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Whereas the vertical transport of biomass from productive surface waters to the

deep ocean (the biological pump) is a critical component of the global carbon

cycle, its magnitude and variability is poorly understood. Global-scale estimates

of ocean carbon export vary widely, ranging from ∼5 to ∼20 Gt C y – 1 due to

uncertainties in methods and unclear definitions. Satellite-derived properties

such as phytoplankton biomass, sea surface temperature, and light attenuation at

depth provide information about the oceanic ecosystem with unprecedented

coverage and resolution in time and space. These products have been the basis

of an intense effort over several decades to constrain different biogeochemical

production rates and fluxes in the ocean. One critical challenge in this effort has

been to estimate the magnitude of the biological pump from satellite-derived

properties by establishing how much of the primary production is exported out

of the euphotic zone, a flux that is called export production. Here we present a

review of existing algorithms for estimating export production from satellite-

derived properties, available in-situ datasets that can be used for testing the

algorithms, and earlier evaluations of the proposed algorithms. The satellite-

derived products used in the algorithm evaluation are all based largely on the

Ocean Colour Climate Change Initiative (OC-CCI) products, and carbon

products derived from them. The different resources are combined in a

meta-analysis.

KEYWORDS

carbon export, biological pump, satellite oceanography, ocean color, net community
production, biogeochemistry, algorithms
1 Introduction

The recirculation of major nutrients and carbon in the ocean is strongly controlled by

the vertical export of particulate organic matter from the surface ocean to the ocean’s

interior (Figure 1 and e.g. Falkowski et al., 1998; Sabine et al., 2004; Honjo et al., 2008;

Siegel et al., 2022). Marine phytoplankton transform CO2 to organic carbon via

photosynthesis with light as the energy source (Eppley, 1972; Geider et al., 1998), a
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critical biological process that is the foundation of most marine

ecosystems (Sarmiento and Bender, 1994; Pauly and Christensen,

1995). The resulting chemical energy bound as organic carbon is

used in marine food webs to build other types of biomass and as

energy for autotrophic and heterotrophic organisms. While the

carbon fixation by phytoplankton (or Primary Production, PP) in

marine ecosystems is of vital significance (e.g. Platt et al., 1989;

Pauly and Christensen, 1995; Fasham, 2003; Marinov et al., 2008;

Chavez et al., 2011), there has been a longstanding debate about

how to quantify its magnitude (Platt et al., 1989; Quay and Karl,

2010; Duarte et al., 2013; Williams et al., 2013). Methods to observe

or infer different components of primary production have been

developed (Bender et al., 1987; Cullen, 2001; Fasham, 2003) that are

valid over varying spatial and temporal domains (Balch et al., 2022),

and there are significant differences in how different researchers

define biological production (Williams, 1993; Cullen, 2001). Most

of the biomass generated by PP in the euphotic (sunlit) zone is

consumed by heterotrophs and remineralized in the upper ocean.

The remaining part is called Net Community Production (NCP)

and if aggregated over sufficiently large temporal and spatial scales,

they equate to Export Production (EP). Organic carbon resulting

from EP is transported to deeper waters by, among other pathways,

the downward vertical flux of Particulate or Dissolved Organic

Carbon (POC, DOC), often referred to as the “biological pump”

(BCP, Volk and Hoffert, 1985). See Siegel et al. (2022) for an

exhaustive discussion about the Biological Carbon Pump (BCP) and

other processes that sequester carbon from the surface ocean to

deeper waters. As with PP, the understanding of the magnitude and

spatiotemporal variability of the biological pump remains limited

(Burd et al., 2010; Britten and Primeau, 2016).

Satellite-based ocean color products have provided an

unprecedented resource to study ocean biogeochemistry and

biological oceanography with high spatiotemporal resolution and

coverage (Groom et al., 2019; McClain et al., 2022) and significant

effort has been allocated to also assess the biological pump from

space with limited success (Siegel et al., 2022). One critical challenge

has been to quantify community respiration (Westberry et al., 2012)

and to establish the ratio of PP that is exported out from the

euphotic zone (Britten and Primeau, 2016; Siegel et al., 2016; Siegel

et al., 2022). The large uncertainties associated with satellite-based

EP products has led to global-scale estimates of ocean carbon export

that vary from ∼ 5 to 20 Gt C y– 1 (Dunne et al., 2007; Henson et al.,

2011; Laws et al., 2011; Siegel et al., 2016; Siegel et al., 2022).
1.1 Fluxes and relationships

The main approach to estimate EP from remotely sensed

products is based on empirical correlations identified from

regression analysis of in-situ observations of vertical POC fluxes

in combination with properties that can be derived from satellite

(e.g. Stukel et al., 2015). This method has so far generated

algorithms with arguably limited ability to predict EP (e.g. Stukel

et al., 2015; Palevsky et al., 2016). The many challenges to estimate

export fluxes from satellite-derived properties are further

complicated by differences and inconsistencies in how EP and
Frontiers in Marine Science 02
export fluxes are defined and quantified. We will describe the

most common definitions in the following sections and

summarize them in Table 1.

1.1.1 Gross primary production
GPP is the total rate of carbon production by autotrophic

organisms before correction for losses due to excretion or

respiration, or in other words the gross conversion of inorganic

carbon to its organic state (Cullen, 2001; Fasham, 2003) by

autotrophs. GPP can in theory be derived from first principles

(e.g. Lawrenz et al., 2013, and references).

1.1.2 Net primary production
NPP is the net rate at which autotrophic organisms assimilate

carbon. This is normally defined as GPP minus the fraction used by

primary producers for cellular respiration and maintenance.

(Bender et al., 1987; Platt et al., 1989; Williams, 1993; Behrenfeld

and Falkowski, 1997; Cullen, 2001; Fasham, 2003). NPP is also the

portion of carbon fixation from photosynthesis that is available to

heterotrophic organisms in the ecosystem (Chavez et al., 2011).

NPP has primarily been measured in-situ using the 14C method

developed by Nielsen (1952), where collected samples are incubated

with a known amount of radioactive 14C-bicarbonate that labels the

dissolved inorganic carbon pool (e.g. Platt and Jassby, 1976; Bender

et al., 1987; Cullen, 2001; Fasham, 2003). Other approaches to

estimate NPP are based on measuring changes of O2 in light-dark

incubations and different isotopic methods (e.g. 18O 13C, Bender

et al., 1987; Cullen, 2001; Chavez et al., 2011). Typically, the shorter

the duration of the incubation method (of order 1 hour), the more

the measurement is considered to approach GPP. Longer

incubations (order 10 hours) lead to estimates of NPP.

