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The Southern Ocean is a productive and biodiverse region, but it is also

threatened by anthropogenic pressures. Protecting the Southern Ocean

should start with well-informed Marine Ecosystem Assessments of the

Southern Ocean (MEASO) being performed, a process that will require

biodiversity data. In this context, open geospatial biodiversity databases such

as OBIS and GBIF provide good avenues, through aggregated geo-referenced

taxon locations. However, like most aggregated databases, these might suffer

from sampling biases, which may hinder their usability for a MEASO. Here, we

assess the quality and distribution of OBIS and GBIF data in the context of a

MEASO. We found strong spatial, temporal and taxonomic biases in these data,

with several biases likely emerging from the remoteness and inaccessibility of the

Southern Ocean (e.g., lack of data in the dark and ice-covered winter, most data

describing charismatic or well-known taxa, and most data along ship routes

between research stations and neighboring continents). Our identification of

sampling biases helps us provide practical recommendations for future data

collection, mobilization, and analyses.
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1 Introduction

The Southern Ocean is a highly productive region that provides

a large variety of ecosystem services (e.g., climate regulation, natural

resources – including for food provision – and tourism; Grant et al.,

2013). Exploration and exploitation of the Southern Ocean is

relatively recent (starting with small research and whaling

expeditions at the end of the 19th century) but interest and

human activities have since increased dramatically, along with

associated stressors – e.g., exploitation of fishing resources,

disturbances by human visitors, pollution, invasive species, but

also global warming and ocean acidification (Petrou et al., 2019;

Rogers et al., 2020; Grant et al., 2021). Changes induced by these

stressors can be profound and are expected to become more

important (e.g., changes in primary productivity, ecosystem

structure and functions, carbon uptake, species migrations, etc.;

Henley et al., 2020; Morley et al., 2020; Brasier et al., 2021; Caccavo

et al., 2021). For these reasons, maintaining the Southern Ocean in

good health by minimizing the impact of human activities and

climate change on ecosystem services should be a major priority for

governance and policy bodies (Kennicutt et al., 2014; Rogers

et al., 2020).

In this context, a marine ecosystem assessment of the Southern

Ocean (MEASO) aims to provide managers with consolidated

information about the status and trends of Southern Ocean

habitats, species and ecosystems, to better support management

and conservation planning activities. This information includes

summaries of current knowledge from experts and peer-reviewed

literature as well as biodiversity-related data and model outputs that

can inform specific aspects of policy development. The specific

requirements of such data will vary according to the particular

objectives of a given assessment exercise. Ideally, however,

biodiversity data should include abundances or densities from a

phylogenetically and functionally wide variety of species, have a

circumpolar coverage and allow comparison of the present state

with a past benchmark (Brasier et al., 2019). As a starting point, the

Census of Antarctic Marine Life (Schiaparelli et al., 2013) had as its

main objective to understand the biodiversity of the Southern Ocean

and set reference baselines to allow subsequent measurements of

change (Van de Putte et al., 2021). The resulting Biogeographic Atlas

of the Southern Ocean ( de Broyer and Koubbi, 2014) provided an

initial benchmark of the Southern Ocean biogeography knowledge.

However, to inform policy, such complex ecological data are best

summarised in a few easily understandable statistics which can be

used to track changes through time. These include Essential

Biodiversity Variables (EBV; cooperatively defined by the Group on

Earth Observations Biodiversity Observation Network, or GEO BON,

http://geobon.org) and Essential Ocean Variables (EOV; proposed

by the Global Ocean Observing System, or GOOS, http://

goosocean.org). These summary variables range from species-level

distributions and biomass to measures of community composition

and taxonomic or trait diversity (Pereira et al., 2013; Constable et al.,

2016; Miloslavich et al., 2018; Muller-Karger et al., 2018; Jetz et al.,

2019, Van de Putte et al., 2021). At the regional scale, monitoring

frameworks and essential variables are being developed concurrently.

For the Southern Ocean the Southern Ocean Observing System
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(SOOS) is leading the creation of Southern Ocean-specific

ecosystem Essential Ocean Variables (eEOVs; Constable et al., 2016).

