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Blurring and color distortion are significant issues in underwater optical imaging,

caused by light absorption and scattering impacts in the water medium. This

hinders our ability to accurately perceive underwater imagery. Initially, we merge

two images and enhance both the brightness and contrast of the secondary

images. We also adjust their weights to ensure minimal effects on the image

fusion process, particularly on edges, colors, and contrast. To avoid sharp

weighting transitions leading to ghost images of low-frequency components,

we then propose and use a multi-scale fusion method when reconstructing the

images. This method effectively reduces scattering and blurring impacts of water,

fixes color distortion, and improves underwater image contrast. The

experimental results demonstrate that the image fusion method proposed in

this paper effectively improves the fidelity of underwater images in terms of

sharpness and color, outperforming the latest underwater imaging methods by

comparison in PSNR, Gradient, Entropy, Chroma, AG, UCIQE and UIQM.

Moreover, this method positively impacts our visual perception and enhances

the quality of the underwater imagery presented.

KEYWORDS

underwater optical imaging, multi-scale weight, image enhancement, image fusion,
homomorphic filtering
1 Introduction

The ocean holds vast resources and is considered a new continent to be exploited by

mankind. However, rapid population growth, depletion of land resources, and natural

environment deterioration has increased the importance of both exploiting and protecting

marine resources. In this context, ocean information acquisition, transmission, and

processing theory and technology play a critical role in the rational exploitation and

utilization of ocean resources. Underwater images are a key source of ocean data and a

useful visualization tool for identifying the ocean.
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However, compared to the air medium, the attenuation coefficient

of light beam propagation in the water medium is much larger, leading

to poor underwater imaging quality (Yang et al., 2019). The scattering

of light by water and suspended particles also reduces image contrast,

resulting in blurred images and poor visibility. Additionally, the

attenuation characteristics in water vary with wavelengths of light,

with red light being the most attenuated, losing its energy after a

distance of 4-5 meters. This makes underwater images more likely to

have a bluish or greenish appearance.

These factors collectively limit the quality of underwater

imaging, posing significant practical and scientific challenges

in the application of underwater images in marine military,

marine environmental protection, and marine engineering.

Therefore, it is essential to develop effective techniques and

technologies to improve underwater imaging quality and

overcome these limitations.

The motivation for designing the multi-scale fusion mechanism

in underwater image enhancement is to deal with the unique

challenges that arise when imaging underwater environments. In

particular, underwater images often suffer from severe noise, low

contrast, and color distortion, which can reduce visibility and make

it difficult to distinguish between different objects in the scene.

One approach to addressing these challenges is to use image

enhancement techniques that adjust the brightness, contrast, and

color balance of the underwater images. However, standard image

enhancement techniques may not be effective in underwater

environments due to the complex nature of the underwater light

field and the scattering and absorption of light by water and

suspended particles.

To overcome these challenges, researchers have developed

multi-scale fusion mechanisms that combine information from

different scales in the image to improve the overall image quality.

This approach involves breaking down the image into different

scales and processing each scale separately before fusing the results

back together.

By using this multi-scale approach, the low-level features of the

image can be enhanced at the pixel level, while the high-level

features, such as edges and boundaries, can be preserved to

maintain the overall structure of the image. This allows for better

visibility and the ability to distinguish between different objects in

the scene, making it easier to interpret underwater images for

scientific, commercial, and military applications.

With the advancement and maturation of image processing and

computer vision technologies (Sahu et al., 2014), many scientists are

paying more attention to using these technologies as post-

processing steps to enhance the visual quality of underwater

images to meet the needs of both human visual characteristics

and machine recognition (Guo et al., 2017). Jiang et al. make efforts

in both subjective and objective aspects to fully understand the true

performance of underwater image enhancement algorithms (Jiang

et al., 2022). Image enhancement is a widely-used technique that

can be used to improve the quality of underwater photographs by

primarily increasing image contrast and correcting color distortion

(Wang et al., 2019).

