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Vertical distribution of Fe, P and
correlation with organic carbon
in coastal sediments of Yellow
Sea, Eastern China
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Yang Yang1, Yulian Zhao3 and Xiancai Lu2*

1School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China, 2Key
Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Science and Engineering,
Nanjing University, Nanjing, Jiangsu, China, 3Key Laboratory of Solid Waste Treatment and Resource
Recycling, Ministry of Education, Mianyang, Sichuan, China
The coastal zone is considered as a major carbon pool. Iron minerals and

phosphates are vital factors affecting the amounts and occurrence of total

organic carbon (TOC) in sediments. However, coupling mechanisms of iron

(Fe) and phosphorous (P) in the source-sink transition of TOC in coastal

sediments is poorly understood. This study characterized the distribution of Fe,

P and TOC contents of three independent 170 cm sediment cores sampled from

a coastal aquaculture area in the eastern Jiangsu Province, and quantified the

correlations among Fe, P, median grain diameter (Dx(50)), and TOC. The results

showed total phosphorus (TP) content ranges in a scope of 337.4-578.0 mg/kg,

and many depths recorded moderate P eutrophication. Inorganic phosphorus

(DA + IP) and biogenic apatite were the primary components of TP, accounting

for 25.19–55.00 and 26.71–49.62%, respectively. The Fe contents varied from

987.9 mg/kg to 2900.7 mg/kg, in which oxidized iron (Feox) accounted for about

62.2–79.4%. In the vertical profile, the TOC was positively correlated with the

contents of low-crystallinity Fe-bearing carbonates (Fecarb), high crystallinity

pyrite (FePy), iron-bound phosphorus (PCDB), manganeses (Mn), and nitrogen

(N), while it was negatively correlated with DA + IP, organic phosphorus (OP), and

Dx(50). Based on the the partial least squares (PLS) model, we proposed that the

higher FePy, Mn, magnetite (FeMag), Fecarb, PCDB, amorphous exchangeable Fe

(Ex-Fe), and authigenic apatite phosphorus (Bio-P) in sediments represent the

high capacity for TOC sink, whereas, higher DA + IP, and OP indicate a TOC

conversion to the source. The non-siginificat indication of Feox on TOC source-

sink is due to its surplus and strong reactivity relative to TOC content. These

revealed correlations provide a theoretical reference for understanding and

regulating the burial rate and storage of TOC by changing the input of Fe

minerals and P components into coastal sediments.
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Highlights
Fron
(1) Characterized the vertical speciations of Fe and P in coastal

sediments

(2) Established the indicated relationship between different Fe

and P speciations and TOC source-sink

(3) Higher content of Fecarb, FePy, FeMag, Ex-Fe, Mn, PCDB, and

Bio-P represent TOC sink.

(4) Higher content of DA + IP, and OP indicate TOC source.

(5) Non-siginificat indication of Feox on TOC source-sink is

due to its surplus and strong reactivity.
1 Introduction

Marine “blue carbon” refers to the carbon sequestrated and

stored in biomass and sediments by the oceans and coastal

ecosystems (Tang et al., 2018; Macreadie et al., 2019; Macreadie

et al., 2021). The contribution made by the coastal carbon pool

accounts for ~99% of the final blue carbon sink (Tang et al., 2018).

Some of the organic carbon is re-released or converted into CO2 as a

carbon source again through microbial metabolic activities (Zhang

et al., 2017). The storage of organic carbon and inert carbon in the

sediment is an important contributor to the carbon sink (Jiao et al.,

2014). The “source-sink” of the coastal zone carbon pool fluctuates

with the change of redox conditions due to hydrodynamics (Xu

et al., 2021), terrigenous input, mineral conversion, and

eutrophication. Various minerals have been widely believed to be

important to promote the persistence and sink of organic carbon in

sediments (Hemingway et al., 2019; Kleber et al., 2021). In

particular, most of the iron and manganese minerals in sediments

have large specific surface areas and high redox sensitivity, which

can permanently preserve organic carbon through adsorption and

surface complexation (Giannetta et al., 2020; Bao et al., 2022), as

well as surface precipitation (Du et al., 2018). There is also a

significant correlation between the sequestration and release of

TOC with phosphorous (Huang et al., 2016; Fang and Wang,

2021). Phosphorous can accelerate TOC degradation directly or

indirectly by enhancing microbial activities (Jiao et al., 2010).

Meanwhile, phosphorus addition can directly improve TOC

stability by increasing aggregate particle size and indirectly affect

TOC stability by increasing Fe oxide form conversion in sediments

(Du et al., 2022). The redox conditions of the coastal sediments

commonly fluctuate greatly, different Fe oxide and phosphorus

forms are very sensitive to it, and phosphorus eutrophication is

serious due to terrestrial input (Singh et al., 2021). Therefore,

phosphorous and Fe oxides and their special transformation are

the key factors affecting TOC sequestration in coastal sediments.