One major development has been the ability to estimate PP

from satellite-derived properties (e.g. Eppley et al., 1985; Platt et al.,

1988; Sathyendranath et al., 1991; Behrenfeld and Falkowski, 1997;

Friedrichs et al., 2009), providing depth-integrated estimates with

unprecedented spatial resolution and coverage. Note that, in

principle, the method of Platt and Sathyendranath, based on

short (1-2h) photosynthesis-irradiance experiment, may be

considered to estimate GPP, whereas the method of Behrenfeld

and colleagues, based on in situ incubation of one day, approaches

NPP. A common approach to quantify PP in the surface ocean from

satellite derived properties is based on a concept where stocks of

carbon biomass or chlorophyll are combined with auxiliary

properties to estimate rates of photosynthesis (e.g. Platt et al.,

1988; Behrenfeld and Falkowski, 1997; Arrigo et al., 1998;

Westberry et al., 2008). Another approach is to use Inherent

Optical Properties (IOPs) to estimate NPP by combining satellite-

based proxies for energy absorption in the water column with

inferences of the efficiency when absorbed energy is converted into

carbon biomass (Antoine et al., 1996; Lee et al., 1996; Smyth et al.,

2005; Silsbe et al., 2016).
1.1.3 Net community production
NCP represents the net increase of biomass or carbon in the

ecosystem of interest, or NPP minus community respiration of all
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heterotrophs (Williams, 1993; Cullen, 2001; Fasham, 2003). NCP

estimates must be constrained to a defined domain in time and

space to be of practical use. A method that aggregates results over

the mixed layer can provide diametrically different results for a

specific region compared with one that includes the part of the

photic zone below the base of the mixed layer or parts of the

mesopelagic. Likewise, NCP over short timescales should be

interpreted very differently than annual averages (Fasham, 2003).

1.1.4 Export production
Export Production (EP, Laws, 1991) is the net production of

organic carbon above a specified horizon and is assumed to be

equivalent with NCP when the system is in steady-state and all

temporal lags are accounted for. EP is an important property for the

global carbon cycle by constraining the sequestration of organic
Frontiers in Marine Science 03
carbon to deeper waters. EP is by definition only valid over

significantly longer timescales than any processes directly

controlling production and respiration. Hence, it is not possible

to directly convert In-situ measurements of mixed layer NCP to EP

since the newly-produced biomass might be consumed before it can

be exported to the aphotic zone. It is also not yet possible to derive

mechanistic relationships between EP satellite-based products. EP

serves as the upper bound for transport of POC from the euphotic

zone to the bathypelgic (e.g. Platt et al., 1989; Siegel et al., 2016;

Siegel et al., 2022).

1.1.5 Export flux
If EP reflects the aggregated production of carbon above a depth

horizon available for export to deeper waters, Eflux represents the

direct or indirect measurement of this transport. Eflux is defined as
FIGURE 1

Conceptual model of the relationships between different terms describing carbon fluxes in the Ocean. Each term is defined in the text and Table 1.
TABLE 1 Different terms associated with Biological Production that are relevant for algorithm development.

Gross Primary
Production

GPP Total production of organic carbon by autrotrophs

Net Primary
Production

NPP GPP less losses to respiration by autrotrophs

Net Community
Production

NCP GPP less all community respiration in the defined system

Export Production EP NCP integrated over sufficient time and space to satisfy dynamic steady state conditions. The part of biological production in the
euphotic zone that is exported to deeper waters.

Export Flux EFlux Permanent flux of particulate carbon over a depth horizon below the euphotic zone

ef-ratio ef-
ratio

The ratio between new or export production and NPP in a steady state system.

Export Efficiency Ef The ratio of NPP that is exported across a vertical horizon.
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the flux of material over a depth horizon and normally quantified via

sediment traps (Dunne et al., 2005; Buesseler et al., 2007) or by

measuring the reduction of particle-reactive 234Th in comparison to

its longer-lived parent 238U in the water column (e.g. Bisson et al.,

2018, and references therein). The 234Th method determines the

downward flux of POC by integrating the deficit of 234Th in the upper

water column and couples it to the POC/234Th ratio in sinking

particles. Samples can be collected with much higher vertical

resolution than traps, allowing for the estimation of POC flux at or

very near Zeu without the need for a common reference depth. In

contrast to EP, Eflux can be estimated across any temporal or spatial

scale. Factors controlling the regional, temporal, and depth variations

of POC/234Th ratios are however poorly understood (Puigcorbe et al.,

2020). Other sources of uncertainty arise from neglecting physical

processes and the necessary assumption of steady state in the Th

isotope system (Buesseler et al., 2006).

1.1.6 Export efficiency
The fraction of PP that is exported out of the euphotic zone (EP/

NPP) can be described as the carbon export efficiency (Ef). This is a

non-dimensional ratio that describes how inefficient the ecosystem

is in retaining carbon in the upper layer of the ocean. The more

efficient the pelagic ecosystem is, the more inefficient the carbon

export is, to the point where all carbon is recycled, and no carbon

will be exported (Buesseler, 1998).

1.1.7 e-ratio
A special case of Ef is the e-ratio, or the flux of particulate

organic carbon at the base of the euphotic zone divided by NPP,

(Murray et al., 1996).

1.1.8 f-ratio
Eppley and Peterson (1979) characterized export efficiency as

the ratio of New to Total photosynthetic production, or the f-ratio.

This idea is based on the concept of distinguishing NPP driven by

nitrogen compounds originating from different processes in the

ecosystem. New production is fueled by nutrients (usually NO3
–)

recently introduced to the euphotic zone (either from deeper waters

or via lateral processes) (Dugdale and Goering, 1967) in contrast to

production from rapidly recycled compounds such as ammonium.

Export production would then be equal to New production if the

system is in a steady state and all transformations between

ammonium and NO3
– occur outside the euphotic zone (Laws

et al., 2011).

The f-ratio was originally believed to be significant by being

directly related to Ef, but this interpretation relied on the

assumption that nitrification mainly occur below the euphotic

zone, something that more recent measurements have questioned

(Dore and Karl, 1996; Yool et al., 2007). Platt et al. (1989) also

suggested that elevated new production is directly driven by

perturbations in the physical forcing which challenges a necessary

assumption of steady state.

1.1.9 ef-ratio
Laws et al. (2000) combined the e- and f-ratios to an ef-ratio

based on the assumption that new production should balance
Frontiers in Marine Science 04
export production if a system is in steady-state. This ratio makes

it possible to combine measurements of new and export production.