Typical enhancement methods used in this field include

histogram equalization (HE) (Hummel, 1977; Pisano et al., 1998),
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generalized unsharp mask (GUM), and fusion using a

monochromatic model (Ancuti et al., 2012). Iqbal et al. developed

an Integrated Color Model (ICM) algorithm based on the integrated

color model (Iqbal et al., 2007) and an Unsupervised Colour

Correction Method (UCM) for underwater image enhancement

(Iqbal et al., 2010). Abdul Ghani et al. employed the Rayleigh

distribution function to redistribute the input image (Abdul Ghani

and Mat Isa, 2015). Huang et al. proposed the RGHS model to

enhance image information entropy (Huang et al., 2018). To solve

blurriness and color degradation issues, Zhou et al. developed a

restoration method based on backscatter pixel prior and color cast

removal from the physical point of view of underwater image

degradation (Zhou et al., 2022). Peng et al. proposed a depth

estimation method for underwater scenes based on image

blurriness and light absorption (IBLA), which can be used in the

image formation model (IFM) to restore and enhance underwater

images (Peng and Cosman, 2017).

For underwater image restoration, a common approach is to

analyze the effective degradation model of the underwater imaging

mechanism and determine the model parameters based on prior

knowledge (Chang et al., 2018). For image defogging, the Dark

Channel Prior (DCP) has attracted attention due to the similarity

between outdoor and underwater images (Ancuti et al., 2020).

Drews-Jr provided a method of Underwater Dark Channel Prior

(UDCP) (Drews-Jr et al., 2013) that only considers the G and B

channels to produce underwater DCP without taking into account

the red channel.

Deep learning-methods have gradually become a research hot

spot/highlight as the progress of artificial intelligence technology,

such as visual recognition and detection of aquatic animals (Li et al.,

2023).Chen et al. constructed a real-time adaptive underwater

image restoration method, called GAN-based restoration scheme

(GAN-RS) (Chen et al., 2019). Yu et al. developed an underwater

image restoration network using an underwater image dataset to

simulate the relevant imaging model (Yu et al., 2019). Sun et al. also

developed a framework for underwater image enhancement that

employs a Markov Decision Process (MDP) for reinforcement

learning (Sun et al., 2022). Wang et al. proposed a one-stage

CNN detector-based benthonic organism detection (OSCD-BOD)

scheme to outperform typical approaches (Chen et al., 2021). Then

they summarized on Architectures and algorithms in deep learning

techniques for marine object recognition (Wang et al., 2022),

especially in organisms (Wang et al., 2023). Li et al. proposed the

first comparative learning framework for underwater image

enhancement problem beyond training with single reference,

namely Underwater Image Enhancement via Comparative

Learning (CLUIE-Net), to learn from multiple candidates of

enhancement reference (Li et al., 2022). To address the challenges

of degraded underwater images, Zhou et al. propose a novel cross

domain enhancement network (CVE-Net) that uses high-efficiency

feature alignment to utilize neighboring features better (Zhou et al.,

2023b). They addressed that most existing deep learning methods

utilize a single input end-to-end network structure leading to a

single form and content of the extracted features. And they

presented a multi-feature underwater image enhancement method

via embedded fusion mechanism (MFEF) (Zhou et al., 2023a). To
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boost the performance of data-driven approaches, Qi et al. proposed

a novel underwater image enhancement network, called Semantic

Attention Guided Underwater Image Enhancement (SGUIE-Net),

in which we introduce semantic information as high-level guidance

across different images that share common semantic regions (Qi

et al., 2022).

We summarize our main contributions as follows:
Fron
(1) We propose a fusion frame for underwater image

enhancement. This frame supplies a basis of different in

different scenes for underwater images.

(2) We proposed a multi-scale weighted method, which

employed the white balance method to obtain initial

enhancement images as references in real conditions, and

then filter the compensated images.

