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Lyngby, Denmark
Introduction: Many hypotheses have been suggested to explain recruitment

variability in fish populations. These can generally be divided into three groups,

either related to: larval food limitation, predation, or transport. Transport

mechanisms are central for reproduction in pelagic species and three physical

processes, concentration, enrichment, and retention are commonly referred as

the fundamental “ocean triads” sustaining larval survival and thus success of

reproductive effort. The aim of this study is to investigate linkages between

primary production and transport processes of eggs and larvae for the most

important commercial fish species in the Atlantic Ocean.

Methods: We simulated eggs and larvae dispersion using an individualbased

model and integrating information on the fish ecology of the major fish stocks.

Our work included a review on spawning ground locations, spawning time, eggs

and larvae duration. Simulations were performed over a 10-year time period for

113 stocks (17 species) in order to assess variability in dispersion and common

trends and factors affecting transport.

Results: The level of primary production from initial to final position, i.e. from

spawning to larval settlement, increased for some stocks (n=31), for others it

declined (n=64), and for a smaller group (n=18) there was no substantial changes

in level of primary production.

Discussion: This result implies that larval transport will not necessarily introduce

larvae into areas of enhanced food availability expressed by the primary

production at the site. These findings thus suggest marked differences in how

physical and biological processes interact in the early life of major fish groups in

the Atlantic Ocean. The results provide a further insight into fish larval drift and

the potential role of primary production in emergence of spawning strategies.

KEYWORDS

particle tracking, individual-based model, recruitment, fish ecology, ocean
transport, retention
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1 Introduction

The dynamics of fish populations are regulated by the survival

of early life stages, which mainly depends on interactions between

individuals and their environment. The transition from an early life

stage into a juvenile stage is typically considered an important phase

in fish recruitment as it reflects the number of surviving adults

within each stock. Recruitment is considered to vary widely among

fish groups and across years and regions, with food availability,

growth, predation, and transport being considered as the most

crucial factors regulating those dynamics (Miller, 2007). After

spawning, the first feeding larval period is considered a critical

phase where larvae are strongly dependent on food conditions, and

where limited feeding success could lead to high mortality and

subsequent low recruitment success (Hjort, 1914). The link between

fish mortality and food availability has further lead to proposal of

the match-mismatch hypothesis, according to which the seasonal

increase in prey concentration should be synchronized to the period

of presence of larvae in the given area to promote their survival

(Cushing, 1974; Cushing, 1975; Cushing, 1990). Several studies have

investigated the existence of this match-mismatch hypothesis and

linkages between recruitment and the synchronized life history

between larvae and their major prey (Kristiansen et al., 2011; Sigler

et al., 2016; Murphy et al., 2018; Ferreira et al., 2023). Predation has

also been considered very important factor in the regulation of

recruitment (Leggett and Deblois, 1994; Cushing, 1996). Despite its

importance, predation is a difficult process to study (Akimova et al.,

2019) due to the challenges related to experimental investigation of

interactions between early life stages and their predators at suitable

spatial and time scales (Smith and Moser, 2003; Hallfredsson and

Pedersen, 2009) and the possible misleading conclusions when

using visual examination of stomach contents instead of

quantitative molecular genetic detection (Allan et al., 2021).

Further, oceanic transport is of significant importance to fish

recruitment, especially for species that have an extended pelagic

phase during the early life stages. After being released as eggs in the

spawning region, larvae are transported by ocean currents for a

wide range of distances, e.g., from less than 500 m as observed for

coral reef fishes (Jones et al., 1999; Almany et al., 2007), and up to

thousand kilometers, as for European eel (Anguilla anguilla)

leptocephalus larvae that drift over 5000 km to European coasts

from their spawning area in the Sargasso Sea (Cresci et al., 2019). To

maintain fish population size, the larval transport should allow

them to end up in areas suitable to their development into juvenile

and adult stages. Thus, final recruitment success depends on drift

and dispersion processes combined with food availability and

predation risks. Larval behavior, such as vertical movements, has

a fundamental role for the larval growth, survival and dispersion

(Fiksen et al., 2007). Additionally, for some species we do have

evidences of synchronizations of diel vertical migration (DVM)

with oceanographic characteristics, such as pycnocline (Sakuma

et al., 1999) and thermocline depths (Southward and Barret, 1983;

Smith and Suthers, 1999), and to biological processes, such as the

vertical distribution of their prey and/or predators (Munk et al.,

1989; Gray, 1996). Given the large variability of environmental

conditions in different ocean regions, the processes might pose
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strong selective pressures on individual reproductive strategies

including their spawning time, location, and length of the

dispersal phase.

The relationship between recruitment success, larval transport,

enrichment processes and food availability have been described as

the “ocean triad hypothesis” by Bakun (1996; 1998). In this

hypothesis, three processes: enrichment, concentration and

retention are recognized as the key physical processes.

Enrichment is mostly considered in combination with upwelling

and mixing that can increase primary production and then increase

local food availability favoring individual growth. The reproduction

of many species, especially for pelagic fish, appears to be positively

affected by local enrichment processes (e.g., Rodrıǵuez et al., 1999;

Rodrıǵuez et al., 2001; Rodrıǵuez et al., 2004). For example,

upwelling intensity can increase recruitment success in Moroccan

sardine (Sardina pilchardus) and the northern anchovy (Engraulis

mordax), with these relations depending on wind intensity (Roy

et al., 1992). Enrichment and retention have also been considered

important in connection to the reproductive strategies of two

clupeoid species in the in southern Benguela - anchovy (Engraulis

encrasicolus) and sardine (Sardinops sagax) - with results suggesting

that two regions where those processes are active are favoring

recruitment of the species (Lett et al., 2006). Enrichment,

concentration and retention processes have been considered in

combination to analyze transport of anchovy eggs and larvae in

the northern Humboldt upwelling ecosystem, with results

demonstrating that regions of enrichment are also the areas

where most eggs and larvae were found (Lett et al., 2007). This

was especially the case when ocean circulation would favor

retention and concentration processes. Similar results have been

found using ocean circulation models with particle-tracking

algorithms of bluefin tuna (Thunnus thynnus) eggs and larvae at

known spawning grounds in the Mediterranean Sea (Mariani et al.,

2010). Here larvae were aggregating in retention areas often located

next to regions of increased primary productivity.