1.1.10 pe-ratio
A more precise definition of the e-ratio is the pe-ratio, or “the

ratio between the export of rapidly sinking particulate matter

(particle export) and the total production of organic matter by

photosynthesis (primary production)” (Murray et al., 1996; Dunne

et al., 2005). The pe-ratio shows similar spatial patterns as the f-

ratio on global scales, especially when identifying eutrophic and

oligotrophic regions.
1.2 Structure of the review

With this review we have aimed to assess how different

published algorithms that use satellite-derived properties to

calculate EP perform. Our approach has been to leverage

already existing evaluation studies where different models have

been compared with each other, and only directly compare

algorithms or validation datasets when no existing information

is available. Earlier studies evaluating EP algorithms each use

slightly varying approaches and were often conducted to compare

newly developed algorithms with already existing ones. We

address these differences by performing a kind of meta-analysis

where different evaluations and validation datasets are compared

together with the respective algorithms. We have followed the

guidelines for systematic reviews prescribed in Khan et al. (2003)

when applicable.

The review begins with a brief description of existing EP

algorithms, followed by a presentation of different datasets that

can be useful for the evaluation satellite-based EP algorithms. Next,

we discuss earlier studies that evaluates EP algorithms, including

our own comparison where we use the Dunne et al. (2005); Bisson

et al. (2018), and Mouw et al. (2016a) datasets to assess the different

EP algorithms. Finally, we discuss the different evaluations and

provide a recommendation about which algorithm to use.
2 Export production algorithms

A number of different approaches to constrain and scale EP

using different satellite derived properties have been proposed over

the years. Most algorithms are developed to provide some kind of

export efficiency ratio that then can be scaled with PP estimates to

generate properties that are comparable to observations of EP. It is

not well defined if either satellite-derived PP products or EP

algorithms are assuming that the biological production is defined

as GPP, NPP, or something in between, while this is not always clear

from in-situmeasurements either (Balch et al., 2022). As a result, we

use the term PP to designate primary production without specifying

if it is GPP or NPP. All relationships except for those of Betzer et al.

(1984); Pace et al. (1987), and the re-parametrization of Siegel et al.

(2014) by Stukel et al. (2015) are designed to provide global

estimates of EP. Terms used in the the algorithms are

summarized in Table 2.
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2.1 Eppley and Peterson, 1979

EP = 0:0025 · PP2(PP ≤ 200) (1)

EP = 0:5 · PP(PP > 200) (2)

Eppley and Peterson (1979)’s seminal paper is to our knowledge the

first study that suggested a quantitative relationship between PP andEP.

They base their algorithm solely onPP,with two different scaling factors

if the magnitude of PP is above or below 200 mg C m-2 d-1.
2.2 Suess, 1980

EP =
PP

0:0238z + 0:212
(3)

Suess (1980) uses one scaling factor for PP and adds a depth

dependency as to predict organic carbon flux at any depth across a

depth horizon below the base on the euphotic zone. The algorithm

was derived from sediment trap data.
2.3 Betzer et al., 1984

EP =
0:0409PP1:41

z0:628
(4)

The Betzer et al. (1984) relationship was derived from on 14C

based PP and POC flux observations using a free-drifting sediment

trap at 900 m. The trap was deployed at four locations between 12°

N and 6°S at 153°W in the Pacific Ocean.
2.4 Pace et al., 1987

EP = 3:523z−0:734PP1:000 (5)

Pace et al. (1987) expanded on Suess (1980) by including the

vertical flux of both POC and particulate organic nitrogen (PON)

based on in-situ observations from the Vertical Transport and

Exchange (VERTEX) program in the north-east Pacific Ocean.
2.5 Baines et al., 1994

EP = PP · 10−0:67+0:30 log10 Chl+0:27( log10 Chl)
2

(6)

The algorithm of Baines et al. (1994) is derived from a

relationship between the e-ratio, PP, Efluxes, and the depth of the

euphotic zone. All three variables are independently predicted from

Chl with an R2 of 0.54 – 0.90.
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2.6 Laws et al., 2000

EP = PP · (0:62 − 0:02SST) (7)

This algorithm is based on a relationship between Ef, SST, and

the f-ratio derived from data in Table 3 of Laws et al. (2000). We use

the equation as described by Henson et al. (2011).
2.7 Dunne et al., 2005

Ef = −0:0101SST + 0:0582 · ln  PP=Zeu + 0:419; 0:04 < Ef < 0:72 (8)

Ef = −0:0081SST + 0:0668 · ln  Chl=Zeu + 0:426 (9)

EP = PP ·

0:04 if Ef < 0:04

0:72 if Ef > 0:72

Ef otherwise

8>><
>>:

(10)

Dunne et al. (2005) is based on trap and 234Th observations

together with PP fromH14CO−
3 incubations at different depths, SST,

Zeu, and Chl. Ef is constrained to fall between 0.04 and 0.72 (Dunne

et al., 2005; Stukel et al., 2015).
2.8 Henson et al., 2011

EP = PP · 0:23*e
−0:08·SST (11)

The Henson et al. (2011) model is parameterized to estimate

export at the 100 m depth horizon. (Henson et al., 2011; Stukel

et al., 2015).
2.9 Laws et al., 2011

The algorithms in Laws et al. (2011) is a further development of

Laws et al. 2000. They introduce two relationships: which is

equation 2 in in Laws et al. (2011), and
TABLE 2 Input and output parameters for the different algorithms.

Input parameters

chl Chlorophyll mg m– 3

SST Sea Surface Temperature °C

PP Gross or Net Primary Production mg C m– 2 d – 1

Z Depth level across which to calculate export m

Zeu Depth of the euphotic zone m

Output parameter

EP Export Production mg C m– 2 d – 1
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EP = PP ·
(0:5857 − 0:0165SST) · PP

51:7 + PP
(12)

EP = PP · 0:04756(0:78 −
0:43 · SST

30
) · PP0:307 (13)

Equation 12 is based on contours in Figure 2 of Laws et al.