In sediments, the interaction between minerals and organic

matter occurs preferentially on specific minerals; therefore, the

mineral composition is a crucial factor for the sequestration of

organic matter (Hedges and Keil, 1995; Kleber et al., 2021). Many

studies have proven that Fe minerals are important carriers of
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organic carbon in terrestrial soil (Sarkar et al., 2018; Kleber et al.,

2021), and in the ocean sediment (Zhao et al., 2023). Fine-grained

components in coastal sediments positively correlated with the

contents of unstable minerals (Cao et al., 2018), especially the

contents of Ca/Mg-rich carbonates with poor stability (Fookes

and Higginbottom, 1975; Yalcin et al., 2022). Although the

abundance of Fe minerals in coastal sediments is not as high as

that of carbonates, the promotion by Fe oxides on the storage of

organic matter through surface precipitation and adsorption has

been well recognized (Canfield, 1994). An onion-like structure with

encapsulated organic matter in iron minerals formed due to the

diffusion and aggregation of iron and carbon, which weakens the

decomposition of organic matters by microorganisms (Lalonde

et al., 2012). Recently, scientists have proposed that the current

hypothesis that the mineral matrix has a protective mechanism for

TOC is simplistic, and the spatial and functional complexity of the

mineral-organic matter should be considered (Yalcin et al., 2022).

And study pointed that mineral–organic preservation is an

important missing process in current assessments of Earth’s long-

term carbon cycle (Zhao et al., 2023). Hence, analyzing the

correlation between the occurrence of organic carbon in the

sedimentary profile of coastal zone and the occurrence of iron

and manganese minerals is crucial to determine their contribution

to the “carbon sink” of “blue carbon”.

Phosphorus is also a key player in the geochemical cycle of TOC

(Arif et al., 2021) and is easily fixed or affected by Fe minerals (März

et al., 2018). The leading states of phosphorus nutrients in marine

sediments include exchangeable, organic, iron-bound,

autoecological apatite, detrital, and refractory organic (Fang and

Wang, 2021), two-thirds of which are related to poorly crystalline

iron and manganese oxides (Hermans et al., 2021). In aquatic and

terrestrial systems, the interaction between phosphate and ferric

oxides typically involves adsorption/desorption (Boujelben et al.,

2008; Yoon et al., 2014), precipitation/dissolution of surface Fe-

phosphate phases (Weng et al., 2012), and precipitation of

phosphate in iron (III) oxides (Cheng et al., 2015; März et al.,

2018). On the one hand, several iron minerals were found capable of

promoting the hydrolysis of phosphate (Li et al., 2020).

Significantly, Ca-bearing iron minerals could enhance the

hydrolysis of phosphate by promoting the precipitation of

calcium phosphate minerals (Wan et al., 2021). In turn, the

interaction between phosphate and Fe(III) oxide significantly

affects the mineralization pathway of the Fe phase, e.g., the

presence of phosphate is a crucial factor for the formation of

green rust during the reduction of hematite by iron-reducing

bacteria (IRB) (O'loughlin et al., 2015). According to a statistic of

iron minerals with different genesises, approximately 10% of

phosphate in sediments remobilized into the pore fluids due to

IRB activities (Schad et al., 2021). Hence, reactive P phases are

therefore invoked as regulatory factor for Fe mineral transition and

bounded with carbon source-sink under the driving effect of

microbial remineralization.

In this study, we analyzed the total organic carbon, geochemical

characteristics, and different forms of Fe oxides/minerals and

phosphorus of sediment cores sampled from a coastal site of the

Yellow Sea, Jiangsu Province, Eastern China. Based on Spearman’s
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multi-element correlation analysis, cluster analysis, and partial least

squares (PLS) model, this study quantifies the correlation between

median particle size (Dx(50)), Fe/Mn, P, and TOC in the profile.

After that, the significant impact of human activities on the

mechanisms of carbon sequestration by inducing the

transformation of Fe minerals is discussed. Compared with

previous studies, this paper presents the following contributions:

(1) Characterized the distribution of Fe, P speciations and TOC

contents in a sedimental of 170 cm core to further refine the

occurrence of iron minerals and phosphorus in profile coastal; (2)

Established correlation between TOC and Fe, P speciations based

on Spearman’s multi-element correlation analysis to deeply

understand the complicated relationships between TOC and

different Fe, P speciations; (3) Predicted the primary and

secondary factors on affecting TOC source-sink transition based

on the partial least squares (PLS) model to catch on carbon source-

sink mechanism in coastal sediments.
2 Materials and methods

2.1 Sampling of sediments

In October 2021, sediments were collected from amarinemudflat

in Bencha Town, Rudong, Nantong, Jiangsu Province (32°35’19.0422’

N, 120°54’47.2608’ E) (Figure 1). Bencha town is an important coastal

aquaculture area. The sampling area was transition zone for

aquaculture discharge from terrigenous to sea. Three profiles of

1.7 m in depth were excavated at adjacent three points. The

samples were split every 10 cm in the profiles and were

immediately put into sterile sealing bags, and there were 51 sample

in total (17 samples/profiles sediment core). After emptying the air,

the samples were quickly put into a foam box and frozen with dry ice.