The Atlantic Ocean is home to more than 1100 species of fish

(Merrett, 1995) of which a wide range support important fisheries.

Changes in recruitment success together with overfishing can have

important implications for the food supply in many regions with

potential global impacts (Britten et al., 2015). There is however still a

lack of a systematic analysis of the interplay between dispersion and

enrichment processes for all fish groups across different

biogeographic regions in the Atlantic Ocean. Although the

relationships between recruitment success and transport

mechanisms have been studied for a range of species, there is a

need for a systematic assessment of their relative importance. A

review of the ecology of nine important fish species in the Atlantic

Ocean suggests significant knowledge gaps in relation to important

species, especially with regard to critical environmental conditions in

their early life stages and the behavioral mediated interactions

regulating spawning time and location (Trenkel et al., 2014). Also,

they found that some species could have significant differences in

their life history traits, while others where more alike, e.g. sharing

spawning areas (Trenkel et al., 2014). The present study aims to

investigate the primary production at the early life stages for the most

important commercial fish in the Atlantic Ocean in conjunction with
frontiersin.org
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transport processes. We modelled dispersal of eggs and larvae of 17

species, represented by 113 stocks in the Atlantic Ocean using a

generic Lagrangian modelling framework IBMlib that allows

simulating propagules using 3D oceanographic data set

((Christensen et al., 2018). We parameterized the model by

reviewing the data of key traits (spawning time, spawning grounds,

egg and larval duration, type, and depth of vertical migration) and

simulated dispersion from spawning to settlement for 10 consecutive

spawning seasons (2000 – 2009) to identify variability of primary

production in the early life stages. We aim at testing the hypothesis

that after egg and larval drift, the larvae would arrive in areas of

enhanced productivity (Figure 1).
2 Materials and methods

2.1 Dispersal traits identification

We focused the analyses on the most important commercial fish

species in the Atlantic Ocean. We selected species with the highest

capture production that have their reproductive phase in the

Atlantic Ocean (FAO, 2020). From the 70 species with the

highest capture production globally (FAO, 2020), 29 species are

found in the Atlantic Ocean. Of these, five are not fish species and

were excluded. Species that had not enough information in the

literature to simulate the eggs and larval dispersion were excluded,

with 15 species remaining. Besides these 15 species from FAO

(2020), we also included American and European eel as they have a

long drift time and occupy the central Atlantic region (i.e., Sargasso

Sea). This provide a contrasting case for other more coastal species.

For each stock, we identified: spawning time, spawning grounds,

egg and larval duration and diel vertical migration depth. The stock

in this context is defined as the group offish of the same species that

spawn in the same area and in the same period. We note that in

some cases the stock definition here does not coincide with the one

used in fisheries management.

The literature review was conducted by searching key words

using Google, Google Scholar and FishBase (Froese and Pauly,

2022). The search terms were related to the previously mentioned

traits - spawning time, spawning grounds, minimum and maximum

egg and larval duration and diel vertical migration depth – together

with the species name. In case of conflicting information, the most

recent would be used.
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2.2 Particle tracking algorithm

This section follows the standard protocol for describing

individual-based models (IBM) designed by Grimm et al.

(2006; 2010).

Purpose: To investigate the importance of primary production

over a range of dispersal conditions. We modelled eggs and larvae

dispersion of fish species by coupling general ocean circulation

models at high resolution with a particle-tracking algorithm. We

used the IBMlib, a framework that combines individual level model

of organisms to 3D oceanographic model (Christensen et al., 2018).

For a description of IBMlib, see Christensen et al. (2018).

Entities, state variables: Individuals are characterized by the

state variables, i.e. identity number, age (in days) and location.

There are three stages: eggs, larvae, and settled larvae. Simulations

started at the start of the spawning of each specific stock, and

included the spawning season plus the eggs and larval duration.

Particles were emitted during the whole spawning season, taking the

first day of the spawning month as reference.

Process overview and scheduling: Particles are released as eggs

on the surface and considered moving passively with ocean

currents. Individual processes include aging and change of stage

(egg, pelagic larva and settled larva). At the end of the egg stage,

particles become larvae and they perform diel vertical migration

using a constant swimming speed (w = 5 mm/s) and species-specific

target depth during day and night. After the larval period

determined by the length of the pelagic phase, the particle is

considered “settled larva” and its position is saved. Mortality has

not been included explicitly; which corresponds to assuming a

spatial and temporal constant mortality for the pelagic stage. For

all the simulations, the particle trajectories were integrated forward

using Euler method with a time step of 1800 seconds (30 minutes).

To account for horizontal sub-grid scale eddy diffusivity we apply

the standard shear-driven Smagorinsky scheme (Smagorinsky,

1963) using current fields as inputs, where conventional values

for the Smagorinsky constant Cs = 0.15 (Pope, 2000) and Schmidt

number Sc=1 were applied, as recommended by Sagaut (2005).