(2000) and evaluated in Stukel et al. (2015), both equations 12 and

13 are evaluated in Li and Cassar (2016).
2.10 Westberry et al., 2012

EP = PP − 1:01 · PP0:82 (all   data)

EP = PP − 0:93 · PP0:78 (open   ocean)
(14)

Westberry et al. (2012) uses a number of empirical relationships

between PP and respiration (R) to assess NCP and EP. Part of their

analysis is to generate regional PP-R relationships by dividing

available observations into broad latitudinal zones with different

nutrient dynamics.
2.11 Siegel et al., 2014

AlgEP = fAlg · PPM (15)

GM = PPM −
∂ PM
∂ t

−mphPm − AlgEZ (16)

GS = PPS −
∂ PS
∂ t

−mphPs (17)

FecEP = fFecM · GM + fFecS · GS (18)

EP = AlgEP + FecEP (19)

Siegel et al. (2014) algorithm divides EP is to different size classes

based on the assumed ability to assess the community structure of

phytoplankton assemblages via satellite-derived properties. The

different terms are specified as follows: AlgEP is the total vertical flux

of sinking algal cells and aggregates and FecEP is the total vertical flux

of sinking fecal material released from zooplankton grazers. fAlg is the

fraction of microphytoplankton production that sinks out of the base of

the euphotic zone (assumed by Siegel et al. (2014) to be 0.1) and PPM is

the PP of microphytoplankton. fFecM and fFecS are the fractions of

grazing onmicrophytoplankton and smaller (<20 mm) phytoplankton,

respectively, that contribute to fecal matter export from the euphotic

zone (assumed by Siegel et al. (2014) to be 0.3 and 0.1, respectively).GM

and GS are the grazing rates on microphytoplankton and small

phytoplankton and are derived from phytoplankton mass

balance budgets.
Frontiers in Marine Science 06
2.12 Li & Cassar, 2016

EP =
8:57PP

17:9 + SST
(20)

The Li and Cassar (2016) model was developed using a Genetic

Programing approach to statistically optimize the Laws et al. (2000)

and Henson et al. (2011) relationships using O2/Ar-based

NCP estimates.
3 In situ data for evaluation

The Dunne et al. (2005) compilation of in-situ pe-ratios is based on

122 field observations from approximately 40 oceanographic studies

with global distribution. The dataset includes estimates of PP, Chl a,

New Production, nutrients, oxygen or carbon based estimates of EP,

particle export estimates based on sinking flux from sediment traps

and/or 234Th, and the carbon-to-chlorophyll ratio. Physical parameters

include mixed layer temperature and the depth of the euphotic zone

(minimum of the 1% light level or sampling zone), The data coverage is

presented in Figure 3. They find that, In general, pe-ratios are high

(>0.4) in the Polar regions, moderate (0.3–0.4) in coastal regions and

open ocean regions supporting phytoplankton blooms, and low (0.05–

0.2) elsewhere. The data can be accessed as supplementary information

to the Dunne et al. (2005) publication.

The Stukel et al. (2015) datasets are based on 32 Lagrangian

process studies where shallow-drifting sediment traps were

combined with 238U-234 Th measurements to quantify EP

(Buesseler et al., 2007). These Lagrangian studies where

conducted between 2 and 5 days either within in the California

Current Ecosystem (CCE) Long Term Ecological Research (LTER)

or the Costa Rica Dome (CRD) FLUx and Zinc Experiments

(FLUZiE) programs. Drifters were drogued at 15 m depth and

tracked by satellite with either experimental incubation bottles or

VERTEX-style sediment traps attached below (Stukel et al., 2013).

This experimental setup allowed for simultaneous measurement of

carbon export, food web processes (PP, protozoan grazing,

mesozooplankton grazing, size-spectra of phytoplankton

community), and net changes of in-situ Chl. The datasets consist

of observations from 7 cruises (Figure 2) and can be located via the

acknowledgments section of Stukel et al. (2015) or as

supplementary information to the publication.

The Li and Cassar (2016) algorithm development and

evaluation used a global dataset of mixed layer O2/Ar based NCP

estimates either from discrete samples analyzed in the lab or

continuous underway measurements (Reuer et al., 2007; Cassar

et al., 2009; Jönsson et al., 2013). NCP can be derived from O2/Ar

measurements by assuming a mass balance of biological O2 in the

mixed layer. Oxygen saturation at the ocean surface is influenced by

biological (i.e., PP) and physical processes (e.g., bubble injection

and temperature changes). Ar and O2 have similar temperature
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dependencies (Craig and Hayward, 1987). Combined with their

similar solubilities, they have almost equivalent responses to

processes such as temperature or air pressure change and bubble-

mediated gas exchange. As such, oxygen concentration due to

physical processes can be accounted for with measurements of

the O2/Ar saturation state.

The dataset contains observations from 1999 to 2009 (n =

689,566) averaged to a 0.083° × 0.083° grid, yielding n=14,795

samples with a mean coefficient of variation (CV) of 0.12 per

gridcell (Figure 4). The O2/Ar super saturation is converted to an

NCP proxy using QSCAT/NCEP blended wind speeds (Reuer et al.,

2007). Samples with negative NCP are removed due to potential

biases associated with vertical mixing of O2-undersaturated waters

(Reuer et al., 2007; Jönsson et al., 2013). Note that positive NCP

values may also be biased by vertical mixing where vertical mixing

brings O2-undersaturated water to the surface and the estimates

should be regarded as lower bounds on the true NCP. Conversely,

positive biases in NCP could occur in regions with high biological

O2 below the mixed layer (e.g., deep chlorophyll maximum).

Because of these uncertainties, O2/Ar NCP data below 1.0 mmol

O2 m
2 d – 1 are removed from the dataset. Additional uncertainties

and biases (e.g., gas exchange parameterization and lack of steady

state in biological O2 in the mixed layer) are further discussed in

Jönsson et al. (2013). Data access is described in Li and

Cassar (2016).

The Mouw et al. (2016a) dataset consists of Particulate Organic

Carbon (POC) flux estimated from sediment traps and 234Th

compiled across the global ocean including six long-term time
Frontiers in Marine Science 07
series locations. The data set contains 15,792 individual POC flux

estimates at 674 unique locations collected between 1976 and 2012

(Figure 3). Where available, the flux of other minerals is also

reported. Of the observations across the globe, 85% are

concentrated in the Northern Hemisphere, time series sites

accounts for 36% of the data, while 71% of the data are measured

at ≥500 m with the most common deployment depths between 1000

and 1500 m. The dataset is archived in the PANGAEA data

repository (Mouw et al., 2016b).

The Bisson et al. (2018) dataset is based on observations from

sediment traps at depths less than 200 meters and 234Th

measurements converted to POC flux at Zeu. The data is selected

to represent different sampling methodologies and spatiotemporal

scales, and totals 1,719 observations from 1984 to 2014.

The Puigcorbe et al. (2020) dataset does not include POC flux

observations but POC/234Th ratios that can be indirectly used to

constrain EP and evaluate EP models. The collection contains of

9,318 measurements with a global coverage collected between 1989

and 2018 from the surface to > 5500 m, and divided into three size

fractions (∼< 0.7 µm, ∼ 1–50 µm, ∼> 50 µm). The data has an

uneven distribution with some areas highly sampled (e.g., China

Sea, Bermuda Atlantic Time Series station) while others regions are

sparsely covered (the south-eastern Atlantic, the south Pacific, and

the south Indian Oceans). The dataset is archived in the PANGAEA

data repository (Puigcorbe, 2019).

