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The complex and variable oceanic environment challenges channel modeling of

Underwater Wireless Optical Communication (UWOC) systems. Most of the

classical modeling methods focus mainly on the water environment and

ignore the effect of communication equipment on signal transmission, thus

making it difficult to model the UWOC channel’s complicated characteristics

comprehensively. In this work, a UWOC channel emulator based on Deep

Convolutional Conditional Generative Adversarial Networks is established and

verified to address the challenge, which can effectively learn the characteristics

of channel response and generate emulated signals with randomness like a real

UWOC system in a practical application environment. Compared with the

approaches based on multi-layer perceptron and convolutional neural

network, the experimental results of the proposed method indicate

outstanding performances in time domain, frequency domain and universality

with different turbidity levels, respectively. This approach provides a new idea for

applying deep learning techniques to the field of UWOC channel modeling.

KEYWORDS

Underwater Wireless Optical Communication, Generative Adversarial Networks, deep
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1 Introduction

Nowadays, with the gradual deepening of marine research, there has been a significant

increase in underwater activities such as marine environment monitoring, offshore oil

exploration, underwater archaeology, and underwater experimental data collection, so a

reliable and high transmission rate underwater wireless communication technique is

urgently needed (Zeng et al., 2017). Acoustic communication can no longer meet the

growing demand for high-speed rates due to its low bandwidth and high transmission

delay. Additionally the transmission distance of underwater radio frequency (RF)

communication is suppressed because of the skin effect of radio waves (Kaushal and

Kaddoum, 2016; Miramirkhani and Uysal, 2018). While utilizing the Underwater Wireless
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Optical Communication (UWOC) technique, which features high

bandwidth, fast transmission rate, good confidentiality and low

cost, is gaining more and more attention and has broad application

prospects (Chi et al., 2015).

When light propagates through seawater, photons will

randomly collide with water molecules or other particles in

seawater and deviate from the original propagation direction,

leading to a phenomenon of beam divergence, thus causing a loss

of optical power at the receiving end. Meanwhile, the farther the

distance of light transmission, the more severe the beam divergence

becomes, while the loss of the received optical signal directly affects

the communication distance and transmission rate of the UWOC

system (Mobley, 1994; Gabriel et al., 2013). Furthermore, the

attenuation characteristics of the UWOC channel to the optical

signal vary with different marine environmental parameters, such as

depth and water quality. The complicated absorption and scattering

characteristics of the same channel for various wavelengths of light

also vary greatly (Zeng et al., 2017). Therefore, the complexity of the

UWOC channe l pose s cons ide rab l e d i fficu l t i e s f o r

channel modeling.

In recent years, with the development of theory, optoelectronic

technology and the improvement of computer performance, the

research on UWOC channels has made remarkable progress.

Sermsak Jaruwatanadilok modeled the impulse response of the

UWOC channel using vector radiative transfer theory which

includes multiple scattering effects and polarization. And the

scattering effects were quantified as a function of distance and bit

error rate (BER) (Jaruwatanadilok, 2008). Brandon M. Cochenour

et al. proposed the Beam-Spread Function (BSF) to estimate the

impact of scattering effects on the received signal power in the

underwater light propagation process (Cochenour et al., 2008).

Chadi Gabriel et al. quantified the UWOC channel impulse

response for different water types and link distances using the

Monte Carlo approach (Gabriel et al., 2013). Shijian Tang et al.

presented a closed-form expression of double Gamma functions to

model the UWOC channel impulse response, which fits well with

the Monte Carlo simulation results (Tang et al., 2014). Also using

numerical Monte Carlo simulations, Sanjay Kumar Sahu and

Palanisamy Shanmugam obtained a more accurate UWOC

channel model by improving the scattering phase function(Sahu

and Shanmugam, 2018).