(3) We applied Contrast-Limited Adaptive Histogram

Equalization (CLAHE) (Pisano et al., 1998) to the L

channel in the model in this frame, to reduce time costs

and improve efficiency compared to global image

equalization.
The following parts are organized as below: Section 2 illustrates

the presented method’s structure, including color compensation,

initial enhancement, image equalization, contrast enhancement,

and image fusion. Next, Section 3 explains our experiment and

compares the results to those of other methods. Finally, we

summarize our method and references, and then discuss its

prospects for the future in Section 4.
2 Materials and methods

From the standpoint of image fusion, two different technologies

are used on the underwater degraded image to obtain a new image

with color brightness and contrast enhancement. The weight maps

of the two images are determined and a high-quality image is

obtained by weighted fusion.

The original degraded underwater image, based on the Jaffe-

McGlamery model, can be expressed based on the follow formula:

I(x) = J(x)e−hd(x) + B∞(X)(1 − e−hd(x)) (1)

where I(x) represents the original image taken underwater, J(x)

represents transmissivity, d(x) means observer and object’s

distance, h gives attenuation coefficient, B∞(x) refer to color vector.
2.1 Color compensation and
initial enhancement

2.1.1 Color channel compensation
Several studies on underwater images have shown that green

light attenuates less than red and blue light when propagating

underwater, and, as a result, the water body, as well as most

captured underwater, is typically blue-green in appearance. Red

and blue dual-channel colour compensation is used to solve colour
tiers in Marine Science 03
cast (Ancuti et al., 2020), and the images Icr and Icb after color

compensation is obtained as:

Icr(x) = Ir(x) + a · (�Ig − �Ir) · (1 − Ir(x)) · Ig(x) (2)

Icb(x) = Ib(x) + a · (�Ig − �Ib) · (1 − Ib(x)) · Ig (x) (3)

where Ir , Ig and Ib represent the red, green and blue colour

channels of the initial image I, each channel being in the range (0,1),
after normalization by the upper limits of their dynamic ranges; and
�Ir , �Ig and �Ib denoting the average of those channels over the whole
image.a is the compensation parameter, and the test shows that

a=1 is suitable for a variety of lighting conditions and

acquisition settings.

For underwater scenes with limited distortion, in the grayscale

world white-balance algorithm achieves good visual performance.

In this paper, in the grayscale world this method was applied to

calculate the white balance image and obtain the final colour-

corrected result by compensating for the loss in both red and

blue channel.
2.1.2 Homomorphic filtering
Due to the light limitation of underwater imaging system, the

illumination on imaging target is uneven, which deteriorates

imaging quality. Homomorphic filtering method was applied for

image compensated (Jiao and Xu, 2010). At the end, the image is

decomposed into direct irradiation, reflection component, which

are then logarithmically transformed as follows:

ln f (x, y) = ln f i(x, y) + ln f r(x, y) (4)

where fi(x, y) refer to illumination component, fr(x, y)

represents reflection component, corresponding to high-frequency

information. And equation (5) is performed with Fourier

transform:

F(u, v) = Fi(u, v) + Fr(u, v) (5)

In the frequency domain, the different frequency parts of the

underwater image are processed based on a Gaussian filter H(u, v),

with its transfer function given as below:

H(u, v) = (g H − g L)½1 − e
cD2(u,v)

D2
0 � + g L (6)

where gH is the enhanced part in high frequency, gL is the

reduced part in low frequency, andD(u, v) is referred to the distance

of the frequency in the midpoint and (u0, v0). D0 is the value of D

when (u, v) = (0, 0). The brightness range is compressed to make

them average and improve image contrast. The homomorphic filter

can appropriately separate the different components. Then,

multiply F(u, v) by H(u, v) as follows:

C(u, v) = H(u, v)F(u, v) (7)

The output of homomorphic filter is further performed by the

inverse Fourier transform and exponential transformation. The

final result g(x, y) is finally given as follows:
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g(x, y) = exp (c(x, y)) = exp(gi(x, y), gr(x, y)) (8)

where c(x, y) represents the result obtained by inverse Fourier

transform, gi(x, y) is direct illumination component and gr(x, y) is

reflection component. Figure 1 shows the preliminary enhanced image,

which was generated using color compensation and homomorphic

filtering. When comparing the two-colour images before and after

processing, it is clear that colours in three channels of the image are

more balanced by using the method described in this paper.
2.2 Image equalization and
contrast enhancement