Ceballos-Romero et al. (2022) provide a comprehensive dataset

of234Th measurements sampled across the global ocean between

1967 and 2018. The compilation includes a total of 56 631 data
FIGURE 2

Lagrangian experiment locations in the Stukel et al. (2015) study. CCE drifter tracks (blue box, upper right). CRD drifter tracks (green box, lower left).
Image from Stukel et al. (2015).
frontiersin.org

https://doi.org/10.3389/fmars.2023.1149938
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Jönsson et al. 10.3389/fmars.2023.1149938
points together with appropriate metadata including geographic

location, date, and sample depth. When available, water

temperature, salinity, 238U (over 18 200 data points), and

particulate organic nitrogen is included. Data source and method

information (including 238U and 234Th) is also detailed along with

valuable information for future data analysis such as bloom stage

and steady-/non-steady-state conditions at the sampling moment.

While not directly applicable in this study, this dataset provides a

valuable resource for future EP algorithm development

and evaluation.
4 Algorithm evaluations

The instrumental Dunne et al. (2005) study provided not only

relationships between PP or Chl and EP that are widely used in

ecosystem modeling, but also comparisons of a variety of empirical

parameterizations with the data synthesis described in section 3.1.

The observed pe-ratios were combined with in-situ observations of

mixed layer temperature, depth-integrated chlorophyll, depth-

integrated PP, new production, particle export, depth of the

euphotic zone (minimum of the 1% light level or sampling zone),

and the carbon-to-chlorophyll ratio. They found that the Eppley

and Peterson (1979), (Figure 5A) algorithm has the lowest

coefficient of determination (9%), which they attributed to the

parameterization relying on the integral of PP alone. The Baines

et al. (1994), (Figure 5B) algorithm added euphotic zone depth in

addition to the depth-integral of PP and was able to account for a

higher fraction of the variance (38%), while not improving the

relative uncertainty (64%). A different approach was used by Baines

et al. (1994), (Figure 5C) where chlorophyll concentrations were

utilized as the predictive variable. Their parameterization was able

to account for a slightly higher variance (40%) while also decreasing
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the relative uncertainty (46%), but showed a strong bias to low

values at higher pe-ratios. Dunne et al. (2005) found that the Laws

et al. (2000), (Figure 5D) algorithm succeeded in reproducing large-

scale structures in the data and accounted for nearly half of the

variance (47%), while decreasing the relative error to 43%. The

major shortcoming of this algorithm was in reproducing variability

in pe-ratios at high temperatures. Dunne et al. (2005) suggested that

“a weaker temperature dependence for phytoplankton and bacterial

metabolism than for zooplankton metabolism” accounts for

this misfit.

The algorithm developed by Dunne et al. (2005), (Figures 5E, F)

provided a reasonable fit to the compiled dataset of observations, with an

R2 of 58% and a relative uncertainty of 33%. The algorithm had low skill

in areas with the highest pe-ratios and sites with a combination of very

high pe-ratios and low to moderate PP. This discrepancy if compensated

for using biomass instead of PP improved R2 to 61%with a relatively low

relative error (35%). Dunne et al. (2005) explained this improvement

with biomass integrating ecosystem processes better over time than PP.

Li and Cassar (2016) evaluated a number of algorithms described

in section 2 by matching O2/Ar- derived NCP observations (see section

3.3) with satellite derived 8-day 0.083° × 0.083° SeaWiFS Chl and PAR,

VGPM NPP, and AVHRR SST. The standard SeaWiFS Chl algorithm

was shown to underestimate [Chl] by a factor of 2 to 3 in the Southern

Ocean at the time when Li and Cassar (2016) conducted the evaluation

(Kahru and Mitchell, 2010) and were improved by using a blending

scheme presented by Kahru and Mitchell (2010). VGPM NPP was

based on the recalculated Chl data product. Phytoplankton size

composition was derived using Li et al. (2013) and VGPM NPP for

the algorithm developed by Siegel et al. (2014), together with the other

parameters as presented in Siegel et al. (2014). See Li and Cassar (2016)

for more detailed descriptions of the data sources.

Li and Cassar (2016) used the satellite-derived data to calculate

export production for the Eppley and Peterson (1979); Betzer et al.
FIGURE 3

Locations of in-situ POC flux observations presented in Dunne et al. (2005), (orange markers), Bisson et al. (2018), (green markers) and Mouw et al.
(2016a); Mouw et al. (2016b), blue markers for observations shallower than 200 meters, purple for observations deeper than 200 meters).
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(1984); Baines et al. (1994); Laws et al. (2000); Dunne et al. (2005);

Laws et al. (2011); Westberry et al. (2012), and Siegel et al. (2014)

algorithms. They also used the data together with observed O2/Ar-

NCP to develop the Li and Cassar (2016) algorithm. The main

assumption here was that the O2/Ar-NCP is a valid proxy for EP.

One could expect Li and Cassar (2016) to outperform the other

algorithms since the observational dataset was used to train the

algorithm, but this was not the case (Figure 6). Instead, all EP

predicting algorithms showed surprisingly similar results. Eppley &

Peterson (1979); Betzer et al. (1984), and Baines et al. (1994) showed

almost identical distributions in the regressions against

observations with R2s between 0.58 and 0.65. The algorithms of

Eppley & Peterson (1979) and Betzer et al. (1984) in particular

tended to overestimate low NCP values. The different Laws et al.

(2000); Laws et al. (2011) algorithms all provided a smaller spread

around the 1:1 line and a slightly better R2 (0.64-0.7). The

algorithms of Laws et al. (2000) also overestimated low NCP,

while the algorithm of Laws et al. (2011); (Equation 12 and 13)

showed symmetrical distributions. The Dunne et al. (2005)

algorithm, on the other hand, tended to underestimate NCP. This

tendency was even greater for Westberry et al. (2012) and Siegel

et al. (2014), which also showed among the lowest R2s (0.62 and

0.55, respectively). This is particularly surprising for the algorithm

of Westberry et al. (2012), which was developed using a framework

that was based on the assumption of NCP being a good general

proxy for EP. The two algorithms developed by Li and Cassar

(2016) showed, as expected, a good skill in predicting O2/Ar-NCP.