The boxes were transported back to the laboratory on the same day

for cryopreservation at –80°C. In the lab, the sealing bags containing

sediment were melted at 4°C, a certain amount of samples were
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divided into 50 ml centrifuge tubes in an anaerobic glove box, and

then freeze-dried, grounded with an agate mortar and passed through

a 200-mesh sieve for further analysis, including the sequential

extraction of iron and phosphorus, measurement of total organic

carbon (TOC) and nitrogen (N), and analysis related geochemical

indexes. Meanwhile, 100 g wet sample was divided into in 250 ml

centrifugal cup and centrifuged at high speed refrigerated centrifuge

(6000 r/min, 20min) to extract pore water, the supernatant liquid was

filtered through a 0.45 mmmicroporous membrane. The chemical pH

of the extract pore water were measured using a pH meter (Thermo

Fisher, Star A2110). Other samples were used for analysis of grain size

and microscopic observation.
2.2 Analysis of grain size of sediments

The grain size distribution of sediments was analyzed by using a

Mastersizer 3000 laser grain-size analyzer (Shanghai, China). The

measurement range was 0.02–2000 mm, and the relative error was

less than 2%. The specific steps were as follows: 0.5 g of samples

were placed in a 100 ml beaker, and 10 ml of mass fraction 10% of

hydrogen peroxide (H2O2,CAS, 7722-84-1) was added to remove

the organic matter in the sediment sample, and then 10 ml of mass

fraction 10% hydrochloric acid (HCl, CAS, 7647-01-0) was added to

remove the calcium cements. Next, the samples were sufficiently

washed to neutralize them. Subsequently, 10 ml of 1 M sodium

hexametaphosphate (Na(PO3)6, CAS, 68915-31-1) was added and

placed in an ultrasonic oscillator to disperse the samples for grain

size distribution analysis. The grain size ranges of clay, silt and sand

were followed previous study by < 4 mm, 4–63 mm, and > 63 mm,

respectively. Dx(50) was used to represent the median grain

diameter of the sediment samples (Trefethen, 1950). All above

chemical reagents were analytical reagent which purchased from

Merck Limited Company (Shanghai, China).
2.3 X-ray fluorescence spectrometer
(XRF) analysis

The abundance of major and trace elements was measured

using a X-ray fluorescence analysis (Epsilon 3, PANalytical). The

freeze-dried samples were pressed into pieces mixed with boric acid.

And the pieces were scanned for 30 s with a step of 5 mm to acquire

XRF spectra. The relative abundances of 8 significant and 26 trace

elements were then calculated based on the collected spectra.
2.4 Analysis of carbon/nitrogen contents
of sediments

The CN model of the Vario Max elemental analyzer (Elementar

Analysensysteme GmbH) was used to test total carbon (TC), TOC,

and nitrogen with an analysis error of less than 0.03%. Here 3 g pre-

treated samples were placed in the sealed bags to measure the total

content of carbon (TC), which includes the carbon in organic and

inorganic states. Meanwhile, another 3 g pretreated samples was

added with appropriate amount of 2 M HCl and shook for 48 h to
FIGURE 1

Map of the location of the study area.
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fully remove the inorganic carbon. Then, the samples with the

additives were centrifuged at 3500 g, and the filter cakes were

washed with ultrapure water five times, and finally freeze-dried.

The acid-treated samples were placed in the sealed bags to measure

the total content of carbon, which represents TOC. Therefore, the

total inorganic carbon content (TIC) can be calculated by subtracting

TOC from TC (TIC = TC-TOC). Calculated carbon ratio to nitrogen

(C/N) by TC/N which was used to track source of organic matter.
2.5 Extraction and analysis of different
speciations of iron in sediments

The five-step sequential extraction of different forms of iron was

completed with little modified according to methods described in

the literature (Poulton and Canfield, 2005). 0.1 g freeze-dried

samples were weighted for the extraction. First, exchangeable Fe

(Ex-Fe) was extracted by using 1MMgCl2. Second, low-crystallinity

Fe-bearing minerals, such as iron sulfide, ferrous carbonate (calcite

and dolomite), and easily reducible Fe oxides (ferrihydrite and

lepidocrocite), were dissolved by using 1 M HCl to extract Fecarb.

Third, 0.35 M acetic acid, 0.2 M sodium citrate, and 50 g·L− 1

sodium dithionite were mixed to the selective extraction of

reducible oxides (goethite, hematite and akagane´ite) and

reducible iron oxide (Feox), including goethite, hematite,

ferrihydrite or lepidocrocite. Fourth, magnetite (FeMag) with high

crystallinity was extracted by using 0.2 M oxalic acid or 0.17 M

ammonium oxalate. Finally, the ferrous species in Fe-bearing

minerals with high crystallinity include pyrite, iron (oxyhydr)

oxides, siderite, ankerite, and certain sheet silicate minerals (e.g.

nontronite, chlorite, glauconite, biotite). The concentrated HNO3

was used to extract the Fe accommodated in these minerals, which

is denoted by FePy. The extraction of manganese hosted in iron

minerals was carried out synchronously, and the final manganese

content was the sum of the manganese content in five steps. The

extract was diluted with 2% HNO3 to make the Fe and Mn contents

less than 2%, and was analyzed by inductively coupled plasma

optical emission spectrometry (ICP-OES).
2.6 Extraction of different forms of
phosphorus in sediments

0.1 g freeze-dried samples were placed in a centrifuge tube.