2.2.1 Gamma correction
After color compensation, the white balance algorithm is used to

process the original/preliminary enhanced image. The goal of this step

is to improve image quality by reducing color shifts because of excessive
Frontiers in Marine Science 04
illumination. However, because the underwater image is often brighter

after color compensation and homomorphic filtering, we convert the

preliminary enhanced image into HSV space to enlarge the contrast of

bright and dark areas. Set the gamma as follow:

s = aIge (9)

Figure 2 depicts the gamma correction curve. When g <1, the
dynamic range of low gray values increases, the image’s overall gray

value increases. When g >1, the dynamic range of low gray value

shrinks while the high gray value expands. Selecting a value greater

than 1 can correct the global contrast in high-brightness underwater

images, such as g =2.2 in our case.

2.2.2 Contrast limited adaptive
histogram equalization

The gray values of most underwater images are low and,

therefore, their histogram distribution tends to be narrow.
FIGURE 1

Comparison original images with preliminary enhancement images. (1) Original; (2) Channel R; (3) Channel G; (4) Channel B; (5) Colour
compensation and homomorphic filtering; (6) Channel R after preliminary enhancement; (7) Channel G after preliminary enhancement; (8) Channel
B after preliminary enhancement.
FIGURE 2

Gamma correction curve.
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CLAHE can be used to modify the histogram distribution of an

underwater image so that correcting colour bias and improving

image contrast to some extent (Pisano et al., 1998). In this paper,

histogram equalization was performed in LAB space, i.e. the

contrast of L component was enhanced separately in LAB space.

L stands for brightness in LAB model, while A and B stand for

colour. By enhancing the L channel separately, you can avoid

impact colour component of image.

The image is divided into several sub-blocks using local

histogram equalization, and into limited non-coincidence sub-

blocks in this paper. The pixel points in grayscale are then

calculated using bilinear interpolation technology to solve the

block effect in image reconstruction.
2.3 Image fusion by weight

2.3.1 Define the weight of fusion
After obtaining two fusion input images, we calculate the special

weight map of these inputs to reflect high contrast, regions with

edge texture change of images. Brightness, local contrast, and

saturation of the image are primarily considered in the selection

of the weight map in this paper.

To maintain consistency in local image contrast, the brightness

weight WE
k is applied to assess the exposure degree of its pixels,

giving higher weights to well situated pixels in brightness. Because

the mean natural brightness of an image pixel is typically close to

0.5, the mean experimental brightness is set to 0.5, and its standard

deviation is set to 0.25 (Ancuti and Ancuti, 2013), and the

brightness weight WE
k of image I:

WE
k (x, y) = exp −

½Lk(x, y) − 0:5�2
2s2

� �
(10)

The normalized image in grayscale is represented by Lk(x, y).

The average value of its neighboring pixels is represented by the

local contrast weightWC
k . By using local contrast weighting, we can

draw attention to the transition area between the light and dark

parts. WC
k is the input image’s brightness weight, given as follows:

WC
k (x, y) = Ik − Ikwhc (11)

where Ik refers to the brightness channel of image and Ikwhc

represents its low-pass part. The low-pass filter uses a separable

binomial kernel of 5×5 (1/16 (Pisano et al., 1998; Wang et al., 2019;

Wang et al., 2019; Yang et al., 2019; Yang et al., 2019)) with a whc=p/
2.75. The binomial kernel is very similar to the Gaussian kernel and,

as a result, easy to calculate.

We define an input image’s saturation weight WSat
K , which

makes the fusion image evenly saturated by adjusting the highly

saturated area of the input image, expressed as below:

WSat
K (x, y) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Rk(x, y) − Lk(x, y)�2 + ½Gk(x, y) − Lk(x, y)�2 + ½Bk(x, y) − Lk(x, y)�2

q

(12)

where Rk(x, y), Gk(x, y) and Bk(x, y) represent red, green and

blue channel respectively. Calculate the normalized weight �Wk(x, y)

by applying normalization to the brightness, local contrast, and
Frontiers in Marine Science 05
saturation weights as:

�Wk(x,y)=
Wk(x,y)

okWk(x,y)
(13)

Wk(x,y)=W
E
k+W

C
k +W

Sat
K (14)
2.3.2 Multi-scale fusion
The typical intuitive method in this field is to add two weighted

images, but which will lead to significant halos. Therefore, the

experiment in this paper uses multi-scale fusion technology (Ancuti

and Ancuti, 2013), which is developed from the classic multi-scale

fusion. The following is a description of fusion computing:

Fl(x,y)=o
k

Ll½Ik(x,y)�Gl½ �Wk(x,y)� (15)

where l is pyramid decomposition layers number, k is fused

images number, �Wk(x, y) is the normalized weight, Ll½Ik(x, y)� is the
Laplacian pyramid decomposition, and Fl(x, y) is the l layer of

image pyramid, l=5 and k=2 in this experiment.

Iresult =o
l

Up½Fl(x, y)� (16)

where Iresult denotes final output image; Up½Fl(x, y)� denotes
up-sampling.
2.4 Our methodology

This paper proposes a multi-scale fusion-based underwater

image enhancement algorithm. Figure 3 depicts the algorithm

flow. Colour compensation and colour cast correction are

performed on the underwater image in shallow water, and the

compensated image is then subjected to complete the preliminary

enhancement. To get two fused input images, the enhanced image is

subjected to gamma correction equalization. Finally, to achieve the

goals of attenuation compensation and contrast and definition

improvement, a multi-scale fusion algorithm was used.

The method established in this study outperforms existing

underwater image enhancement methods in subjective visual

effects and objective evaluation indicators in an experimental

comparison of various types of underwater images in shallow water.
3 Experimental results and discussion

We compare the enhancement method set in this article with

existing professional algorithms by processing multiple underwater

images and summarizing their image visual effects and objective

image quality evaluation to verify the effectiveness of i in this

section. With reference to our previous work, our experiments

with each previous algorithm (Pisano et al., 1998; Iqbal et al., 2010;

Drews-Jr et al., 2013; Abdul Ghani and Mat Isa, 2015; Panetta et al.,

2015; Yang and Sowmya, 2015; Peng and Cosman, 2017; Huang
frontiersin.org
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et al., 2018; Chen et al., 2019) in the experiment are set in 3 parts for

more details.
3.1 Image enhancement visual effect
comparison (dataset 1)

Experiment results are shown as Figure 4. Imaging results in

Rayleigh (Abdul Ghani and Mat Isa, 2015) show varying degrees of
Frontiers in Marine Science 06
colour restoration, especially overcompensation in the red channel loss

of several local details. Images from the algorithms demonstrate poor

quality with excessive compensation and partial colour cases (Huang

et al., 2018; Chen et al., 2019). The image contrast has improved

significantly (Pisano et al., 1998; Huang et al., 2018), but the colour

restoration effect is still poor. In terms of image enhancement and

colour restoration, UDCP has not outperformed the competition

(Drews-Jr et al., 2013). However, the experimental method described

in this paper has demonstrated best performance on a variety of
FIGURE 3

The procedure of our method.
FIGURE 4

The results comparison of underwater images from different methods. (1) The original; (2) CLAHE; (3) Rayleigh; (4) RGHS; (5) UDCP; (6) GAN-RS; (7) Our method.
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underwater images, allowing it to more effectively correct colour bias,

improve contrast, and preserve image details.

To evaluate the results of various algorithms, this article uses

several traditional image quality objective evaluation indicators:

peak signal-to-noise ratio (PNSR), average gradient (Average

Gradient), tone (Chroma). A higher PNSR value indicates that

the algorithm introduces a small amount of noise and retains

more valuable image information. The mean gradient value

reflects the small detail contrast feature in image, and the

informat ion entropy indica tes the mean amount of

information contained in that. The tone is a summary of the

color of the entire image.