Design concepts: From the literature review, we created maps

with the spawning ground area (Figure 2B). From the spawning

map, we produced the emission boxes using polygons of

approximately 10 km in length and width. The release location

for each individual particle was randomly selected within the

emission box. Each box consisted of 100, 50 or 10 particles,
FIGURE 1

Schematic of the hypothesis investigated in this study. Primary production should be higher for the larvae (end position of simulation – in green)
than that at the time of the spawning (start of simulation - in red).
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depending on the total number of boxes for each spawning stock

(less than 100, less than 300 or more than 300 respectively).

Particles are transported independently and do not interact with

each other during the simulation. We did not impose specific

settlement areas stock wise, but assessed the feeding conditions at

the emergent positions at the end of the pelagic phase.

Initialization: We released particles in the fish stock spawning

season and let them drift through their pelagic egg and

larval duration.

Input data: The hydrodynamic data (currents, salinity and

temperature) for 2000 to 2010 used in this study were retrieved

from the Copernicus Marine Environment Monitoring Services

(CMEMS). We applied the product Global Ocean Ensemble

Physics Reanalysis (doi: 10.48670/moi-00024), where the dynamical

circulation equations are solved on a numerical grid with ¼-degree

resolution, and data saved as daily means. The model has 75 vertical

layers, from 0 to 5500 m depth with global coverage. As the eggs and

larvae are distributed in the upper layers, we extracted data only

between the surface and 200 m deep (31 layers in total).

Submodels: For each stock, 2 simulations were conducted to be

able to understand the dispersion potential with the different

conditions: one with the minimum egg and larval duration, and

other with the maximum duration. With 113 stocks, 10 years of

simulations, and 2 pelagic durations, generated in total 2260

simulations and more than 110 million particles.

2.2.1 Displacement
Based on the Lagrangian model results, the initial and final

position were obtained, and a relative displacement was estimated

for all particles. Displacement in this context is the distance in

kilometers between final and initial position of individual particles.

We also analyzed the relation between displacement and the

pelagic duration, where the null hypothesis for the distribution of

displacements (D) in relation to the biological pelagic duration (T)

is D ~ N (v·T, 2·d·T), corresponding to one dimensional passive
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advection-diffusion transport, described by parameters (v, d), where

v is interpreted as a typical (residual) current velocity and d

interpreted as a typical diffusivity.

2.2.2 Net primary production
Net primary production (NPP, mgC m-3day-1) have been

retrieved from CMEMS, Global ocean biogeochemistry hindcast

(GLOBAL_MULTIYEAR_BGC_001_029, doi: 10.48670/moi-

00019). NPP has same resolution as the hydrodynamic dataset,

with ¼-degree resolution and daily mean and data were extracted

for the initial position of the particles, as well as for the final position

after the dispersal phase.

2.2.3 Analysis
After obtaining the values for all particles and all years, the

median population value for each year was extracted and the

difference between NPP at the end and start of the simulation

was also calculated (henceforth defined as DPP) to determine

changes in primary production between spawning and potential

settling areas (Figure 1). We choose to apply NPP as food

abundance proxy rather than direct zooplankton abundance

obtained from coupled biogeochemical simulations, because

besides phytoplankton being part of diet of some fish larvae

(e.g. haddock and cod – Kane, 1984, mackerel – Conway et al.,

1999), match-mismatch hypotheses are often tested against

phytoplankton concentrations (Platt et al., 2003). Nonetheless, we

analyzed the relation between NPP and modelled zooplankton

concentration in the Appendix (Figure A1) where a linear

regression of the type NPP = aZoo is provided and used in

the results.

We estimated larval food requirement based on approximative

observed interspecies ingestion rates (I) estimated as function

of their weight and environmental temperature as log I = 0:990 log

W + 0:036T − 1:170 (MacKenzie et al., 1990), where weight (W)

is expressed in micrograms and temperature (T) in degrees Celsius.
FIGURE 2

(A) Length of the pelagic duration of eggs and larvae (ordered alphabetically) and (B) spawning areas of the species included in the analyses. Colour
coded are the different species: Southern African anchovy (ANC), European anchovy (ANE), bigeye tuna (BET), Atlantic cod (COD), American eel
(ELA), European eel (ELE), haddock (HAD), Atlantic herring (HER), Argentinian hake (HKP), Atlantic mackerel (MAC), gulf menhaden (MHG), sardine
(PIL), pollock (POK), round sardinella (SAA), skipjack tuna (SKJ), European sprat (SPR), yellowfin tuna (YFT). Same color applies for species as in (A).
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This food requirement was compared to the potential prey

encounter rates following the framework of Letcher et al. (1996),

considering the length of the larvae (L) in the early and final stage of

each species. We applied the interspecies larval weight-length

relation W = 0:1674L3:837 (Letcher et al., 1996). Further, for

consistency we can assume a carbon content of 40% relative to

the dry weight (Garrido et al., 2012).

The values of I should be compared to the amount of prey

encountered (E) which then depends on prey concentration (r,
mgC m-3) the fraction of the day when light is available (g ) and the

search volume (b , m3 day-1) like E = brg which can take units of

mgC day-1. We assume light being available some fraction of the

day, i.e., g =13/24 (Letcher et al., 1996). By matching these two

quantities we can obtain the minimum prey density that satisfies the

required carbon ingestion (rmin):

rmin =
0:4 I
b

(Eq: 1)

To compute b we consider the larval swimming speed (v) and

reactive distance (R) and assume hemispherical encounter areas

such that b = pR2v. R can be estimated as function of the prey

length (PL) and the larval minimal visual angle a, R = PL
2 tan (a2 )

, with

a = 0:0167 e9:14−2:14 ln (L)+0:229 ( ln (L)2) (Rose and Cowan, 1993). PL

was assumed as a fraction of L (PL = 0.22L), based on typical

predator-prey size ratio and the interspecies weight-length relation

above (Thygesen et al., 2005). Note the analysis does not include the

effects of small-scale turbulence in increasing encounters between

predator and prey.