According to the method described by Ruttenberg (1992), different

forms of phosphorus were extracted in five steps. First,

exchangeable or loosely sorbed phosphorus (Ex-P) was extracted

by using 1M magnesium chloride. Second, iron-bound phosphorus

(PCDB) was extracted with CDB solution (0.30 M sodium citrate, 1.0

M NaHCO3, pH 7.6, 1.125 g·L-1 sodium dithionite). Third,

authigenic apatite, CaCO3-bound P and biogenic apatite (Bio-P)

were extracted by using sodium acetate solution. Fourth, 1M HCl

was used to extract detrital apatite and other inorganic phosphorus

(DA + IP). Finally, the samples were sintered at 550°C, and 1M HCl

was used to extract the phosphorus, which represents organic

phosphorus (OP). All of the final extracts were diluted to a salt

content of less than 2% and then analyzed by using ICP-OES.
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2.7 Scanning electron microscope (SEM)
observation of iron minerals in sediments

Samples of freeze-dried sediments were dropped onto silicon

wafers, and sputtered coating with Pt. A field emission-scanning

electron microscope (SEM) (Carl Zeiss, Oberkochen, Germany) was

used to observe Fe-Mn minerals. The energy dispersive

spectrometer (EDS) (AZtecOne X-Max 150; Oxford Instruments,

Abingdon, United Kingdom) equipped with SEM was used to

measure the chemical composition of the minerals.
2.8 Correlation analysis of Fe-P-TOC

Spearman’s correlation coefficient (one tail) analysis was

performed using IBM SPSS Statistics 25 software to analyze the

correlation between the mean grain size Dx (50) of iron, manganese,

phosphorus, nitrogen, and total TOC. P < 0.05 was considered

statistically significant. The K-means clustering classification

principle divides similar samples into as many classes as possible

(Nakamura et al., 2009). The R Core Team, 2022 (https://www.R-

project.org/) was used to performK-means clustering analysis on iron,

manganese, phosphorus, nitrogen, Dx (50), and TOC to compare and

analyze the factors in the same group as the TOC changes. The partial

least squares (PLS) model associates two data matrices, X and Y,

through a linear multivariate model, providing quantitative modeling

of the complex relationship between the predictor variable X and

response variable Y (Wold et al., 2001). For each PLS, the cumulative

explained variation of Y (R2) was calculated to evaluate whether the

correlation was significant or not. The predictive squared correlation

coefficient (Q2) was used as the measure of robustness, and higher

predictability was marked when it was larger than 0.50 (Golbraikh and

Tropsha, 2002). SIMCA 14.1 was used to predict the partial least

squares model to explore the relative importance of potential

influencing factors of OC in Jiangsu coastal sediments. The ability of

the independent variable to predict TOC and its importance to the

dependent variable (Shi et al., 2014) rely on the variable importance of

projection (VIP). Commonly, VIP > 1 indicates that the variables are

able to predict the response variable. In contrast, VIP < 0.5 indicates

that the relationship is less significant and should be removed from the

model (Wold, 1995). Images were drawn using Origin 2018, R 4.1.3,

CorelDRAW 2021 and online software available at https://

www.chiplot.online/. All the data and standard deviations of each

layer were obtained from the average of the three cores.
3 Results

3.1 Geochemical profile of sedimental
components and TOC

The sediments are primarily composed by fine silt. With increasing

depth, the median particle size overall decreased (Figure 2A). In the

profile, the contents of sand, silt, and clay ranged from 5.05%–19.43%,

76.89%–89.86%, and 2.61%–6.37%. The silt content at most depths
frontiersin.org
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exceeded 80% (Figure 2A), while the sand content was generally less

than 17%. The pH of the pore water ranged from 7.45–8.48, with an

average of 7.83. At depths of 40–50, 80–90, and 100–110 cm, the pH of

the adjacent layers fluctuated (Figure 2B).

The TOC of sediments ranged from 1.03-2.10 g/kg, with an

average of 1.44 g/kg (n = 51), a maximum at 100–110 cm, and a

minimum at 120–130 cm. Its content is similar to that of most

coastal zones(Fang and Wang, 2021; Xia et al., 2022), but it’s

significantly lower than that of terrestrial soil environment (Yan

et al., 2021; Shi et al., 2022). The N was 0.20-0.44 g/kg, with a

maximum at 160–170 cm and a minimum at 120–130 cm. The

TOC/N ratio ranged from 3.32–6.32 with an average of 4.45 (n =

51). The TC/N ratio ranged from 22.04–46.27 with an average of

31.61 (n = 51), a maximum at 130–140 cm, and a minimum at 160–

170 cm. The TOC/N ratio fluctuated significantly compared with

the TC/N ratio, especially in the facultative anaerobic layer (30 cm)

where redox conditions change greatly (Figure 2C). A TC/N

ratio >12 indicates that the main source of organic matter is

terrigenous organic matter, while a TC/N ratio between 6–9

indicates that the main source is the sea (Cifuentes et al., 1996).

Therefore, the organic matter in the sediments here was mainly

derived from terrestrial sources.
3.2 Vertical distribution of iron speciation

According to the sequential extraction of iron, the total iron

content in the profile was scopes from 987.9 mg/kg to 2900.7 mg/kg.

The reducible oxides Feox was predominant (62.2%–79.4%), while

the Fecarb, FeMag, and FePy were 6.9%–17.9%, 6.6%–11.5%, and

4.1%–9.0%, respectively. The Ex-Fe content was the lowest,

accounting for 0.5%–1.4%. Despite being low, the Ex-Fe content

fluctuated the most with the depth (Figure 3). The Fecarb content

decreased with increasing depth, whereas Feox, FeMag, and FePy
accumulated gradually (Figure 3). Meanwhile, Mn content existed

with extractable iron minerals increased with increasing depth,

which might indicate that manganese was firstly dissolved and

released into pore water, and then fixed by iron oxides as the iron

minerals was reduced. At the profile bottom of 160–170 cm, iron

oxide contents still were the highest, which may be due to microbial

mineralization (Figure 3).
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Based on SEM observation, Fe-rich or Mn-rich carbonate, iron