The above quality assess indicators are used to evaluate the

results of each algorithm after performing comparative experiments

on the four contrast images mentioned above. Table 1 shows the

mean values of each algorithm’s enhancement results for multiple

images on various evaluation indicators. According to the results, as

seen in Figure 5, the image processed by the algorithm in this paper

introduces less noise, retains more effective image information, and

has a better processing performance than other algorithms. It also

shows that this algorithm presented in this paper shows high

practical application value and can meet the requirements in

this field.
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3.2 Image enhancement visual effect
comparison (dataset 2)

As shown in Figure 6, the experimental results indicate that the

previous six algorithms achieved different degrees of color

restoration, but could not simultaneously achieve good

enhancement effects. The Rayleigh algorithm led to excessive

compensation in the red channel and the loss of many local details,

while the ICM and UCM algorithms did not perform well in color

restoration of green-tinted images, resulting in overcompensation

and color deviation. Although CLAHE and RGHS algorithms

significantly increased the image contrast, their color restoration

effects still need to be improved. However, the experimental

method in this paper achieved excellent results for multiple

underwater images, which could more effectively correct color

deviation, significantly improve contrast, and retain image details.

The average values of the algorithmically enhanced results of

multiple images over different evaluation metrics are shown in

Table 2, such as AG (Average Gradient), UCIQE (Underwater

Color Image Quality Evaluation metric) (Yang and Sowmya,

2015), UIQM (Underwater Image Quality Measures) (Panetta

et al., 2015), tone (Chroma) and Entropy. The bold data within

the tables represent the maximum value of the column data.
TABLE 1 Objective evaluation of underwater image quality.

METHOD CLAHE Rayleigh RGHS UDCP GAN-RS OURS

PSNR 22.1945 15.3600 17.5609 19.3710 17.1422 21.0493

Gradient 2.8410 3.9744 2.7206 1.2144 1.8089 4.1863

Entropy 13.8542 16.4866 15.2486 13.5358 13.7250 16.5132

Chroma 0.7804 0.5631 0.7093 0.6749 0.6144 0.8041
front
FIGURE 5

Visual evaluation of underwater image quality (Dataset 1).
iersin.org
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FIGURE 6

The results comparison of underwater images from different sources. (1) The original; (2) CLAHE; (3) IBLA; (4) ICM; (5) Rayleigh; (6) RGHS; (7) UCM; (8) Ours.
TABLE 2(A) The comparison of results with Image 1.

Method CLAHE IBLA ICM Rayleigh RGHS UCM Ours

AG 6.8776 5.9204 4.4001 11.5741 8.8502 7.153 13.2663

UCIQE 0.5372 0.6133 0.5264 0.6374 0.6408 0.6042 0.6411

UIQM 1.2473 1.1661 1.1358 1.2888 1.3006 1.2154 1.4265

Chroma 0.8135 0.7936 0.6928 0.4692 0.7393 0.6584 0.7819

Entropy 14.7762 15.0386 13.7117 15.5033 15.0503 14.7392 15.6574

Bold values means the best result.
F
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By comparing various underwater image processing methods

and the proposed algorithm in this paper, as seen in Figure 7, the

method processed image obtained the maximum UCIQE value and

UIQM value, which demonstrates that the algorithm performs well

in enhancing underwater degraded images. Meanwhile, our method

also shows significant superiority in terms of image average gradient

and entropy. In terms of image chroma, the proposed algorithm

performs well in enhancing underwater green-tinted degraded

images. The above experimental results indicate that the proposed
Frontiers in Marine Science frontiersin.org09
fusion algorithm has excellent performance in enhancing

underwater images.
3.3 Potential applications

Underwater image preprocessing is used to create high-quality

underwater images for use in other applications. The feature

matching test in this paper is performed using the SIFT (Lowe,
TABLE 2(B) The comparison of results with Image 2.

Method CLAHE IBLA ICM Rayleigh RGHS UCM Ours

AG 13.8597 9.6572 8.8445 15.5622 9.0636 8.921 15.2386

UCIQE 0.5974 0.5727 0.5712 0.6271 0.6211 0.6313 0.633

UIQM 1.3257 1.2008 1.2137 1.3773 1.3034 1.3726 1.492

Chroma 0.8135 0.6009 0.5362 0.7715 0.7458 0.4322 0.695

Entropy 15.3721 14.9253 14.4406 15.5692 14.9615 14.7066 15.5797

Bold values means the best result.
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TABLE 2(C) The comparison of results with Image 3.