The remoteness, difficulty of access, and harsh weather conditions

of the Southern Ocean pose particular challenges to the collection of

biodiversity data in the region. Individual studies are limited in their

spatial and temporal extent, but thankfully, initiatives have emerged to

aggregate these individual studies into larger biodiversity research data

infrastructures. These provide opportunities to leverage the knowledge

generated by these individual independent efforts to obtain a wider

understanding of ocean biodiversity (Van de Putte et al., 2021). The

Global Biodiversity Information Facility (GBIF, https://www.gbif.org)

and the Ocean Biodiversity Information System (OBIS, https://

obis.org) were created at the start of the 21st century to provide open

access biodiversity data. At the regional level of the Southern Ocean,

the Scientific Committee on Antarctic Research (SCAR) Antarctic

biodiversity portal (www.biodiversity.aq) acts as their regional node.

These biodiversity research data infrastructures are in line with the

current guidelines of many funding agencies, and with the spirit of the

Antarctic Treaty, that “Scientific observations and results from

Antarctica shall be exchanged and made freely available” (Antarctic

Treaty 1959, Article 3), and therefore with the FAIR principles of

“Findability, Accessibility, Interoperability, and Reusability”

(Wilkinson et al., 2016). GBIF and OBIS follow the Darwin Core

(DwC) data standard (Wieczorek et al., 2012), an international

standard - ratified and maintained by the Biodiversity Information

Standards (TDWG) - that facilitates the sharing of information about

biological diversity. Through a Darwin Core Archive (DwC-A), it is

possible to share metadata (using the ecological metadata language,

eml), species (taxonomic) checklists, occurrence and sampling event

data. In addition, additional data such as DNA derived data (Nilsson

et al., 2022), or extended measurements or facts (De Pooter et al., 2017)

can be included in various extensions. The requirement to follow these

standards provide advantages over general purpose data portals (e.g.

figshare.com, pangea.de) in terms of Interoperability and Reusability.

Highly FAIR compliant data could allow the development of analytical

workflows to automatise the calculation of EBVs or eEOVs (Van de

Putte et al., 2021). Finally, GBIF and OBIS put the emphasis on data

with geospatial information, which is not the case of, e.g., portals

dedicated to molecular data such as GenBank. These biodiversity

research data infrastructures therefore represent a promising avenue

for understanding large-scale diversity patterns and the long-term state

of Southern Ocean ecosystems.

Whether these promising data have the quality and spatial,

temporal and taxonomic coverage to support the calculation of

essential variables for a MEASO, however, remains unknown.

Assessing the quality and biases of GBIF data in European seas,

(Ramıŕez et al., 2022) found severe biases towards waters closer to

well-funded institutions (around the United Kingdom and in the

North Sea), recent years (with a peak in the 2010s), and the most

conspicuous and abundant taxa (e.g., crustaceans, echinoderms or

fish). However, environmental and socio-economic factors make the

Southern Ocean a very different system to European seas (e.g., remote

and inaccessible with extreme seasonality caused by winter darkness

and seasonal sea ice), making repeating the exercise for the Southern

Ocean a necessity. In a first Southern Ocean case study, Moudrý and

Devillers (2020) found issues with the quality and coverage of a number
frontiersin.org
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of records from GBIF and OBIS on marine mammals (e.g., missing

collection dates, varying geographic accuracy, and known mammal

biodiversity hotspots with no available records). Here, we extend this

exercise to all biodiversity records from the Southern Ocean. We assess

overall quality and geographical, temporal, and taxonomic coverage of

GBIF and OBIS records for the region. We examine these potential

sources of bias and formulate recommendations should these data be

used for a MEASO. Finally, the tools for data cleaning, as well as the

cleaned dataset, are made available for future use.
2 Materials and methods

2.1 Data access

Biodiversity data from the Southern Ocean was sourced from

GBIF (http://www.gbif.org, interpreted data downloaded on

November 10, 2022; GBIF.org, 2022) and OBIS (https://obis.org,

downloaded on November 10, 2022) with the R package robis

(Provoost and Bosch, 2021) and from the GBIF data portal and R

package rgbif (Chamberlain et al., 2023). The data was queried using

a polygon combining all MEASO regions, obtained through the

measoshapes package (Sumner, 2020). The MEASO regions divide

the Southern Ocean into five longitudinal sectors that are further

subdivided in three longitudinal zones.
2.2 Data integration and quality control

Raw data from GBIF and OBIS were combined and subjected to

a quality control procedure largely based on the approach outlined

by Moudrý and Devillers (2020) and Vandepitte et al. (2015). The

series of filters that were used to flag (and subsequently remove)

problematic data are described below.