oxides, and pyrite framboids were observed at the redox interface of

40–50 (Figure 4A) and 70–100 cm (Figures 4B–F), while Fe-rich clay

minerals were the primary carrier minerals at depths of 130–140

(Figure 4G) and 160–170 cm (Figure 4H). At the redox interface at a

depth of 40–50 cm, flaky iron-rich carbonates occurred along the

edge of the sand matrix, such as the observed cubic regular crystalline

iron-rich carbonates (Figure 4A), which is consistent with the

observation of Kontny et al. (2021). However, at this depth, little

manganese was detected in these iron carbonates (Figure S2-1). At

depths of 70–80 cm, iron mineral species were abundant, including

granular iron carbonates with high Mg and Mn adhered to the edge

of the sand matrix (Figures 4B, C; Figure S2-4), pyrite framboids with

diameter of about 5–20 mm (Figure 4D). Iron carbonates with higher

Mg were also found at 80–90 cm (Figure 4E). At depths of 90–100

cm, the Fe-carbonate changed into plate-shape (Figure 4F) and

contained much higher Mn content (Figure S2-6), the EDS analysis

indicated the formation of siderite (Liu et al., 2019). We found there

wereMg-rich siderite, Mg-Mn-rich siderite andMn-rich siderite. The

Mn-rich siderite likely formed at deep. Meanwhile, the SiO2 particles

became finer with increasing depth. At depths of 160–170 cm, various

Fe-containing clays mainly occurred on the surface of the sandy

matrix (Figure 4H). According to the XRF analysis (Figure 4I), the

relatively high Mn contents were observed at the depths of 70–80,

110–110, and 160–170 cm.
3.3 Vertical distribution of phosphorus

The total phosphorus (TP) content in sediments ranged from

337.4–578.0 mg/kg, with an average of 454.4 mg/kg. Inorganic

phosphorus was domina t ed (98 . 42%–99 . 99%) , and

organophosphorus content was relatively low (0.3–7.3 mg/kg). The

Ex-P content was 3.3–3.7 mg/kg, only accounting for a very low

proportion (0.58%–1.02%). With the increase of depth (<100 cm), Ex-

P was released. The PCDB content was 22.6–249.6 mg/kg, Bio-P content

was 128.9–286.8 mg/kg, and detrital apatite plus other inorganic

phosphorus (DA+IP) was 133.0–224.1 mg/kg, which accounted for

5.36%–47.28%, 26.71%–49.62%, and 25.19%–55.00% of TP content,

respectively. The Bio-P and DA+IP were the main forms of

phosphorus. The OP mainly distributed below 50 cm (Figure 5).
B CA

FIGURE 2

Vertical profile distribution of particle size of sediment (A); vertical pH changes of pore water (B); Changes of total organic carbon (TOC) and carbon
ratio to nitrogen (C/N) (C).
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3.4 Correlation of TOC and clustering of
the parameters

Using SPSS bivariate Spearman test results, TOC was positively

correlated with Fecarb (r = 0.495, P = 0.022), FePy (r = 0.542, P =

0.012), Mn (r = 0.419, P = 0.047), PCDB (r = 0.471, P = 0.028), and N

(r = 0.554, P = 0.011) and negatively correlated with DA+IP (r = –

0.427, P = 0.044) and Dx (50) (r = –0.418, P = 0.047) (Figure 6A;

Table S2).

According to the K-means clustering analysis and TOC

occurrence correlation index, the final clustering of relevant

indicators produced three clusters. Ex-Fe, Mn, Ex-P, OP, N, Dx
Frontiers in Marine Science 06
(50), FePy, FeMag, and PCDB were in the same cluster as TOC

(Figure 6B). Additionally, Fecarb, DA+IP, and Bio-P were in the

same cluster, TFe and Feox were in the other cluster (Figure 6B).
4 Discussion

4.1 Correlation between TOC and
iron states

Most studies have discussed the mechanism for stabilizing TOC

by iron minerals in continent soil and in the lakes, salt marsh
FIGURE 3

Distribution of different speciations of iron minerals at vertical profile. Ex-Fe represents exchangeable iron, Fecarb represents low-crystallinity Fe-
bearing carbonates, Feox represents easy-reduced iron oxide, FeMag represents high-crystallinity magnetite, FePy represents high crystallinity. Non-
reactive pyrite, TFe represents the total content of iron minerals, and Mn represents the occurrence of manganese hosted in iron minerals.
FIGURE 4

Emission-scanning electron microscope (SEM) images of different iron speciations in vertical profile. (A) : 40-50 cm; (B–D): 70-80 cm; (E): 80-90
cm; (F): 90-100 cm; (G): 130-140 cm; (H): 160-170 cm and (I): Normalized relative abundance of partial major elements based on X-ray
Fluorescence Spectrometer data.
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wetlands, or ocean sediments (Lalonde et al., 2012; Ma et al., 2018;

Reichenbach et al., 2023; Zhao et al., 2023). The TOC sequestration

controlled by iron minerals is complicated and strongly related to

the redox conditions of sediments (Hartnett et al., 1998;

Hemingway et al., 2019). While study pointed that mineral–

organic preservation is an important missing process in current

assessments of Earth’s long-term carbon cycle (Zhao et al., 2023).