Hence, we can finally compute rmin using literature values for L

and T at the spawning and at settling stages, respectively.
3 Results

3.1 Species identification
and dispersal traits

The relevant larval traits for dispersion have been aggregated for

113 stocks (see Supplementary Table A1). The pelagic duration

varied from less than four days (for the European anchovy -

Engraulis encrasicolus) to a maximum of 237 days (for the

European eel) (Figure 2A). Significant variability of this

parameter was found in several groups, such as Southern African

anchovy (Engraulis capensis) and herring (Clupea harengus), while

bigeye tuna (Thunnus obesus) and round sardinella (Sardinella

aurita) had the lowest variability in pelagic duration. Most of the

species (n=12) spawn within 500 km from the coastline, while

American (Anguila rostrata) and European eels, yellowfin

(Thunnus albacares), skipjack (Katsuwonus pelamis) and bigeye

tuna have spawning areas in large regions in the open ocean.

The smallest spawning ground was found for the herring stock

at Clyde estuary (Scotland, approximately 700 km2), while the

spawning area for skipjack tuna was estimated to cover a large

fraction of the Equatorial Atlantic, i.e., ca. 26 x 106 km2. It is

important to note the southern Grand Bank stock of Atlantic cod
Frontiers in Marine Science 05
(Gadus morhua), which can spawn up to 900 km away from the

coast, mainly includes shallow water areas.
3.2 Displacement and dispersion patterns

The resulting larval distributions compare well with available

observations for all groups (see Appendix Figure A2). In particular,

for those species where enough data is available (e.g., HAD, ELA,

ELE), the final position of the larvae closely reproduce observed

distribution patterns (Figures A2 m, p, q). For some species (e.g.

yellowfin and skipjack tuna) observations on early life stages are

rare. However, model’s outputs are still coherent with the large-

scale distribution of the other life stages (e.g. juveniles and adults)

(Figures A2 B, C).

By looking at the total transport (from spawning to settling), the

species with higher displacement were American and European

eels, with simulated values up to 4600 km and 4400 km,

respectively. While the species that had the lowest dispersal were

PIL and ANE showing both the highest probability of short

displacement and the lowest median values when all years and

stocks are considered (i.e., less than 40 km median displacement,

Figure 3). Most stocks (n=110) have median displacement of less

than 1000 km from the spawning location. Interestingly several of

the species analyzed (i.e., YFT, SKJ, BET, SAA, SPR, MAC, HKP,

ANE, PIL) showed a sharp decrease in displacement probability

after ~300 km (Figure 3). While some species (i.e., HER, MHG,

COD, HAD, ANC, POK, ELA, ELE) showed higher probabilities at

displacement >500 km, with ANC showing the highest

displacement probability at around 1000 km (red curve in

Figure 3). American and European eel showed different dispersal

trajectories, however since only a relatively short larval dispersion is

considered (i.e., 133-192 days for American eel and 165-237 days

for European eel) their total displacement was quite similar (see

Figure 3). Schmidt (1923) estimated the European eel drift of 2-3

years, while other studies estimated 190 to 280 days (Lecomte-

Finiger, 1994), and 210 – 270 days but assuming larva performing

horizontal active movement (Arai et al., 2000) which in this case

was not included.

Depending on the location, particles can be retained in eddies

for most of their dispersal phase or being strongly advected by

major ocean currents (Figure 4). Illustrating specific cases, we can

identify individuals of European eel, entering the Gulf Stream,

which is a current of high velocity (Figure 4A). We also noticed

that other individuals within the same population could be

retained into mesoscale structures present in the Sargasso Sea.

Those results are coherent with previous studies on European and

American eel populations (Miller et al., 2015). Some individuals of

the African stock of round sardinella can drift south through the

North Equatorial current (Figure 4B), and others can drift through

the Canary currents eastwards, because of the presence of the

Northwest Africa currents in the area (Pelegrı ́ and Peña-Izquierdo,

2015). The round sardinella stock in the southwestern Atlantic can

be transported southwards in the region of the Brazilian current

(Figure 4C) as previously suggested (Dias et al., 2014).
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FIGURE 4

Illustration of modeled trajectories of particles released across different spawning grounds for the year 2000, where each point represents a daily
position, while the asterisks show the final position. (A) European eel, (B) round sardinella, (C) round sardinella Brazilian stock, (D) southern African
anchovy. Brown points indicate the trajectory with the shortest displacement in that stock that year, green points the longest displacement, and blue
points one with the mean displacement.
FIGURE 3

Total displacement (km) per species averaged over all stocks and all years (2000-2009), using simulations with the maximum pelagic duration. Each
color represents a species.
Frontiers in Marine Science frontiersin.org06
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The dispersal of southern African anchovy within the Benguela

current system shows that some particles can drift towards the west

of the spawning region being included in the Benguela current,

while others can be trapped into Agulhas rings or can go through

the retroflection of Agulhas current (Figure 4D).

Displacement vs pelagic duration

We further investigated how the displacement is influenced by

the pelagic duration (PD, Figure 5). Although we can see that the

longer the pelagic duration the longer the displacement, this

relationship within and across stocks is very variable, as stocks do

spawn at different times and different locations, hence they are

exposed to different ocean current systems.

A least-squares error fit gives v = 2.58 km/day and d = 94.4 km2/

day, as indicated in Figure 5. The value v is commensurable with

weak residual currents, whereas the value of d is larger than typical

horizontal subscale (<10 km) diffusivities, however the relatively

large value of d also reflect the fact that this parameter absorbs the

dispersal effect of oceanographic mesoscale structures.