The aforementioned studies mainly focus on the loss of optical

signals during the propagation in different water types. Actually, in

the process of signal transmission, it is inappropriate to ignore the

effect of optical and electrical devices at the transmitter and receiver

ends, such as the dark current noise of the photomultiplier tube

(PMT), the impulse response of the electronic amplifier, the

nonlinear response of the laser, the errors in digital-to-analog (D/

A) or analog-to-digital (A/D) conversion and so on. Therefore, a

realistic and reliable UWOC channel model is required to

completely capture the effects of all parts of the communication

system on signal transmission, which is a complex process that

neural networks are ideally suited to emulate. Yiheng Zhao et al.

proved the feasibility of utilizing neural networks for UWOC

channel modeling by proposing a channel emulator called two
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tributaries heterogeneous neural network (TTHnet) (Zhao et al.,

2019), which is based on a combined design of multi-layer

perceptron (MLP) and convolutional neural network (CNN). The

1.2m saltwater channel experiments verified the TTHnet regarding

both spectrum and BER mismatch, realizing more accurate

performance than other channel emulators.

Generative Adversarial Networks (GAN) (Goodfellow et al.,

2014), composed of a generator and a discriminator, is one of the

most critical research directions in deep learning. Owing to its

outstanding data generation capability, GAN has been widely used

in computer vision and natural language processing (Pan et al.,

2019). In order to generate samples with specific properties, Mhdi

Mirza and Simon Osindero proposed a Conditional Generative

Adversarial Network (CGAN), where conditional information is

added to guide the GAN generator to generate samples (Mirza and

Osindero, 2014). The content and structure of the conditional

information can be flexibly changed according to the application

scenario. For instance, CGAN has been utilized for image resolution

enhancement (Ledig et al., 2017) and semantic segmentation of

images (Souly et al., 2017), as well as for generating images from text

descriptions (Reed et al., 2016; Liang et al., 2017). Apart from

applications in computer vision, previous studies in the field of

communication have proved that GAN is an effective approach for

channel modeling. Davide Righini et al. proposed an approach to

generate channel transfer functions for power line communication

using Mixture Generative Adversarial Nets (Hoang et al., 2018),

which outperforms traditional modeling methods (Righini et al.,

2019). In Ref. (Ye et al., 2020), CGAN was employed to model

channel effects in end-to-end wireless communication system, and

simulation results show that the CGAN approach is effective in

additive white Gaussian noise (AWGN) channels, Rayleigh fading

channels, and frequency-selective channels. Yudi Dong et al. also

developed a CGAN-based channel estimation method for multiple-

input multiple-output (MIMO) mmWave wireless communication

systems, which has better robustness and reliability compared with

conventional methods and other deep learning methods (Dong

et al., 2021).

In this article, a Deep Convolutional Conditional Generative

Adversarial Networks (DCC-GAN) method for modeling UWOC

channels is developed and experimentally tested at different

turbidity waters and various transmission rates. The performance

is evaluated by spectrum mismatch, BER mismatch and correlation

coefficient. The experimental results show that the generator can

generate emulated signals with randomness like the real UWOC

channel, proving that our proposed model can learn and analyze the

characteristics of the channel well. To the best of our knowledge,

this is the first study to apply GAN to emulate UWOC channels,

which has great potential for exploration in channel modeling.

The rest of the paper is organized as follows. In Section 2, the

theoretical principle of the proposed channel emulator is presented,

and then the architecture of DCC-GAN is described in detail. In

Section 3, the experimental setup for making UWOC datasets is

introduced. In Section 4, a series of experiments are carried out to

demonstrate the effectiveness of the proposed method. Finally, a

brief conclusion is given in Section 5.
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2 The proposed channel emulator
based on DCC-GAN

2.1 GAN and CGAN

GAN, as its name implies, is a generative network model for

learning data distribution in the way of adversarial training, where

the aim is to learn a model that can produce samples close to the

target distribution. In this article, the DCC-GAN is applied to

model the distribution of the UWOC channel output based on

a GAN.

The GAN system consists of two parts, namely the generator G

and the discriminator D. The input to the generator is a noise

sample z which is subject to a specific prior distribution pz, e.g.,

Gaussian distribution. Then, the generator transforms the noise

sample z into a generated sample G(z). The discriminator takes

either a real sample x from the target distribution pdata or a

generated sample as input and returns the probability that the

input comes from the target distribution rather than the generator.