Redox conditions of coastal sediments vary greatly in vertical

profiles as terrigenous input (Anschutz et al., 2019), and Fe-

carbonates are enriched commonly due to dynamic drive of the

tide (Lapointe et al., 1992). Therefore, the correlation between

different speciations of iron minerals (TFe, Ex-Fe, Fecarb, Feox,

FeMag, and FePy) and TOC in the coastal sedimental profile is

crucial for understanding the carbon sequestration and sink.

In our study, the spearman test indicates that TOC is positively

correlated with Fecarb and FePy at 0.01 and 0.05 levels (Figure 6A).We

observedMn-Fe-rich carbonate minerals from the depth of 40–50 cm

(Figure 4A, Figure S2-1), and Fe-carbonate with high Ca and Mg

contents occurred at 80–90 cm (Figure 4C, Figure S2-4), which may

be ferrodolomite (Wen et al., 2007). Fe-carbonate is generally formed

in anaerobic sediments mediated by microbial dissimilatory and

chemical reduction of Fe(III), accompanied by the transformation

of organic matter (Lovley, 1991; Thamdrup, 2000). And high
Frontiers in Marine Science 07
concentrations of goethite, limonite and sulfide, and small amounts

of hematite and ferromanganese oxides are formed in the carbonate

sediments (Ferguson et al., 1983). Recent studies suggested that the

stability of TOC fixed by Fecarb may be transformed due to Fe(III)

reduction and Fe(II) oxidation, which will further affect the stability

of TOC-Fecarb (Ma et al., 2022). Therefore, we hold the opinion that

the formation and occurrence of Fecarb in sediments indicate TOC

sink associated with symbiosis with more iron hydroxide.

The chemical zones in the sediment are named the top aerobic

oxidation zone, nitrate reduction zone, manganese reduction

zone, iron reduction zone, sulfate reduction zone, and

methanogenesis zone in sequence (Treude et al., 2014). The type

of some authigenic minerals (minerals formed after the detritus

has sunk) can indicate REDOX conditions and pH (Kerr et al.,

2018). At depths more than 60 cm, the extent of transformation of

amorphous iron minerals to high crystalline minerals gradually

increased. Pyrite framboids presented at a depth of 70–100 cm

(Figure 4D) in the sulfate reduction zone and methanogenesis

zone, and TOC content reached a peak of 2.10 g/kg at depths of

100–110 cm (Figure 2). Formation of pyrite occurred in the anoxic

environment due to sulfate reduction (Sweeney and Kaplan, 1973;

Canfield, 1989) and in methanogenesis zone coupled with sulfur

to form pyrite (Wang et al., 2022). Earlier studies have
BA

FIGURE 6

Correlation between TOC and different parameters of sediments. “*” and “**” indicated significant correlations at P < 0.05 level and P <0.01 level
respectively (A). K-means clustering analysis results of different parameters (B).
FIGURE 5

Distribution of different forms of phosphorus at vertical profile. Ex-P represents exchangeable or loosely sorbed phosphorus, PCDB represents iron-
bound phosphorus, Bio-P represents authigenic apatite, CaCO3-bound P and biogenic apatite, DA+IP represents detrital apatite plus other inorganic
phosphorus, OP represents organic phosphorus, and TP represents total phosphorus.
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demonstrated that an increase in TOC inhibits the Formation of

Fe exchange by decaying sulfate reduction in sediments (Raiswell

and Canfield, 1998). So we suggested that FePy indicates TOC sink

in a redox range in which the accumulation of TOC is favored due

to the low energy efficiency for its mineralization.

Recent reported that 25–62% of total reactive iron, which

generally refers to exchangeable, low-crystallinity Fe-bearing

minerals, reducible iron oxides (Canfield, 1989; Krom et al.,

2002), are responsible for transferring a large quantity of TOC to

the carbon sink (Barber et al., 2017). However, our study found that

Feox was not significantly correlated with TOC at 0.01 and 0.05

levels (Figure 6A), although the reducible oxides Feox predominated

62.2%–79.4% in TFe (Figure 6A). The content of Feox (0.98–2.99 g/

kg) was surplus compared with TOC transition consumption (1.03-

2.10 g/kg) and our analysis is that only part of Feox participates in

the oxidation transformation and stable preservation of TOC, so the

indication absence of Feox on TOC source-sink due to its abundance

relative to TOC content. During coprecipitation of TOC with Feox,

TOC is sequestered via adsorption and incorporation with mineral

particle (Lalonde et al., 2012). Multilayers of TOC or

macromolecular OC-Fe complexes to preserve TOC when particle

surfaces become saturated (Chen et al., 2014; Li et al., 2023).

Previous study also reported that there was no correlation

between TOC fractions and pH, Feox(1.7-4.2 g/Kg), or Al oxides

Alox (1.7-4.2 g/kg) in topsoils (0–20 cm) in subtropical China, while

effects of Feox on soil properties was significant (Mao et al., 2020),

and the specific mineralogical properties and reactivity determine

TOC stocks in tropical forest and cropland and was constrained by

soil mineralogy (Reichenbach et al., 2023). In additional, recent

study found that maybe only carboxyl-rich TOC coprecipitated

with ferrihydrite becomes more stable in the solid phase (Zhao et al.,

2022), and in turn TOC occurrence can delay the conversion of Fe

(hydroxyl) oxide to iron minerals with higher crystallity (Pasakarnis

et al., 2014). The content of Feox (0.98–2.99 g/Kg) is not very surplus

compared with TOC transition consumption (1.03-2.10 g/kg)

(Figures 2, 3). Our analysis is that Feox is very reactive, and only

part of Feox participates needed in the oxidation transformation and

stable preservation of TOC. We suggested that the non-significant

contribution of Feox to on carbon sink–source in coastal sediments

mainly related to surplus and strong reactivity.