2.2.1 Spatial filters
As in Moudrý and Devillers (2020), coordinates were rounded

to four decimal places, and occurrences located on land were

flagged for further removal, based on shorelines from the Global

Self-consistent, Hierarchical, High-resolution Geography database

(GSHHG full resolution L1 – for sub-Antarctic islands – and L6 –

for Antarctica, Version 2.3.7 Released June 15, 2017, downloaded

from www.soest.hawaii.edu/pwessel/gshhg/). Although shoreline

maps can sometimes be inaccurate in the Southern Ocean, no

buffer was used to avoid removing too many coastal records. Note

that coordinate precision was not taken into account here, which

might lead in a few cases to the undue removal of records (e.g. for

gridded data, the center point for the grid cell could be on land even

if the recorded occurrence was in the water - a problem which might

be more prevalent for benthic species). Contrary to Moudrý and

Devillers (2020), occurrences with identical values for latitude and

longitude were not filtered out as we had no means to distinguish

between erroneous and correct cases (some locations with identical

latitude and longitude fall within a highly sampled area of the

Southern Ocean, and locations with inverted latitude and longitude

can be hard to detect in the region).
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2.2.2 Temporal filters
Temporal filters were applied based on the eventDate and year,

month, and day fields. When there was a range of dates in the

eventDate field, only the first date was considered. When there was a

conflict between information in the eventDate field and data in the

year/month/day fields, priority was given to the year/month/day

fields. Records with missing or incomplete dates were flagged for

further removal. Dates prior to 1773 (first recorded crossing of the

Antarctic circle by captain Cook) and after 2022 were also flagged

for further removal.

2.2.3 Taxonomic filters
Records with no information in the scientificName field were

flagged for further removal. For all other records, taxon names

present in the scientificName field (or in the species field when there

was no match with scientificName) were matched with the World

Register of Marine Species (WoRMS; www.marinespecies.org), the

reference taxonomic database for marine wildlife. We did so using

the worrms package (Chamberlain, 2020) and retaining only exact

matches. For each taxon that matched, a unique WoRMS identifier

(i.e., aphiaID) – favouring accepted names when multiple matches

were found – could be assigned to it, along with the corresponding

valid name, that was used in further analyses. Higher level

categorisations (e.g., families for taxa identified at the genus level)

imported from WoRMS were also added to the working dataset. In a

few cases, a scientificName matched multiple accepted entries from

WoRMS belonging to different phyla (e.g., the genusNitzschia can be a

member of either phyla Platyhelminthes or Ochrophyta; similarly,

members of the genus Gardnerella can be either Actinobacteria or

Mollusca). In these cases, priority was given to the WoRMS entry

whose phylum matched the original phylum entered in OBIS and

GBIF, and no WoRMS entry was kept when there was no phylum

match. Taxa with no match were flagged for further removal.
2.2.4 Observation type filters
Absence data were flagged for further removal, as not all biodiversity

survey datasets include a list of taxa that were not observed at a given

time and place (absence data represent a marginal fraction of all data

present on GBIF and are absent by default from OBIS downloads).

Fossil data were also flagged for further removal, as only extant

data was of interest for this study. The remaining data was further

separated into ‘machine observations’ (using the MachineObservation

tag in the basisOfRecord field – defined by Darwin Core as “an output

of a machine observation process”, e.g. photographs, videos, audio

recordings, remote sensing images, telemetry, etc. – https://

dwc.tdwg.org/terms/#machineobservation) and ‘human observations’

(all remaining data). These two sub-datasets were separated for further

analysis (see Evaluation of biases section), because occurrences

associated with various types of tracking of individual movements

(e.g., Argos or GPS systems) artificially inflate the relative importance

of the tracked species in the data.
2.2.5 Potential duplicates
Following these steps (i.e., after matching taxonomic names

with WoRMS), records that were duplicated between and/or within
frontiersin.org
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databases were flagged for further removal. Records that had

identical values (including NAs) in the fields decimalLatitude,

decimalLongitude (rounded to 4 decimals), year, month, day – or

eventDate – and WoRMS-matched scientificName were considered

as potential duplicates. Potential duplicates could be multiple

entries of a species at the same geographic location and time

within or between databases or could be records that are

duplicated with changes to the occurrenceID field, for instance

when data is uploaded again as part of an extended dataset.
2.3 Evaluation of biases

A working dataset – in which all flagged data were removed, and

valid taxonomic names were associated usingWoRMS – was used for

the evaluation of geographical, temporal, and taxonomic biases.

Biases were visualised either for the whole working dataset, or for

machine or human observations only, for certain abundant phyla, or

for other groups of interest (see Analysis of focal groups for details).

Temporal biases were explored by calculating the number of

records per month of year, per year or per decade.