Sprat and mackerel had the lowest displacement per day

compared with the overall distribution (Figure 5), while yellowfin

tuna and some stocks of round sardinella, bigeye tuna and

Argentinian hake (Merluccius hubbsi) had highest displacement

per day.
3.3 Primary production patterns

Net primary productions at the spawning grounds during the

spawning seasons ranged from 8.9 to 954.0 mgCm-3day-1

(Figure 6A). Hence covering species spawning in oligotrophic

(e.g., open ocean) as well as eutrophic coastal regions. The lowest
Frontiers in Marine Science 07
NPP at the spawning areas was found for the bigeye tuna that

reproduces in the Atlantic Ocean off the Brazilian coast, while the

highest NPP was for the yellowfin tuna population reproducing in

the Gulf of Mexico.

NPP values for the final positions ranged between 0 to 923 mgC

m-3day-1 and 0 to 978.7 mgC m-3day-1 for the minimum and

maximum PD. According to satellite ocean color models, the

annual mean net primary productivity is 407 mgC m-2day-1, with

values ranging from 7.2 to 12500 mgC m-2day-1 (Finkel, 2014).

The calculated mean DPP varied from –53.04 to 29.37 mgC

m-3day-1 (Figure 6B). Several stocks had values close to zero

(i.e., 18 stocks with -1 ≤ DPP ≥ 1), 31 stocks had positive values

with DPP > 1 mgC m-3day-1, and the remaining 64 had values of

DPP< -1 mgC m-3day-1. In total, 36 had positive mean values, while

77 had negative mean values.

All stocks of round sardinella (SAA) had high values of NPP at

the spawning site, and relatively low values for the settling regions

(Figure 6A), hence resulting in the lowest DPP for all the fish groups

considered (Figure 6B). On the contrary, pollock (POK - Pollachius

virens) had the lowest NPP at the spawning site and resulted in the

highest DPP in our simulations (Figure 7).

Overall, the simulations show the emergence of three patterns

related to the primary production (Figure 6B): one where the

particles reach more productive areas (DPP > 0), another where

they settle in similar productivity regions (DPP ca. 0), and the last

one where productivity during spawning is considerable higher

than the productivity for settling (DPP < 0).

If we aggregate all the stocks in the respective species groups,

the above strategies are retained and we find that a majority of the

species show values around DPP = 0. Pollock, cod, and sprat were

the species that had the highest DPP if we consider all
FIGURE 5

Median displacement (D) for all stocks and years, plotted against the pelagic duration. Each color represents a species (same as Figure 1). Each point
represents one stock and one year. The solid line represents the best-fitted linear regression D ~vT, while the dashed lines are the linear regression

plus/minus the standard deviation fitted as s =
ffiffiffiffiffiffiffiffiffi

2dT
p

. Thus, the area between dashed lines is the most likely range of transport displacement D for a
given pelagic duration T.
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A

B

FIGURE 6

(A) Median net primary production (NPP) at spawning time (red), and at the final position after minimum (black) and maximum (green) length of the
pelagic phase. (B) Difference between the median NPP at final position (only for the maximum PD) and spawning time (i.e., DPP). Ordered based on
the median net production at spawning time (A) and DPP (B).
FIGURE 7

DPP presented per species. Results represent averages over stocks for each species. Ordered based on the DPP per species.
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stocks (Figure 7). Big eye, yellowfin and skipjack tuna had DPP
values close to zero. Herring, European anchovy and round

sardinella had the greatest variation of DPP. European eel and

southern African anchovy only presented negative DPP, while only
pollock had exclusively positive values for all its stocks.
3.4 Food requirements

Using the relationship in Eq. 1, we calculated the average critical

zooplankton density for all species rmin =1.60 mgC m-3day-1 for the

early larval stages and rmin= 0.03 mgC m-3day-1 for the final larval

stages (Figure 8A). Consequently based on the relationship between

NPP and zooplankton concentration (Figure A1) the mean critical

NPP was NPPmin = 1270 mgC m-2day-1 for the early larval stages

and 16 mgC m-2day-1 for the late larval stages (Figure 8B).
4 Discussion

4.1 Model limitations

The quantification of dispersal in particle tracking methods

requires some degree of simplification, due to the complexity of

many biological and physical factors involved through multiple

spatial and temporal scales. Thus, assumptions are required, for

example, the use of a spatially uniform spawning ground (Treml

et al., 2008). We used a fixed spawning time, spawning ground, and

pelagic duration, however, some species can adapt their location

and spawning time based on changes in environmental conditions

(e.g. Bruge et al., 2016; Langangen et al., 2019). Similarly, eggs and

larval duration can show year-to-year variability larger than that

used in the present approach.

In the model, diel vertical migration was simulated using

constant depths, while for some species those reference depths

may change according to oceanographic characteristics (e.g.

Sakuma et al., 1999; Smith and Suthers, 1999). It has been
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suggested that diel vertical migrations could be a behavioral

response to the tradeoff between prey distribution and predation

risks (Pinti and Visser, 2019). Light is generally considered as the

major proxy to elicit DVM in fish larvae, and in some cases primary

production was used to adapt residence time of the larvae based on

food availability (like for example spending more time in the surface

when food is available). For example, Fiksen and Jørgensen (2011)

investigated the optimal behavior of cod larvae, and they found that

food availability increased survival rate, but not growth rate,

because when food was abundant, larvae would select deeper

areas, avoiding predation. However, in the present version of our

model we assumed species specific DVM with constant reference

depths and constant larval swimming speed to migrate between

those target depths.