Their Support Vector Regression (SVR) approach had the highest

R2, but seemed to have a floor where values below a certain

threshold were not being predicted. This could be a consequence

of how the SVR was configured. The fact that all approaches showed

similar and relatively good skills in predicting O2/Ar- NCP and EP

is surprising, as the various algorithms model different components

of the biological pump.

The Stukel et al. (2015) EP algorithm comparison is based on a

Lagrangian approach where in-situ rates of NPP, EP and auxiliary

parameters were observed concurrently in a water mass. They do
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this by compiling results from Lagrangian process studies in the

North Eastern Pacific Ocean (see Stukel et al., 2015, and section 3.2

for details). One main advantage of this approach is the ability to

disentangle errors associated with inaccuracies of remote sensing

products (e.g., PP, Chl, and SST) and errors associated with the

model used to estimate EP. Their intention was not to conduct a

definitive comparison of competing satellite algorithms, but rather

to begin a process that assess and hopefully improves the different

assumptions and parameterizations in current satellite algorithms,

especially Siegel et al. (2014).

Satellite algorithms for EP are generally designed to predict

export at either Zeu or 100 meters. While the observations used by

Stukel et al. (2015) were within 30 m of Zeu, they scaled all data to

Zeu using the ambient PAR at the depth of sampling. All EP

algorithms were evaluated using in-situ input properties (e.g.,

SST, Chl, PP) as the goal was not to assess the corresponding

satellite products. All water column rates and standing stock

measurements were depth integrated, except when models made

explicit reference to sea surface values, for methodological reasons.

Stukel et al. (2015) noted that Dunne et al. (2005) and Laws et al.

(2011) are parametrized to predict total EP including active

transport by diel vertically migrating organisms and passive

export of DOC, leading to a positive bias since sediment traps

and 234Th only measure POC fluxes. Stukel et al. (2013) estimated

that the active transport by diel migration is about 19% of the total

sinking flux in the CCE region, providing a lower constraint on

this bias.

Figure 7 shows the resulting comparisons between satellite

algorithms and in-situ measurements. At a first look, it seems

that no algorithm performed significantly better or worse than

any other. Dunne et al. (2005) and Siegel et al. (2014) had R2

coefficients of determination of 0.37, whereas the R2 for Henson

et al. (2011) and Laws et al. (2011) were 0.27. Stukel et al. (2015) re-

parameterized Siegel et al. (2014) using their in-situ observations

and improved the R2 to 0.38. It should be noted that all algorithms

have been developed and parameterized to function in a global

setting in all physical, chemical, and biological settings. This study
FIGURE 4

Global map of O2/Ar measurements from Li and Cassar (2016). Samples with positive values are color coded. Samples with negative values are
shown using a gray scale. Image from Li and Cassar (2016).
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Stukel et al. (2015) performed a comparison in one specific region

with a small subset of ecosystem dynamics and conditions.

Puigcorbe et al. (2017) compared Dunne et al. (2005); Laws

et al. (2011), and Henson et al. (2011) using PP estimates from three

different satellite-derived primary production models and a regional

dataset of POC fluxes based on 234Th from the North Western

Atlantic Ocean. They found that Dunne et al. (2005) and Laws et al.
Frontiers in Marine Science 10
(2011) were closest to the observations but showed a 3-fold

difference and no clear trends. Henson et al. (2011) consistently

provided lower export estimates than the observations. Their

explanation is that a stronger dependency on temperature by

Henson et al. (2011) leads to low export fluxes (¡ 2 mmol C m−2

d −1) throughout the study area. They also observe a significant

overestimation of EP by Dunne et al. (2005) in their equatorial
B

C D

E F

A

FIGURE 5

Comparison of particle export ratio estimates by Dunne et al. (2005) of various models described in section 2 using data described in section 3.1.
Panels (A-D) show results based on algorithms described in sections 2.1, 2.3, 2.5, and 2.6, and panels (E, F) the two algorithms described in section
2.7. Symbols are grouped by temperature into less than 14°C (crosses) and greater than 14°C (dots). Image from Dunne et al. (2005).
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domain and that Laws et al. (2011) seems to underestimate EP both

in the northern half of their oligotrophic domain and at several

riverine stations.
5 Evaluating the different EP models
using three in situ databases

The evaluations described so far are all promoting a new

algorithm (Dunne et al., 2005; Li and Cassar, 2016) or re-

parameterizing an existing algorithm (Stukel et al., 2015). While

the different approaches are thorough and the results consistent

between the three studies, we believe it worthwhile to evaluate the

different algorithms from a neutral starting point. For this, we use
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the published dataset of POC fluxes by Dunne et al. (2005); Mouw

et al. (2016a); Mouw et al. (2016b), and Bisson et al. (2018). We

matched the Mouw et al. (2016a); Mouw et al. (2016b) and Bisson

et al. (2018) data with monthly satellite-derived SST from the

Group for High Resolution Sea Surface Temperature/Operational

Sea Surface Temperature and Ice Analysis (UKMO, 2005, GHRSST/

OSTIA), Chl and Kd490 from Ocean Colour Climate Change

Initiative (Sathyendranath, 2021, OC-CCI), and PP from the

Biological Pump and Carbon Exchange Processes project (Kulk

et al., 2021, BICEP). It should be noted that different satellite-based

PP products vary considerably (Bisson et al., 2018; Siegel et al.,

2022), which can affect the calculated EP estimates Bisson et al.

(2018). We found, however, that different PP products had only a

limited influence on the skill of the EP algorithms evaluated in this
FIGURE 6

Comparison of satellite algorithms of carbon export production by Li and Cassar (2016). O2/Ar-derived NCP was converted to C using a
stoichiometry of O2/C=1.4 (Laws, 1991). Samples with O2/Ar-NCP estimates<1.0 mmol O2 m2 d-1 were excluded. Phytoplankton size composition
was derived using Li et al. (2013) and VGPM NPP for the algorithm developed by Siegel et al. (2014), together with the other parameters as presented
in Siegel et al. (2014). Image from Li and Cassar (2016).
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study and we therefore chose to only present results based on one

PP product.

We begin by calculating global EP flux estimates averaged over

the years 1998–2020 for all algorithms using the earlier mentions

satellite-derived products (all values presented in Table 3). The flux

estimates are between 1 and 140 Gt C y−1, a much larger range of

uncertainty than normally presented for EP. If only algorithms with

one of the top three skills scores in any of our evaluations (red

colors in Tables 3, 4, 5) are included, the range is 1–9 Gt C y−1, This

result is more in line with earlier published estimates (Dunne et al.,

2007; Henson et al., 2011; Laws et al., 2011; Siegel et al., 2016; Siegel

et al., 2022).