For exchangeable iron (Ex-Fe) is metastable on geological time

scales and is a crucial factor for long-term organic carbon storage

(Lalonde et al., 2012). Large amounts of TOC in seafloor sediments

have been shown to bind to Ex-Fe rather than be controlled by

autogenic minerals (Faust et al., 2021). In this study, the Ex-Fe was

only 0.5%–1.4% (Figure 3). However, TOC occurrence can delay the

conversion of Fe(hydroxyl) oxide to iron minerals with higher

crystallite and inhibits the electron transfer between the Ex-Fe in

the liquid phase and Fe(III) in solid phase (Zhao et al., 2022). A

previous report also suggested that carbon in the minerals may be

more mobile and less stable than we previously thought due to iron

minerals remaining dynamic and mixed with Ex-Fe in the

surrounding liquid phase (Pasakarnis et al., 2014). So we

maintained that Ex-Fe was also a vital TOC sink favor factor due

to its conducive to the crystallization of iron minerals. Moreover,

the low active iron FeMag, Ex-Fe were grouped into the same
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category with FePy and TOC in K-means cluster analysis

(Figure 6B). So we suggested that FeMag may be correlated with

TOC sink as for its low activity.

In addition to Fe(III), Mn(III/IV) minerals strongly interact

with organic matter in marine sediments (Johnson et al., 2015; Fang

and Wang, 2021). The Mn content associated with extractable iron

(987.9–2900.7 mg/kg) was about 20.8–46.2 mg/kg (Figure 3), and

was positively correlated with TOC (Figure 6). K-means cluster

analysis further shows that manganese and TOC were similar

(Figure 6B), indicating that this occurrence of manganese

contributed to the TOC deposition. Therefore, we propose that

Ex-Fe, Fecarb, FePy, and manganese are favorable for organic carbon

sink in coastal sediments. The correlation between TFe, FeMag, Feox,

and TOC cannot be directly determined at the P value of 0.05 to

0.01 level (Figure 7).
4.2 Different forms of phosphorus
correlated with TOC

Over the past 30 years, coastal aquaculture industries and

terrestrial inputs have contributed to the eutrophication or over-

eutrophication of the coastal environment (Smith and Schindler,

2009). According to Berbel et al. (2015), TP between 495–1300 mg/

kg in estuarine sediments indicates moderate pollution. The TP

extracted from the sediments in the studied area was 337.4–578.0

mg/kg, therefore, the TP status can be classified as moderate

eutrophication. We found that Bio-P and DA+IP were the main

contributors to sediment TP (Figure 5). DA+IP is predominantly

from terrestrial weathering, whereas Bio-P is derived from

fluorapatite phosphorus formed by biological metabolism,

bioclastic mineralization, and early diagenesis (Gong and Fan,

2010). This indicates that the main sources of phosphorus

eutrophication in this area were caused by terrestrial and likely

aquaculture input. In addition, active phosphorus (PCDB+OP) is

used to characterize the potential phosphorus release from the

sediments (Ruban et al., 2001b), the terrestrial sourced PCDB in this

study is mostly as high as 50 mg/Kg. Meanwhile, Ex-P is the most

active form of phosphorus in sediments as it can easily enter the

overlying water (Slomp et al., 1996; Ranjan et al., 2011). The

measured bioavailable phosphorus in the sediments was 25.7–
FIGURE 7

Correlation coefficients between different forms of Fe/P/Mn and
TOC. The solid bar chart indicated that the variable was significantly
correlated with TOC, and the shaded bar chart was not significantly
correlated with TOC.
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250.6 mg/kg which accounted for 6.10%–47.5% of the TP and

indicated significant phosphorus release potential.

It has been revealed that the phosphorus load along the coastal

estuaries of China is an important factor for decreasing TOC

stability in sediments (Dan et al., 2021). Therefore, investigating

the phosphorus load in coastal zones is crucial for accurately

assessing the source and sink trend of marine “blue carbon”. In

the studied coastal sediments, different forms of phosphorus in

coastal aquaculture areas correlate differently with TOC. TP and

PCDB are positively correlated with TOC, which is consistent with

the result reported by Jiang et al. (2014), and the K-means clustering

results confirmed that Ex-P, PCDB, and OP can change in the same

category as the TOC (Figure 6B). PCDB and OP exhibit high activity

and bioavailability (Ruban et al., 2001a; Ruban et al., 2001b; Xie

et al., 2011). Previous studies have also confirmed that PCDB has

some impact on the eutrophication of overlying water with the

alienation of iron oxides (Ruttenberg, 1992), and iron oxides are the

main carrier in sediments (Hyacinthe et al., 2006; Fang and Wang,

2021). The phosphorus adsorption capacity gradually decreases

with an increase in pH (Shang et al., 1992). In this study, the pH

of pore water ranged in 7.45~8.48, PCDB content was thus low in the

layers at 10–20, 80–90, and 100–110 cm, where the pH of pore water

was higher than 8.00 (Table S1; Figure 5). When the PCDB content is

high, the TOC tends to be retained, and vice versa. And PCDB, and

Bio-P favored TOC sink due to their high activity and

bioavailability on Fe mineral formation.