Method CLAHE IBLA ICM Rayleigh RGHS UCM Ours

AG 4.0601 2.7305 2.965 6.481 3.1915 4.334 6.5679

UCIQE 0.4899 0.5034 0.5675 0.6376 0.578 0.6234 0.6387

UIQM 1.1075 0.954 1.1899 1.2996 1.0518 1.1141 1.3322

Chroma 0.7029 0.6994 0.709 0.5895 0.5997 0.6156 0.7098

Entropy 14.7915 14.6287 14.371 15.3776 14.4284 14.9684 15.5584

Bold values means the best result.
TABLE 2(D) The comparison of results with Image 4.

Method CLAHE IBLA ICM Rayleigh RGHS UCM Ours

AG 3.6143 3.4656 2.9932 6.1934 5.1815 4.8108 7.2521

UCIQE 0.439 0.511 0.5233 0.6175 0.6179 0.6019 0.6276

UIQM 1.0364 1.3517 1.3699 1.5013 1.3135 1.2299 1.5411

Chroma 0.827 0.8013 0.529 0.5281 0.7786 0.7067 0.8097

Entropy 13.8838 14.386 13.6957 16.3354 14.8868 14.4471 15.9288
Bold values means the best result.

TABLE 2(E) The comparison of results with Image 5.

Method CLAHE IBLA ICM Rayleigh RGHS UCM Ours

AG 6.0148 4.1758 4.3871 7.2555 5.8684 5.7459 6.8584

UCIQE 0.5746 0.5558 0.5922 0.6835 0.6587 0.6239 0.6874

UIQM 1.2685 1.3445 1.3998 1.4825 1.2947 1.0311 1.4871

Chroma 0.8586 0.7858 0.4803 0.7897 0.7149 0.5494 0.7969

Entropy 14.9596 13.4666 13.81 15.0161 14.4415 14.5126 15.1991
Bold values means the best result.
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2004). We find the correspondence between two sets of similar

underwater images under the same experimental conditions,

compare the number of feature points before and after image

processing, and verify the practical application of this

algorithm’s effectiveness.

Figure 8 depicts the result of feature point matching and

comparison. According to the comparison results, it can be

inferred that the images number with accurately matched

feature points has increased as a result within this method.

According to the above results, it can be inferred that after

image fusion based on this method, the corresponding fusion

image quality is significantly improved, which can better meet

the subsequent recognition requirements and show high

application value.

The image processed by ours has a good application

performance in the feature extraction process, according to

application test results. At the same time, the experiment used

feature point matching processed by various enhancement

algorithms. Table 3 exhibits the experimental comparison tests

result. The numbers of image matching feature points processed
Frontiers in Marine Science 10
by the method in this study are higher than those of other

methods , indicat ing that i t performs better in real-

world applications.
4 Conclusions

Images captured in offshore waters often suffer from low

contrast, uneven colors, and varying degrees of blur. To address

these issues, we propose a new fusion algorithm that employs color

compensation, homomorphic filtering, and L-channel histogram

equalization technology to enhance the visual quality of underwater

images in shallow sea water through multi-scale fusion processing.

Our algorithm significantly improves the visibility of

underwater images in a variety of shallow sea scenes, enhancing

color restoration and sharpening effects as shown in subjective

image visual effect demonstrations.

Experimental comparison tests showed that utilizing our

method for image preprocessing significantly enhances the

quality of relevant underwater vision tasks. However, it should
A B

D

E

C

FIGURE 7

The comparison of result in image 1 to 5.
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b e no t e d t h a t t h e p r opo s e d me t hod c an l e a d t o

overcompensation and correction of colors. In future work, we

aim to improve the color restoration and further enhance

underwater image quality.
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FIGURE 8

SIFT feature matching. (1) Original; (2) CLAHE; (3) Rayleigh; (4) RGHS; (5) Ours.
TABLE 3 Comparison of the number of matching features points between original and processed images.
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