Dunne et al. (2005) does not report any information about

sampling dates, which means that we are not able to match satellite-

derived properties to the dataset. Instead, we rely on properties

included in the dataset (n=125), all which we believe to be based on

in-situ observations. There is 487 satellite matchups for Mouw et al.

(2016b) observations between 100 and 200 meter, and 1,058 matchups

for Bisson et al. (2018). All observations used in the comparisons are

shown in Figure 3. The three datasets covers similar regions, but do not

necessarily include the same observations. This is to be expected since
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our use of the Mouw et al. (2016b) and Bisson et al. (2018) datasets are

limited to the time of ocean color satellite coverage (1998 to present)

whereas the Dunne et al. (2005) dataset has a cutoff some years before

publication. Bisson et al. (2018) have several long transects included

that are not part of Mouw et al. (2016b).

When visually comparing in-situ POC fluxes with predicted EP

calculated using the Dunne et al. (2005); Laws et al. (2000), and Li

and Cassar (2016) algorithms (Figures 8–10) we see similar

patterns. Comparing the Dunne et al. (2005) algorithm in its

corresponding in-situ dataset results, as expected, in the same

correlation as reported by the paper. A more interesting finding is

that the two other algorithms have similarly good skill in predicting

EP. The main exception is a slight offset from the 1:1 line by Li and

Cassar (2016). When using in-situ POC flux from Mouw et al.

(2016b) dataset together with matched satellite properties, we see

quite different results where neither observations from deep waters

(purple markers) nor data from shallow water at less than 200 m

depth (blue markers) are predicted particularly well. The main issue

seems to be that low observed values are not predicted as low values

by the algorithm, which results in EP being significantly

overestimated compared to observations. Here, the relationship
B

C D

A

FIGURE 7

Comparison between satellite algorithms and in-situ measurements by Stukel et al. (2015). (A) Siegel et al. (2014) vs sediment-trap-(circles and
diamonds) and 234Th-derived (squares and triangles) measurements. Circles and squares are based on results using microscopy to determine the
fraction of microphytoplankton. (B–D) Dunne et al. (2005); Laws et al. (2011), and Henson et al. (2011) algorithms, respectively, with circles showing
sediment trap data and squares showing 234Th data. All panels show export normalized to the base of the Zeu, except panel D, which shows export
at 100m. Green diamonds show arithmetic mean of predicted and measured export for each quartile of the measurements (35-85, 85-125, 125-205,
and 205-560 mg C m-2 d-1 for base of Zeu; 18-65, 65-89, 89-140, and 140-300 mg C m-2 d-1 for 100m). Dashed lines depict a 1:1 relationship. Error
bars show one standard error (for in-situ measurements) and propagation of measurement standard error through satellite algorithms (for
predictions). Image from Stukel et al. (2015).
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between POC flux and EP based on the Dunne et al. (2005) dataset

could arguably act as an upper constraint when applying the

algorithms to the Mouw et al. (2016b) dataset. We find a less

coherent pattern when in-situ POC flux from Bisson et al. (2018) is

plotted against EP from the three algorithms. The distribution of

values in Bisson et al. (2018) is trending higher than Mouw et al.

(2016b), but EP predicted by Dunne et al. (2005) falls within the

same range for both in-situ datasets, leading to a notable

underestimation by the algorithm. This pattern can be found for

Li and Cassar (2016), but is less pronounced, whereas Laws et al.

(2000) generates EP predictions that are quite symmetrically

distributed around the 1:1 line. Figures for the other algorithms

can be found in the Supplementary Materials.
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Finally, we compare log transformed predictions of EP from the

different satellite-based models to in-situ observations of POC flux

using a number of metrics: coefficient of determination (R2, Wright,

1921), Mean Absolute Error (MAE, Chicco et al., 2021), Root Mean

Square Error (RMSE, Nevitt and Hancock, 2000), Mean Absolute

Percent Error (MAPE, Myttenaere et al., 2016), symmetric Mean

Absolute Percentage Error (sMAPE Makridakis, 1993), and Bias.

Please see Chicco et al. (2021) and Seegers et al. (2018) for a more

detailed discussion about each metric and their utility. All values are

presented in Tables 3–5. We find that most models have limited to

very limited skill when evaluated with R2 against the Mouw et al.

(2016b) or Bisson et al. (2018) datasets, whereas several models

perform better with Dunne et al. (2005); Li and Cassar (2016), and
TABLE 3 Performance metrics for different export production models evaluated using the Dunne et al. (2005) dataset.

Algorithm R2 MAE RMSE MAPE sMAPE Bias Global flux (Gt C y-1)

Eppley and Peterson (1979) 0.09 0.99 1.20 0.74 0.45 0.99 20

Suess (1980) 0.36 0.82 1.01 0.62 0.40 0.82 15

Betzer et al. (1984) -4.11 2.76 2.84 1.43 1.75 2.76 1.2

Pace et al. (1987) 0.52 0.71 0.87 0.32 0.34 0.71 4.9

Baines et al. (1994) -12.57 4.59 4.63 2.65 1.03 4.59 140

Laws et al. (2000) 0.71 0.53 0.67 0.32 0.31 0.53 6

Dunne et al. (2005) 0.86 0.39 0.47 0.24 0.23 0.39 2.0

Henson et al. (2011) -0.19 1.24 1.37 0.60 0.91 1.24 1.7

Laws et al. (2011) 0.69 0.55 0.70 0.30 0.30 0.55 7.1

Laws et al. (2011) 0.40 0.82 0.97 0.37 0.43 0.82 5.9

Westberry et al. (2012) 0.10 1.00 1.19 0.69 0.44 1.00 27

Li and Cassar (2016) 0.74 0.52 0.64 0.38 0.30 0.52 8.7
All EP values are log-transformed. Higher is better for R2 while lower is better for the other metrics. Red colors denote the three algorithms with highest skill according to each metric. The final
column contains global flux estimates averaged over the years 1998–2020 using each respective algorithm and satellite-derived data described in the text.
TABLE 4 Performance metrics for different export production models evaluated using the Mouw et al. (2016a); Mouw et al. (2016b) dataset.