During the training stage, the objective of the discriminator is to

learn to distinguish whether the current sample is from the real

dataset or the data generated by the generator, while the objective of

the generator is to generate fake samples that are as similar as

possible to the real samples to fool the discriminator. If the

discriminator can successfully distinguish between the two types

of samples, then this information is fed back to the generator so that

the generator can learn to generate samples more like the real

samples. As the number of adversarial training epoch increases, the

learning ability of the generator and the discriminating ability of the

discriminator become stronger and stronger. Finally, the training

progress ends when the discriminator can no longer discriminate

between the real samples and the generated fake ones better than

random guessing.

Generally, denote the parameter sets of the generator and

discriminator as qG and qD, respectively, the objective functions

of the generator and discriminator can be mathematically expressed
Frontiers in Marine Science 03
as follows:

LG = min   
qG

 Ez∼pz (z)½log  (1 − D(G(z)))� (1)

LD = max   
qD

 Ex∼pdata(x)½log  D(x)� + Ez∼pz (z)½log  (1 − D(G(z)))� (2)

The objective of G is to maximize the output of D when the

input to D is G(z), while the objective of D is to return a high value

when the input is a real sample x and a low one when the input is G

(z), thus forming an adversarial training mechanism.

As shown in Figure 1, the GAN can be extended to a CGAN

model if a conditional information y is imposed on the generator

and discriminator. The conditional information attaches

constraints to the original GAN so that the generator can

generate data under the guidance of the conditional information,

which addresses the issue of uncontrollable sample categories

generated by the original GAN. Then, the optimization functions

of the generator and discriminator become:

LG = min   
qG

 E~x∼pg (~x)½log  (1 − D(~xjy))� (3)

LD = max   
qD

 Ex∼pdata(x)½log  D(x y)� + E~x∼pg (~x)½log  (1 − D(~x
���

���y))�
(4)

Where, pg is the generator model distribution implicitly defined

by ~x = G(zjy), z ∼ pz(z).

CGAN is employed in the proposed UWOC channel emulator

to simulate the output signal with the given conditioning

information on the transmitted signal.
2.2 Architecture of DCC-GAN

Although the original GAN is a powerful generative model, it

always suffers from difficulties in training and poor quality of the

generated results. By combining GAN with CNN, Deep
FIGURE 1

Structure of CGAN.
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Convolutional Generative Adversarial Networks (DCGAN)

(Radford et al., 2016) can significantly improve the quality of the

generated results by exploiting the powerful feature extraction

ability of two-dimensional convolutional layer and also find an

appropriate network structure for stable training by improving

CNN, thus remarkably overcoming the shortcomings of the

original GAN. In this work, the hierarchical one-dimensional

convolutional layers are used to replace the original MLP.

Therefore, the proposed method is called “Deep Convolutional

Conditional GAN”. It is appropriate to employ convolutional layers

since convolutional operations between signals can represent the

channel response. The specific parameters of DCC-GAN are shown

in Table 1, where K denotes the batch size, and the dimension of the

noise sample z is 8. Every 100 adjacent signals are sequentially input

to the network, with each signal containing 20 sampling points.
2.3 Improvement of the objective function

According to Ref. (Goodfellow et al., 2014), minimizing the

original GAN’s loss function is equivalent to minimizing the

Jensen–Shannon (JS) divergence between the target distribution

pdata and the generator model distribution pg, which tends to cause

the gradients to vanish when the discriminator saturates. This

training difficulty arises because the JS divergence is potentially

not continuous for the generator’s parameters (Arjovsky et al.,

2017). So, the Earth-Mover (also called Wasserstein-1) distance W

(q, p) is introduced to replace JS divergence in Wasserstein GAN

(Arjovsky et al., 2017), where the discriminator is also called a critic.