TOC is negatively correlated with DA+IP (Figure 6A). Studies

indicate that DA+IP shares a slight influence of the terrestrial in

coastal sediment (Zhou et al., 2016), and it is a crucial P sink

refractory in ocean sediment (Ni et al., 2015), which may have a

lower tendency to participate in ferric oxyhydroxides transformation

than high activity and bioavailability release and re-adsorption P

(Chacon et al., 2006; Wen et al., 2023). So we suggested that higher
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content of DA + IP, and OP indicated TOC source could contribute

to sharing the terrestrial’s slight influence and a lower tendency to

participate in ferric oxyhydroxides transformation.
4.3 Main factors influencing transition from
source to sink of TOC

Controlling the TOC sequestration process in sediments is

complex. Different speciations of Fe, Mn, P, grain size, and redox

conditions are key regulating factors for TOC sequestration

(Kothawala et al., 2021; Ma et al., 2022). Most studies have

proposed controlling mechanism, which mainly focused on one

or a few factors. However, the mechanism coupled with several

factors have been hardly discussed. The PLS model is a typical

prediction model for the primary and secondary effects of multiple

factors on dependent variable changes (Wold et al., 2001). The

results showed that PLS had a good predictive fit for TOC

(Figure 8B), with a cumulative explanatory variation ratio of TOC

as high as 84.5% (Table S3). The factors affecting TOC were ranked

according to importance as follows: TIC > clay > Mn > FePy > TP

>PCDB > TFe> Ex-P >FeMag > Bio-P > Feox> N > Fecarb > DA+IP >

Ex-Fe > OP. Among them, the VIP values of TIC, clay, Mn, PCDB,

FePy, and TP are all greater than 1, indicating that they are all

important factors affecting the occurrence of TOC (Figure 8A). In

addition, the PLS model shows a significant negative relationship

between Dx(50) and TOC. Clay content has a significant positive

relationship with TOC (VIP > 1) (Figure 8), which is consistent with

previous studies showing that clay enrichment favors a higher TOC

(Gao et al., 2008; Wang et al., 2009). N is significantly positively

correlated with TOC, probably due to the direct condensation

reaction with TOC, making it difficult for microbe to consume

TOC (Janssens et al., 2010).
B

A

FIGURE 8

PLS model of TOC with different influencing factors in sediments (A). The histogram showed the variable importance of projection (VIP) for each predictive
variable; The dot plot showed the regression coefficients of each influence factor. The red solid line, blue solid line, and black dashed line represented
different thresholds (VIP=1, VIP=0.5, and RC=0). And the comparison between the predicted results of the PLS model and the actual results (B).
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So combining correlation and PLS model prediction results, we

suggested that the high contents of FePy, Mn, FeMag, and Fecarb
indicate the conversion of TOC to the sink, which is in accordance

with previous studies (Tian et al., 2011; Chalmers and Bustin, 2012;

Reithmaier et al., 2020; Li et al., 2021; Zhang et al., 2022). The high

Feox is also consistent with the conversion of TOC to the source, but

the non-siginificant indication of Feox on TOC source-sink is due to

its abundance relative to TOC content, because only part of Feox
participates in the oxidation transformation and stable preservation

of TOC. For different forms of phosphorus, the high contents of

PCDB, Ex-P, and Bio-P represent the transformation of TOC from

source to the sink, while the high DA+IP and OP represent the

reverse transformation. However, the TP load will lead to the

increase of DA+IP and Bio-P simultaneously, the source and sink

conversion of TOC could not be directly evaluated here. In addition,

Feox and PCDB have opposite implications for the source-sink nature

of TOC. In the anaerobic iron oxide dissimilated reduction layer,

PCDB adsorbed on iron oxides will be released into pore water

(Jansson, 1987; Parker and Beck, 2003), and TP eutrophication

increases. So, the TOC in the redox transition layer with high Feox
would convert into the sink. Meanwhile, larger Dx(50) indicates the

transformation of TOC to the source, while higher N promote the

transformation of TOC to the sink.
5 Conclusions

Iron minerals and phosphates are sensitive factors affecting

TOC preservation, but the mechanisms to explain how to effect

TOC source-sink transformation still need to be improved. We

obtained the following findings. The TFe content was 987.9–2900.7

mg/kg, and Feox accounted for 62.2%–79.4%. The TP of the coastal

sediments ranged from 337.4–578.0 mg/kg with moderate

phosphorus load-release potential, and DA+IP and Bio-P were

the leading phosphorus components. Our study suggested that

Fecarb, FePy, Ex-Fe, FeMag have the positive indication for TOC

sink mainly associated with symbiosis more iron hydroxide,

efficient mineralization, conducive crystallization, and low

activity, respectively. While non-significant presentation of Feox
on TOC source-sink is due to its surplus and strong reactivity. The

occurrence of manganese contributed to the TOC deposition due to

the strong interaction between Mn(III/IV) minerals and TOC. And

PCDB, and Bio-P favored to indicate TOC sink due to their high

activity and bioavailability on Fe mineral formation. But higher

content of DA+IP, and OP indicated TOC source could be

attributed to the slight influence of the terrestrial and lower

tendency to participate in ferric oxyhydroxides transformation.

Information gained here has important implications for

understanding mechanisms and reveals that the control

mechanism of TOC environmental occurrence involves the

transformation of iron oxide minerals and phosphorus, which

forms under the disturbance of human activities.
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