Additionally, active horizontal swimming has been reported for

a few species (e.g. Staaterman et al., 2012). For example, tidal

migrations have been suggested as a mechanism for predicting

settlement of northern sea bass (Beraud et al., 2018), sprat and cod

in the North Sea (Daewel et al., 2011), and juvenile eel migration in

tidal streams (Benson et al., 2021). Furthermore, there have been

suggestions that eel larvae could use active horizontal swimming

and the geomagnetic field to orient themselves in migrating from

the Sargasso Sea to European waters (Melià et al., 2013). However,

we did not included active horizontal behavior in the model because

of the lack of a proper mechanistic description of this process for

most of the larvae and stocks considered in the paper. Moreover,

since active swimming speed is of order body length per second and

not sustained, we expect in most cases horizontal swimming to be

overshadowed by passive transport driven by ocean currents (e.g.

Munk, 2014).

We used primary production in our analysis to obtain an index

of the local enrichment and then food availability. However, several

larvae groups do not feed (only) on phytoplankton but in their diet

might be a high diversity of prey, for example herring’s larvae diet

includes copepods, eggs, dinoflagellates and diatoms (Denis et al.,

2016). Biomass estimations for the zooplankton community are

more difficult to obtain and based on different models and modeling
A B

FIGURE 8

(A) Estimated critical zooplankton density (rmin and (B) critical primary production (NPPmin) for all species, based on the relationships between NPP
and zooplankton density. In red, early larval stage, in black final larval stage. The vertical range bars corresponds to the minimum and maximum
temperature experienced by the larvae during the spawning season. The dashed, line represents the average for all the species. In (B), Northern
stocks (N), equatorial stocks (E), and Southern stocks (S) are aggregated.
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approaches. On the other hand, primary production can be used as

a proxy of the amount of energy and material flowing into the local

food web and can be assumed that higher values of NPP can result

in higher zooplankton biomass.

We observed a positive relation between net primary

production and zooplankton concentration (Supplementary

Figure A1), which is dependent on the latitudinal gradient.

Around 45°S, the relation between zooplankton and primary

production is absent, however, as most of the stocks investigated

in this study spawn not as south, it is legit to assume that in higher

productive areas, zooplankton abundance is higher, and therefore

fish larvae will most likely find prey easier. Hence, we considered it

acceptable the use of net primary production in this study.

We extracted primary production at the initial and final

position. Nevertheless, as previously discussed, the time when the

yolk sac is depleted could be more important, or the primary

production during the whole period should be considered.

Computation limits the latter, nevertheless, the primary

production at the end of the yolk sac can be easily obtained.

When we estimated food requirement, we used the same

relations for all stocks. However, these can vary depending on

many factors. For example, the weight-length relation vary per

species. We also made assumptions regarding size of the prey, larvae

swimming speed, and larval minimal visual angle. Besides that, not

considering small-scale turbulence can result in up to 11-fold

underestimation of frequency of contact between fish larvae and

prey (MacKenzie and Leggett, 1991).
4.2 Validation

In order to validate the model, we compared the final positions

of the larvae with larvae locations according to the Ocean

Biodiversity Information System (OBIS, 2023) and International

Council for the Exploration of the Sea database (ICES, 2022)

(Supplementary Figure A2). As in some of the species there were

little or lacking information, we also included in the analysis other

life stages. For an ideal validation, it would be good to compare only

with the years included in this research and only look at the larvae

distribution. Nevertheless, such databases can bridge the gap

between model simulations and empirical data, as we can

compare predictions with empirical data to identify differences

between both, and generate new hypothesis on larval dispersion

and connectivity.

Seascape genetics is a framework that can improve predictions

for biophysical models, many recent studies were able to find that

the predictions from biophysical models are observed with genetic

patterns and is a promising tool in understanding the dispersal

within the metapopulation (Jahnke and Jonsson, 2022).
4.3 Strategies

We found contrasting primary production at spawning and

settlement grounds across Atlantic stocks which we grouped into
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three patterns based on the enrichment index DPP. We interpret

this as three not strongly separated strategies (Figure 6) where some

stocks showed an increase in this value (n=31), a decrease (n=64) or

showed values close to zero (n=18). From an ecological point of

view, this implies that larvae can be transported to regions with

higher, lower or similar primary productivity as those experienced

in the spawning ground. In the first group, we find many gadidae,

such as cod and pollock while in the second group, many small

pelagic are present, e.g., round sardinella and European anchovy.

Finally, tunas are mostly present in the third group with no major

changes in NPP between spawning and settling. Big eye and

yellowfin tuna are two of the species that consistently show DPP
ca. 0.

Species belonging to the first group, moving into areas that are

more productive are in agreement with the ocean triads hypothesis

and after release, retention mechanisms might favor a distribution

around regions of enrichment. However, several species show an

opposite path moving into regions with lower NPP. We can propose

four possible explanations for the unexpected results: the primary

production being relevant not only at the end of the larval stage;

existence of a threshold of primary production; NPP not as a

decisive factor and finally overestimation of the dispersal. It is

important to underline that some species (e.g. cod and herring)

have a high among-stock variability with DPP values being both

positive and negative (Figure 7). Hence, the results above cannot be

taken as general patterns for the genus or family. Specifically, for the

case of cod, it is known that the largest stock that spawns in the

Norwegian Sea (which is not included in our simulations) is

transported into the Barents Sea, thus in a region with lower

values of NPP (Gjøsæter et al., 2020). Indeed, food requirements

in the region seem to be satisfied by mesoscale dynamics and small-

scale turbulence that can favor predator and prey encounter rates

(Ottersen et al., 2014). A mechanism that is not included in our

simulation for any stock.