Using the Kantorovich-Rubinstein duality, the critic loss function

can be obtained as Eq. (5) where Z is the set of 1-Lipschitz
Frontiers in Marine Science 04
functions.

min   
qD∈Z

 Lcritic

= min   
qD∈Z

  E~x∼pg (~x)½D(~x y)� − Ex∼pdata(x)½D(x
�� ��y)�

n o
(5)

In this case, minimizing Lcritic is equivalent to minimizing the

Wasserstein-1 distance W(pdata, pg) by optimizing the generator’s

parameters. Nevertheless, to enforce the Lipschitz constraint on the

critic, Wasserstein GAN suggests clipping the weights of the critic to

a compact space, which may result in either vanishing or exploding

gradients when the clipping threshold is not tuned carefully. To

avoid undesirable behaviors, a soft version of the constraint called

the Wasserstein GAN Gradient Penalty (WGAN-GP) algorithm

(Gulrajani et al., 2017) is proposed as an alternative way to enforce

the Lipschitz constraint, and the gradient penalty metric Lgp is

defined as:

Lgp = lEx̂∼px̂ (x̂ )½(∇x̂ D(x̂ jy)2 − 1)2� (6)

Where, px̂ is defined as sampling uniformly along straight lines

between pairs of points sampled from pdata and pg, l denotes

penalty coefficient.

In this article, the WGAN-GP algorithm is introduced to

improve the training instability of DCC-GAN. The objective

function of D is then reformulated as a combination of critic loss

and gradient penalty metric, which is described as:

LD = min   
qD

  Lcritic + Lgp
� �

(7)

And the objective function of G is modified as:

LG = min   
qG

 E~x∼pg (~x)½−D(~xjy)� (8)

In the experiments, l is set to 5, which works well on the

proposed DCC-GAN and the UWOC datasets.
2.4 Training details of DCC-GAN

The improvement in training instability not only allows us to

enhance sample quality by experimenting with a broader range of

network architectures but also requires little hyperparameter

tuning. The training procedure of DCC-GAN is illustrated in

Algorithm 1 in detail. The training process aims to obtain an

ideal generator architecture, which can model the distribution of the

UWOC channel output, that is, to realize the function of the

channel emulator. In each iteration, the generator and

discriminator training processes are carried out alternately. When

one model is trained, the other one is fixed. The real data can be

obtained from the transmitted signal through the real channel,

while the fake data is obtained from the transmitted signal through

the generator. The loss function of Eq. (8) is utilized to update the

generator’s parameters. The real, fake, and true-fake joint

distribution data are fed into the discriminator, respectively, with

the transmitted signal as conditional information. The parameters

of the discriminator are updated according to the loss function of
TABLE 1 Model parameters of DCC-GAN.

Type of layer Activation
function

Kernel size Output shape

Generator

Input – – K × 100 × (20 + 8)

Conv1D ReLU 5 K × 100 × 64

Conv1D ReLU 3 K × 100 × 32

Conv1D ReLU 3 K × 100 × 16

Conv1D Tanh 3 K × 100 × 20

Discriminator

Input – – K × 100 × (20 +
20)

Conv1D ReLU 5 K × 100 × 64

Conv1D ReLU 3 K × 100 × 32

Conv1D ReLU 3 K × 100 × 16

Conv1D – 3 K × 100 × 8

Dense ReLU – 64

Dense – – 1
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Eq. (7). Both models are optimized by the Adam optimizer using

stochastic gradient descent, with an initial learning rate a of 0.0002.

The initial hyperparameter values in Algorithm 1 are derived from

a previous study on RF channel modeling(Ye et al., 2020). In order

to ensure that the algorithm can handle a wide range of input data

while still converging within a reasonable number of epochs,

extensive experimentation is carried out to fine-tune these values.

Ultimately, experimental results indicate that setting l to 5 and

using a batch sizem of 20 yield the best performance. Assuming that

k represents the number of discriminator iterations per generator

iteration, the optimal convergence can be obtained in the

experiments when k is set to 6. The number of training epochs is

set to at least 200.
Fron
Require: The number of discriminator

iterations per generator iteration k, the

batch size m, the gradient penalty coefficient

λ and the learning rate α.

1: for number of training epochs do
2: for number of training iterations do

3: for k steps do
4: for i = 1,…, m do

5: Sample real signal x ∼ pdata(x), noise

variable z ∼ pz(z)

6: Sample a random number d ∼ U ½0, 1�
7: Get the transmitted signal y as

condition information.