Algorithm R2 MAE RMSE MAPE sMAPE Bias

Eppley and Peterson (1979) -2.79 2.01 2.30 0.74 0.49 2.01

Suess (1980) -2.10 1.76 2.08 0.66 0.44 1.76

Betzer et al (1984) -0.66 1.28 1.52 0.40 0.46 1.28

Pace et al (1987) -0.18 0.79 1.29 0.33 0.24 0.79

Baines et al. (1994) -11.29 3.94 4.10 1.37 0.76 3.94

Laws et al. (2000) -1.44 1.23 1.98 0.56 0.34 1.23

Dunne et al. (2005) -0.10 0.90 1.33 0.36 0.32 0.90

Henson et al. (2011) -0.64 1.10 1.63 0.45 0.38 1.10

Laws et al. (2011) -1.39 1.30 1.96 0.58 0.36 1.30

Laws et al. (2011) -0.70 0.98 1.65 0.46 0.30 0.98

Westberry et al. (2012) -3.60 2.27 2.54 0.83 0.53 2.27

Li and Cassar (2016) -1.47 1.45 1.99 0.63 0.40 1.45
Only observations between 100 and 200 meters are included and all EP values are log-transformed. Higher is better for R2 while lower is better for the other metrics. Red colors denote the three
algorithms with highest skill according to each metric.
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Laws et al. (2000) at the top, when comparing predicted EP to in-

situ POC fluxes in Dunne et al. (2005) dataset using in-situ

properties only. These results are in accordance with the earlier

presented visual comparisons. The other metrics show

similar patterns.
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6 Discussion and conclusions

The EP algorithms described here assume different definitions

of export efficiency, are based on different products for deriving PP

from satellite products (who themselves have different assumptions
TABLE 5 Performance metrics for different Export Production models evaluated using the Bisson et al. (2018) dataset.

Algorithm R2 MAE RMSE MAPE sMAPE Bias

Eppley and Peterson (1979) -1.47 1.63 1.94 0.60 0.39 1.63

Suess (1980) -1.06 1.45 1.77 0.54 0.36 1.45

Betzer et al (1984) -2.46 1.88 2.30 0.50 0.66 1.88

Pace et al (1987) -0.30 0.98 1.41 0.34 0.28 0.98

Baines et al. (1994) -7.48 3.24 3.49 1.11 0.63 3.24

Laws et al. (2000) -0.32 0.92 1.40 0.37 0.25 0.92

Dunne et al. (2005) -0.99 1.29 1.67 0.38 0.41 1.29

Henson et al. (2011) -0.62 1.25 1.56 0.39 0.39 1.25

Laws et al. (2011) -0.38 0.97 1.43 0.39 0.26 0.97

Laws et al. (2011) -0.36 0.95 1.42 0.35 0.27 0.95

Westberry et al. (2012) -2.00 1.83 2.14 0.67 0.43 1.83

Li and Cassar (2016) -0.44 1.06 1.46 0.42 0.28 1.06
All EP values are log-transformed. Higher is better for R2 while lower is better for the other metrics. Red colors denote the three algorithms with highest skill according to each metric.
FIGURE 8

Observed POC flux and EP calculated using the Dunne et al. (2005) algorithm. In-situ observations are from Dunne et al. (2005), orange markers)
Mouw et al. (2016a); Mouw et al. (2016b), (blue markers for observations shallower than 200 meters and purple for observations deeper than 200
meters), and Bisson et al. (2018), (green markers).
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FIGURE 9

Observed POC flux and EP calculated using the Laws et al. (2000) algorithm. In-situ observations are from Dunne et al. (2005), (orange markers)
Mouw et al. (2016a); Mouw et al. (2016b), (blue markers for observations shallower than 200 meters and purple for observations deeper than 200
meters), and Bisson et al. (2018), (green markers).
FIGURE 10

Observed POC flux and EP calculated using the Li and Cassar (2016) algorithm. In-situ observations are from Dunne et al. (2005), (orange markers)
Mouw et al. (2016a); Mouw et al. (2016b), (blue markers for observations shallower than 200 meters and purple for observations deeper than 200
meters), and Bisson et al. (2018), (green markers).
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about PP), and are developed using different in-situ datasets. Still,

the skill of predicting export production is surprisingly similar

among the different algorithms. Both the Dunne et al. (2005) and Li

and Cassar (2016) algorithm evaluations showed that their own

model provides the best results, which is not too surprising since

they were developed using the evaluation data. The advantage is,

however, modest for Dunne et al. (2005) and insignificant for Li and

Cassar (2016). The Stukel et al. (2015) evaluation used a Lagrangian

in-situ dataset collected with the Siegel et al. (2014) algorithm in

mind and performed a re-parameterization of said algorithm, but

only achieved a modest improvement in skill measured as R2. The

authors argued that other statistical methods are more useful to

evaluate EP algorithms and Siegel et al. (2014) showed a larger

improvement by those metrics.

There is only a slight correlation between how complex an

algorithm is and how well it performs. Siegel et al. (2014) is

arguably the most complex approach and showed good results in

the Stukel et al. (2015) study, but was performing rather poorly in Li

and Cassar (2016). The simplest approach is by Eppley and Peterson

(1979), which is the only algorithm evaluated that uses PP as the sole

independent input feature. It performed worse than other algorithms

in Dunne et al. (2005) but reasonably well in Li and Cassar (2016).

This might suggest that SST is a more important factor when

estimating carbon fluxes at depth than EP from the euphotic zone.

We find that using the Mouw et al. (2016b) dataset together with

satellite-derived properties provide a poor correlation between

observed POC flux and predicted EP for the Dunne et al. (2005)

algorithm, the reason for this is not entirely clear. Some possible

explanations are problems with the satellite-derived products used or

differences in how the Dunne et al. (2005) and Mouw et al. (2016b)

datasets represent the global ocean. Another possible reason is (we

assume) that all properties used in the Dunne et al. (2005) dataset are

specifically sampled in connection to the POC flux observations. One

could expect a better connection between surface processes and

thermocline fluxes when observed over appropriate temporal and

spatial scales. This suggestion would also explain the good

correlations found by Stukel et al. (2015) and Li and Cassar (2016),

the latter by not relying of thermocline fluxes in the evaluation.

A future step to better understand the contrasting results seen in

this study is to re-evaluate all models with all available datasets. It is a

reasonable assumption that empirical relationships between available

satellite-derived products and EP differ significantly between different

regions of the ocean (Sathyendranath et al., 1991; Stukel et al., 2015;

Britten and Primeau, 2016; Li and Cassar, 2016). Recent syntheses of

in-situ observations within the BICEP and EXPORTS projects have

created the potential to re-parametrize existing algorithms and to

perform new regression analyses on regional scales. An alternative

promising approach to estimate EP from space is to use satellite-

derived properties for data assimilation in biogeochemical models. Two
Frontiers in Marine Science 16
recent examples are studies by DeVries andWeber (2017) andNowicki

et al. (2022) where they quantify the biological pump by using satellite

and oceanographic tracer observations to constrain rates and patterns

of organic matter production, export, and remineralization in an

inverse model framework.
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