We extracted the NPP at the start and end positions,

nevertheless, a crucial time for the larval survival is when the

yolk-sac reserve depletes. Thus, it can be that some species might

prefer high productive areas for spawning, so at the time larvae need

food for the first time, it will be available. It might be that the

whole period from the end of the yolk sac to the end of the

larval stage matters, so only comparing two times is not enough.

However, the critical food requirement concentration in relation to

larval size is monotonously decreasing, so the bottleneck would

correspond to an extended area along drifts paths with significant

prey scarcity.

The existence of a threshold in the primary production would

explain why particles would end up at lower NPP areas. If the

spawning occurs in productive areas, an increase or decrease might

not affect the larvae, i.e., if a threshold is reached changes above the

threshold would not make a fundamental difference for larval

survival. Our analysis of critical prey concentration showed that

the requirement is higher for larvae after the end of sac stage than at

the end of larval stage. Indeed even though the required carbon

intake is higher for a larger larva, the prey concentration can be

lower, because these individuals are able to search a greater volume
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per time, and the factor of 50 difference in food concentration

requirement (Figure 8) is mostly driven by the visual range that

strongly scales with size. Therefore, these results support the

hypothesis that for most species it is more important to spawn in

high productive areas to allow the very early larval stages to satisfy

their food demand, while that constraint is reduced at larger larval

stages. Hence, a negative DPP strategy could be expected to emerge

for different fish stocks.

However, primary production might also not be a direct factor

in larval survival for a range of reasons. Due to the time gap between

primary and secondary production, it might be that at the end of the

simulation although primary production was lower, zooplankton

abundance can be high enough to satisfy food demands.

Cannibalism can be one explanation for why yellowfin tuna

(YFT) and bigeye tuna (BET) larvae are found in areas of low

productivity in our models. Previous studies with bullet, albacore

and bluefin tuna in the Mediterranean Sea suggested that

cannibalism is potentially a key factor for tuna recruitment

(Reglero et al., 2011), and maybe a mechanism regulating

recruitment in other species as well.

Overestimation of dispersal can explain why we found larvae in

less productive areas. Cowen et al. (2000) found that larval dispersal

might be overestimated as physical processes together with larval

behavior (horizontal and vertical swimming) may retain larvae

distribution (Wing et al., 1998; Cowen et al., 2000), therefore

larval retention might be more important than initially thought.

Huret et al. (2012) used an individual based model coupled with

zooplankton abundance to investigate the effect of food limitation

in the dispersal of anchovy larvae. Their results showed that

larvae would not survive offshore when food was limiting and

probability of starvation was high. In our study, we addressed

starvation issues a posteriori, by comparing estimated food

abundances with requirements at spawning grounds and settlement

areas, and we found that food concentration can be more crucial at the

early life stages of the larvae, i.e. more chances to starve in the early

life stage of the larvae. Another important factor for larval survival

is heterogeneous predation pressure; this can be quantified by

for example overlap of the drift paths with predator abundance.

However, predator abundances are very variable in space and time,

and difficult to reconstruct especially at the whole Atlantic scale for

several years.
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Lett, C., Penven, P., Ayón, P., and Fréon, P. (2007). Enrichment, concentration and
retention processes in relation to anchovy (Engraulis ringens) eggs and larvae
distributions in the northern Humboldt upwelling ecosystem. J. Mar. Syst. 64 (1-4),
189–200. doi: 10.1016/j.jmarsys.2006.03.012

Lett, C., Roy, C., Levasseur, A., van der Lingen, C. D., and Mullon, C. (2006).
Simulation and quantification of enrichment and retention processes in the southern
Benguela upwelling ecosystem. Fisheries Oceanography 15 (5), 363–372. doi: 10.1111/
j.1365-2419.2005.00392.x

MacKenzie, B. R., and Leggett, W. C. (1991). Quantifying the contribution of small-
scale turbulence to the encounter rates between larval fish and their zooplankton prey –
effects of wind and tide.Mar. Ecol. Prog. Ser. 73 (2-3), 149–160. doi: 10.3354/meps073149

MacKenzie, B. R., Leggett, W. C., and Peters, R. H. (1990). Estimating larval fish
ingestion rates - Can laboratory derived values be reliably extrapolated to the wild?
Mar. Ecol. Prog. Ser. 67 (3), 209–225. doi: 10.3354/meps067209

Mariani, P., MacKenzie, B., Iudicone, D., and Bozec, A. (2010).Modelling retention and
dispersion mechanisms of bluefin tuna eggs and larvae in the Northwest Mediterranean
Sea. Prog. Oceanography 86 (1-2), 45–58. doi: 10.1016/j.pocean.2010.04.027

Melià, P., Schiavina, M., Gatto, M., Bonaventura, L., Masina, S., and Casagrandi, R.
(2013). Integrating field data into individual-based models of the migration of
European eel larvae. Mar. Ecol. Prog. Ser. 487, 135–149. doi: 10.3354/meps10368

Merrett, N. R. (1995). Reproduction in the North Atlantic ichthyofauna and the
relationship between fecundity and size. Environ. Biol. Fish 41, 207–245.