8: ~x←G(zjy)
9:     x̂ ← dx + (1 − d )~x
10: L(i) ←D(~xjy) − D(xjy) + l(∇x̂ D(x̂ jy)2 − 1)2

11: end for

12: qD ←Adam(∇qD
1
mo

m

i=1
L(i))

13: end for

14: Sample minibatch of noise variables

fz(i)gmi=1 ∼ pz(z)

15: Sample minibatch of transmitted signal

fy(i)gmi=1
16: f~x(i)gmi=1 ←fG(z(i)jy(i))gmi=1
17: qG ←Adam(∇qG

1
mo

m

i=1
− D(~xjy))

18: end for

19: end for
ALGORITHM 1 Minibatch stochastic gradient descent training of DCC-

GAN. Assume the generator parameter qG and the discriminator parameter
qD. The default values of k=6, m=20, l=5 and a=0.0002 are used.
3 Experimental setup and details

This section describes the experimental procedure for making

the UWOC dataset in detail. To simulate the characteristics of the

UWOC channels, a 35 meters underwater laser communication

system was built. The entire experimental setup of the UWOC

system is shown in Figure 2. The main components of the UWOC

system are shown in Figure 3.
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3.1 Experimental setup

3.1.1 Transmitter
As shown in Figure 3B, a semiconductor laser (OXXIUS,

LaserBoxx-488) with an emission peak wavelength of 488 nm is

employed at the transmitter end, which meets the requirements of

blue-green light in the 450 nm to 550 nm band where the

attenuation of seawater is much less than that of other

wavelengths(Duntley, 1963). The laser has built-in driver

circuitry, which can accept analog signal input directly and adjust

the emitted optical power according to the application scenario.

3.1.2 Establishment of UWOC channel
The underwater channel for light transmission is built in a 5 m

× 1 m × 1 m water tank, shown in Figure 3A, which is filled with

clear tap water or artificial turbid water. The communication

distance of 35 m is achieved by using six reflective mirrors fixed

to the tank’s inner walls on both sides by cardan joints. The

reflection of each 5 m light path is realized by fine-tuning the

angle of the mirrors. A total propagation distance of 35 m (5 m × 7)

can be obtained, through six reflections, as shown in Figure 3D.

3.1.3 Receiver
As shown in Figure 3C, a PMT (Hamamatsu, R1527) is

employed at the receiver end, which has a spectral response in

the range 185 nm-680 nm, with an optimal spectral response of

about 400 nm, and works well with the 488 nm laser. Although the

PMT has the advantages of low noise and high gain, the output

current is still shallow, so a signal amplifier unit (AMP)

(Hamamatsu, C11184) is needed. They are powered by high

voltage and DC power, respectively.
3.2 Experimental procedure

An integral experimental setup is demonstrated in Figure 2. At

first, the non-return-to-zero on-off-keying (NRZ-OOK) modulated

signals are loaded into an arbitrary waveform generator (AWG) as

the transmitted signal. Then, the AWG performs D/A conversion of

the signals and outputs analog electrical signals to drive the laser for

intensitymodulation. Thus, optical signals for underwater transmission

can be generated. After passing through a 35m underwater channel, the

PMT detects and the AMP amplifies the optical signals, and then the

received photons are converted back into electrical signals. Afterward, a

memory oscilloscope (OSC) is employed to sample and record the

corresponding digital signals. Finally, the offline processing operations

are performed, including synchronization, demodulation, and the BER

calculation. Meanwhile, the synchronized signals are adopted as the

received signal, and the received signal and the corresponding

transmitted signal are collected to make the UWOC dataset.

According to the setup of the network architecture in Figure 2,

the received and the corresponding transmitted signals are combined

to train the proposed DCC-GAN. In detail, as conditional

information, the transmitted signal is fed into the generator along

with a noise sample. Then, the generator outputs a fake received
frontiersin.org
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signal, and the discriminator will decide whether the input signal is a

real signal or a fake one from the generator under the guidance of the

transmitted signal. The generator and discriminator can find their

optimal parameters individually according to the training strategy in

Algorithm 1. When the training process finishes, the function of

emulating the UWOC channel is realized. Finally, to evaluate the

model’s generalization ability, independent samples from the test set

are employed to estimate the trained channel emulator.

