoptosis

signaling pathways might play critical roles in the sulfide-

mediated immune responses. Our study would provide useful
FIGURE 7

The possible signal transduction of immunostimulation mediated by sulfide.
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tools for assessing the integrated biological and transcriptomic

impacts of hypoxia and sulfide on T. granosa and offer deep

insight into the sulfide-tolerant mechanisms in shellfish.
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