Miller, T. J. (2007). Contribution of individual-based coupled physical–biological
models to understanding recruitment in marine fish populations. Mar. Ecol. Prog. Ser.
347, 127–138. doi: 10.3354/meps06973
frontiersin.org

https://doi.org/10.1038/s41598-021-84545-7
https://doi.org/10.1126/science.1140597
https://doi.org/10.1007/s002270000326
https://doi.org/10.1007/s002270000326
https://doi.org/10.1007/978-94-011-4433-9_25
https://doi.org/10.1016/j.ecolmodel.2021.109448
https://doi.org/10.1093/icesjms/fsx195
https://doi.org/10.1073/pnas.1504709112
https://doi.org/10.1073/pnas.1504709112
https://doi.org/10.1371/journal.pone.0189956
https://doi.org/10.1371/journal.pone.0189956
https://doi.org/10.1126/science.287.5454.857
https://doi.org/10.1038/s42003-019-0619-8
https://doi.org/10.1016/S0065-2881(08)60202-3
https://doi.org/10.1139/F10-164
https://doi.org/10.1016/j.seares.2016.07.003
https://doi.org/10.1016/j.pocean.2014.03.009
https://doi.org/10.4060/cb1213t
https://doi.org/10.1093/icesjms/fsac237
https://doi.org/10.3354/meps09148
https://doi.org/10.3354/meps06978
https://doi.org/10.1007/978-94-007-5784-4_42
http://www.fishbase.org
https://doi.org/10.1016/j.jembe.2012.07.021
https://doi.org/10.1007/s00300-020-02656-9
https://doi.org/10.1071/MF9960183
https://doi.org/10.1016/j.ecolmodel.2006.04.023
https://doi.org/10.1139/F09-105
https://doi.org/10.1139/F09-105
https://www.ices.dk/data/data-portals/Pages/Eggs-and-larvae.aspx
https://www.ices.dk/data/data-portals/Pages/Eggs-and-larvae.aspx
https://doi.org/10.1098/rstb.2021.0024
https://doi.org/10.1038/45538
https://doi.org/10.1371/journal.pone.0017456
https://doi.org/10.1111/gcb.14474
https://doi.org/10.1038/370424a0
https://doi.org/10.1016/0077-7579(94)90036-1
https://doi.org/10.1139/f95-241
https://doi.org/10.1016/j.jmarsys.2006.03.012
https://doi.org/10.1111/j.1365-2419.2005.00392.x
https://doi.org/10.1111/j.1365-2419.2005.00392.x
https://doi.org/10.3354/meps073149
https://doi.org/10.3354/meps067209
https://doi.org/10.1016/j.pocean.2010.04.027
https://doi.org/10.3354/meps10368
https://doi.org/10.3354/meps06973
https://doi.org/10.3389/fmars.2023.1141726
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Pereira Gabellini et al. 10.3389/fmars.2023.1141726
Miller, M. J., Bonhommeau, S., Munk, P., Castonguay, M., Hanel, R., and McCleave,
J. D. (2015). A century of research on the larval distributions of the Atlantic eels: a re-
examination of the data: Larval distributions of the Atlantic eels. Biol. Rev. 90 (4), 1035–
1064. doi: 10.1111/brv.12144

Munk, P. (2014). Fish larvae at fronts: Horizontal and vertical distributions of gadoid
fish larvae across a frontal zone at the Norwegian Trench. Deep Sea Res. Part Ii: Topical
Stud. Oceanography 107, 3–14. doi: 10.1016/j.dsr2.2014.01.016

Munk, P., Kioerboe, T., and Christensen, V. (1989). Vertical migrations of herring,
Clupea harengus, larvae in relation to light and prey distribution. Environ. Biol. Fishes
26, 87–96. doi: 10.1007/BF00001025

Murphy, H. M., Pepin, P., and Robert, D. (2018). Re-visiting the drivers of capelin
recruitment in Newfoundland since 1991. Fisheries Res. 200, 1–10. doi: 10.1016/
j.fishres.2017.12.005

OBIS (2023) Distribution records of : Southern african anchovy, European anchovy,
bigeye tuna, Atlantic cod, American eel, European eel, haddock, Atlantic herring,
Argentinian hake, Atlantic mackerel, gulf menhaden, sardine, pollock, round
sardinella, skipjack tuna, European sprat, yellowfin tuna (Ocean Biodiversity
Information System. Intergovernmental Oceanographic Commission of UNESCO).
Available at: www.obis.org (Accessed 2023-04-15).

Ottersen, G., Bogstad, B., Yaragina, N. A., Stige, L. F., Vikebø, F. B., and Dalpadado,
P. (2014). A review of early life history dynamics of barents sea cod (Gadus morhua).
ICES J. Mar. Sci. 71 (8), 2064–2087. doi: 10.1093/icesjms/fsu037

Pelegrı,́ J. L., and Peña-Izquierdo, J. (2015). “Eastern Boundary Currents off North-
west Africa,” in IOC Technical series, vol. 115, 81–92. Available at: http://hdl.handle.
net/1834/9179.

Pinti, J., and Visser, A. W. (2019). Predator-prey games in multiple habitats reveal
mixed strategies in diel vertical migration.Am. Nat. 193 (3), E65–E77. doi: 10.1086/701041

Platt, T., Fuentes-Yaco, C., and Frank, K. T. (2003). Marine ecology: Spring algal
bloom and larval fish survival. Nature 423 (6938), 398–399. doi: 10.1038/423398b

Pope, S. B. (2000). Turbulent flows (Cambridge: Cambridge University Press). doi:
10.1017/CBO9780511840531

Reglero, P., Urtizberea, A., Torres, A. P., Alemany, F., and Fiksen, O. (2011).
Cannibalism among size classes of larvae may be a substantial mortality component in
tuna. Mar. Ecol. Prog. Ser. 433, 205–219. doi: 10.3354/meps09187

Rodrı ́guez, J. M., Barton, E. D., Eve, L., and Hernández-León, S. (2001).
Mesozooplankton and ichthyoplankton distribution around Gran Canaria, an
oceanic island in the NE Atlantic. Deep-Sea Res. Part 1 Oceanogr. Res. Pap. 48 (10),
2161–2183. doi: 10.1016/S0967-0637(01)00013-9
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