This work produces a series of datasets under different

experimental conditions, and the experiment parameters are shown

in Table 2. Besides the tap water channel, two artificial turbid water

channels are also created by adding a specific quantity of Aluminum
Frontiers in Marine Science 06
Hydroxide (Al(OH)3), which is commonly used as a scattering agent.

The attenuation coefficient at wavelength 488 nm is measured to be

0.1169 m-1 (tap water), 0.2318 m-1 and 0.471 m-1 in three types of

water, respectively. Correspondingly, the transmitting optical powers

are also finely adjusted to obtain the optimal received signal.
4 Experiment results and analysis

In this section, the performance of the proposed channel

emulator is demonstrated and analyzed concerning different types

of water and various transmission rates. In detail, metrics such as
B C

DA

FIGURE 3

Components of the UWOC system. (A) Water tank. (B) Transmitter: 488nm laser. (C) Receiver: photomultiplier tube (PMT), amplifier unit (AMP),
oscilloscope (OSC), DC power supply and high voltage power supply. (D) 35 m blue-green light reflection paths.
FIGURE 2

Experimental setup and block diagram of the UWOC system and channel emulator.
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the absolute amplitude spectrum mismatch, Pearson correlation

coefficient, and the BER mismatch between each emulated received

signal and real received signal are calculated and compared.

Suppose a real received signal and its emulated signal are

denoted as X and ~X, respectively. The calculation of absolute

amplitude spectrum mismatch is described as:

spectrum mismatch(X, ~X) = abs(FFT(X) − FFT(~X)) (9)

The BER mismatch can be computed as:

BER mismatch(X, ~X) = abs(BER(X) − BER(~X)) (10)

And the correlation coefficient is defined as:

Corr(X, ~X) =
Cov(X, ~X)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(X)Var(~X)

p (11)

Where, Var( · ) is the variance, Cov(X, ~X) represents the

covariance of X and ~X.

The BER directly reflects the noise intensity of the UWOC channel,

so three typical channels with different orders of magnitude of BER,

shown in Table 3, are selected to test the performance of DCC-GAN.

To compare with conventional neural networks and demonstrate the

superiority of the generative adversarial approach, a CNN model is

designed with similar complexity. Its specific structure and parameters

are shown in Table 4. Furthermore, an MLP model is also introduced

from a previous study (Ye et al., 2017) related to wireless channel

estimation, which contains five layers and neurons in each layer are

200,500,250,120 and 200, respectively. The activation function of each

layer is ReLU, except for no activation function in the last layer. In both

models, the Adam optimizer updates the weights and the loss function

is Mean Square Error (MSE), the batch size for training is 20 and the

learning rate is 0.001.
4.1 Performance comparison in the
time domain

In engineering applications, the Pearson correlation coefficient is

often used to measure the similarity between signal sequences
Frontiers in Marine Science 07
(Ahmed, 2015). The correlation coefficient value lies from -1 to 1,

where 1 represents perfect correlation, while -1 shows a negative

correlation and 0 indicates no correlation. Figure 4 shows the

comparison of correlation coefficients of the signals generated by

the three neural network-based channel emulators in channel-1,

channel-2 and channel-3, respectively. During the training process,

the convergence rate of DCC-GAN is similar to CNN and faster than

MLP. After 200 training epochs, the correlation coefficient of DCC-

GAN is 0.99 in all cases, while the values of CNN and MLP are 0.95,

0.96, 0.95 and 0.83, 0.86, 0.84 in channel-1, channel-2 and channel-3,

respectively. Figure 5 shows the BER mismatch performance

comparison of the three network models in three channels. From

the figure, the BER mismatch performance of DCC-GAN is much

better than MLP and CNN, where the BER mismatches of DCC-

GAN-based channel emulator are 6.7%, 10.4%, 9.3% of the CNN-

based method and only 0.03%, 0.16%, 0.82% of the MLP-based

method in channel-1, channel-2 and channel-3, respectively. It

indicates that the signal waveform generated by the DCC-GAN-

based channel emulator is the closest to the real signal.

Due to the bandwidth limitation of the electro-optical devices, the

nonlinear distortion of the UWOC system increases with the

transmission rate. To estimate the proposed method at various

transmission rates, the BER versus transmission rate curves are

demonstrated in Figure 6A. When the transmission rate increases,

the BER curves of the emulated and real received signals exhibit a

same trend towards a specific increase. The maximum BERmismatch

of the DCC-GAN-based channel emulator is 0.4 dB at various

transmission rates. Hence the proposed channel emulator is

generally applicable to the variation of transmission rate.

In addition to bandwidth limitation, inappropriate working point

settings of optoelectronic devices can also cause system errors. At the

receiver, the supply voltage directly affects the PMT’s dark current

noise and gain performance, prompting the need for an appropriate

working point to optimize the output signal-to-noise ratio for each

application scenario. Figure 6B displays a comparison of BER between

the real signal of the UWOC system and the emulated signal generated

by DCC-GAN at various PMTworking points. Results show that as the

supply voltage gradually increases, the BER trend of the simulated

signal aligns well with that of the real signal, with the optimal voltage
TABLE 2 Experimental parameters.

Water Types Optical Power Attenuation Coefficient Bitrate

water type I 0.1 mW 0.1169 m-1 16 ~ 24Mbps

water type II 0.2 mW 0.2318 m-1 16 ~ 24Mbps

water type III 0.3 mW 0.471 m-1 16 ~ 24Mbps
f

TABLE 3 Parameters of three typical channels.

Channel Status Water Types Bitrate (Mbps) BER

channel-1 water type III 16 4.5 × 10-4

channel-2 water type II 20 1.83 × 10-3

channel-3 water type I 24 3.28 × 10-2
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being around 1000 V. When the voltage exceeds 700 V, the BER

mismatch does not surpass 0.72 dB, which signifies the capability of

DCC-GAN to effectively capture changes in the channel state due to

the nonlinear response of optoelectronic devices.
4.2 Comparison in the frequency domain

Features in the frequency domain can show some phenomena that

cannot be found in the time domain, so some experiments are carried
Frontiers in Marine Science 08
out to compare the spectrum of the signals. The results generated by

three neural network-based channel emulators and the real received

signal in channel-1 are shown in Figure 7A. The absolute mismatches

of magnitude between each emulated spectrum and the real one are

shown in Figure 7B for a more transparent demonstration, where the

average mismatches of MLP, CNN and DCC-GAN are 2.56, 1.14 and

0.25 dB, respectively. Figures 8, 9 show the comparison of the spectrum

performance for three channel emulators in channel-2 and channel-3,

respectively. The average spectrum mismatches are 2.38, 0.89 and 0.24

dB in channel-2, 2.53, 0.97 and 0.34 dB in channel-3, respectively.
TABLE 4 Model Parameters of CNN.

Type of layer Activation function Kernel size/Pool size Output shape

Input – – K × 100 × 20

Conv1D ReLU 5 K × 100 × 64

MaxPooling1D – 2 K × 50 × 64

Conv1D ReLU 3 K × 50 × 32

MaxPooling1D – 2 K × 25 × 32

Conv1D – 3 K × 25 × 16

Flatten – – K × 400

Dense Tanh – K × 64

Dense – – K × 2000
B CA

FIGURE 4

The performance of correlation coefficient for different channel emulators on the test set after 200 training epochs in (A) channel-1, (B) channel-2
and (C) channel-3.
B CA

FIGURE 5

The performance of BER mismatch for different channel emulators on the test set after 200 training epochs in (A) channel-1, (B) channel-2 and (C)
channel-3.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1149895
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Huo et al. 10.3389/fmars.2023.1149895
BA

FIGURE 6

BER comparison of real received signal and emulated signal at various (A) transmission rates and (B) PMT working points.
BA

FIGURE 7

(A) Spectrum comparison of real received signal and signals generated by three channel emulators in channel-1. (B) Corresponding spectrum
mismatch between the real spectrum and the generated spectrum.
BA

FIGURE 8

(A) Spectrum comparison of real received signal and signals generated by three channel emulators in channel-2. (B) Corresponding spectrum
mismatch between the real spectrum and the generated spectrum.
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BA

FIGURE 9

(A) Spectrum comparison of real received signal and signals generated by three channel emulators in channel-3. (B) Corresponding spectrum
mismatch between the real spectrum and the generated spectrum.
FIGURE 10

Comparison of DCC-GAN generated samples and real samples.
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From the mismatch curves in Figures 7B, 8B, and 9B, it can be noticed

that the mismatch of MLP is high at all frequency bands, the mismatch

of CNN is mainly clustered in the higher frequency bands, while the

mismatch of DCC-GAN is lower than the others in all bands, and

inevitable the lowest average spectrum mismatch. Obviously, the

spectrum generated by the proposed emulator is the closest one to

the real signal in all experimental channels. Therefore, the DCC-GAN-

based channel emulator can more accurately capture the characteristics

of different channels in the frequency domain.
4.3 Discussion on other advantages
of DCC-GAN

Benefiting from the diversity of samples generated by GAN, the

DCC-GAN-based channel emulator has the additional capability to

simulate the randomness of the received signal. This means that the

emulated signal generated by the proposed model will not be

identical each time for the same input signal, just like an actual

receive procedure. For example, if a certain digital sequence is

transmitted twice, two signals with slight random differences will be

received. In Figure 10, these two real signals are named true signal 1

and true signal 2. Then, the same signal is fed into the channel

emulator multiple times to check the differences. Two signals of

simulations are selected to compare with the two real received

signals. For better visualization, the relative errors of each signal to

the true signal 1 are also displayed, and the average error are 0.0302,

0.0309 and 0.0296 V, respectively. The three error curves are not
Frontiers in Marine Science 11
identical to each other, and the average error between the generated

signal and the real signal is quite close to the average error between

the real signals, indicating that the generated signals have similar

random characteristics to the real signal.

Kernel density estimation (KDE) is a non-parametric estimation

method which is commonly used in statistics to estimate the

probability density function of a random variable(O’Brien et al.,

2016). Based on the KDE approach, the comparisons of the data

distribution generated by MLP, CNN and DCC-GAN with the real

signal are shown in Figures 11A–C, respectively. The real data satisfies

a bimodal distribution with a peak-to-peak distance of 0.956 and two

half-peak widths of 0.117 and 0.125. For the above three properties,

the errors of the data distribution generated by DCC-GAN are only

0.001, 0.001 and 0.002, respectively, while the values of CNN andMLP

are 0.039, 0.128, 0.096 and 0.381, 0.483, 0.542, respectively. So it can be

clearly observed that the distribution generated by DCC-GAN

converges most approximately to the real distribution.

The above experimental results reveal that the emulated signal

and the real signal share highly similar characteristics, the DCC-

GAN-based channel emulator can not only learn the channel

distribution accurately, but also output the emulated signal with

randomness to restore the UWOC channel more realistically.
5 Conclusion

This paper proposes a novel DCC-GAN-based model to emulate

the UWOC channel more realistically, which combines the advantages
B

C

A

FIGURE 11

Comparison between the real distribution of UWOC channel and the distribution of data generated by (A) MLP, (B) CNN and (C) DCC-GAN.
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of CGAN, DCGAN and WGAN-GP algorithms to achieve high-

quality generated results and stable training. A series of evaluation

experiments regarding the spectrum, correlation coefficient and BER

have verified the universality of the proposed channel emulator on

different water channels and various transmission rates. The results

indicate the effectiveness of DCC-GAN by demonstrating superior

performance in both time and frequency domains compared with

MLP and CNN-based approaches. Besides, the proposed model can

learn the distribution of channel output more realistically to restore

the underwater communication signal. The trained model can be used

offline to generate diverse signal samples for subsequent experimental

analysis, which will offer significant savings on experimental costs and

effectively expedite the research advance of the UWOC systems.

Therefore, this study opens a promising way to apply deep learning

techniques in the UWOC channel modeling field.
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