Spatial biases were visualised on a reference square grid, using a

Polar Stereographic projection and a 100km x 100km resolution, by

plotting the number of records in each grid cell. Spatial coverage for

the groups of interest was estimated by creating a 3° x 3° grid

covering the whole MEASO region (origin set at 180°W and 90°S, as

in Griffiths et al., 2014) and counting the percentage of cells that

contained at least one record.

The depth of taxonomic identifications was assessed by

calculating the proportion of records that were described up to

the phylum, class, order, family, genus, or species level.

Following Ramıŕez et al. (2022), we also built taxa accumulation

curves for each major MEASO sector (Atlantic, Central Indian, East

Indian, East Pacific, West Pacific). For this we used the 3° x 3° grid

mentioned above, and calculated, in each grid cell, the number of

records and the number of genera. We used genera and not species,

to increase the number of records that could be used in this analysis.

The relationship between the number of records and the number of

genera was modelled using a Michaelis-Menten fit, with the

rationale that if the relationship plateaus, the cells on the plateau

can be considered as well sampled (i.e., increasing the number of

records should not increase the number of recorded genera).

2.3.1 Analysis of focal groups
Benthic vs. pelagic species were identified following (Griffiths et al.,

2014). Information was only retained for taxa with unambiguous

matching. Seventeen other focal groups were defined: 1. Birds and

mammals, 2. Crustacea, 3. Microzooheterotrophs, 4. Mollusca, 5.

Tunicata, 6. Echinodermata, 7. Bacteria, 8. Eukaryote primary

producers, 9. Gelatinous zooplankton, 10. Pisces, 11. Plantae, 12.

Annelida, 13. Bryozoa, 14. Porifera, 15. Protozoa, 16. Tintinnid

ciliates, 17. Macroalgae. These groups were defined by extending the

definitions of Ramıŕez et al. (2022) and the list of corresponding taxa

can be found in Supplementary Table S1. Finally, records were

considered as zooplankton or phytoplankton (to estimate the

amount of data in the EOV categories – see Table 1) based on
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worrms package and a modification of a code available from https://

github.com/tomjwebb/WoRMS-functional-groups. For benthic,

pelagic, zooplankton, and phytoplankton groups, taxa were

considered as belonging to a group if at least one life stage was

recorded as belonging to it.
2.4 Suitability of the available data
for a MEASO

Based on definitions provided by GEO BON and GOOS (see

Table 1 for details), we identified, for each relevant EBV and EOV,

the data necessary for their calculation. We then evaluated how

appropriate data from OBIS and GBIF are for this exercise, based on

qualitative evaluation of biases as well as quantitative evaluations of

the percentage of records containing the required information. Note

that our evaluation of the availability of abundance data was focused

on the organismQuantity(Type) and individualCount columns, and

excluded information that may have been recorded in extension

tables (Extended Measurement or Fact), as only occurrence data

was included in this analysis. This may underestimate to a certain

extent the availability of abundance data.
2.5 Code availability

All analyses were performed in R-studio (R version 4.4.1; R

Core Team, 2021). The R-code of the analyses has been extensively

documented and is freely available at GitHub (https://github.com/

asbonnetlebrun/measo_gap_analysis).
3 Results

3.1 Data availability and overall quality

The search criteria matched 5,993,533 records on OBIS and

5,579,904 on GBIF. Of these, 547,944 records appeared to be

situated on land (Figure 1). In total, 1,478 records had no

scientificName (0.01% of the data), and 467,966 records had a

scientificName with no match in WoRMS (4.04% of the data). Note

that for records from DNA sequence reads, the number without a

scientificName match in WoRMS increased substantially to 40.56%.

5.04% of records had incomplete date information (year

missing for 2.84% of records, month for 4.55% and day for

5.04%). In addition, 5,369 records prior to 1773 (first recorded

crossing of the Antarctic circle), and 6 records after 2022, were

flagged as erroneous for further removal (e.g. 5,353 records

supposedly in year 0). 141,966 records (1.23% of all data) referred

to species absences (all from GBIF; Figure 1).

7,002,899 (60.51% of the total) records were potential duplicates

of other records (2,118,495 within OBIS, 1,373,050 within GBIF,

and 3,511,354 between the two databases, leaving 4,570,538 unique

records in the database. Machine observations accounted for

39.89% of all records (before quality controls), and human
frontiersin.org
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TABLE 1 List of Essential Biodiversity and Essential Ocean Variables, and the availability of suitable data in OBIS and GBIF to calculate them.

Essential Biodiversity
Variables (EBVs)

Definition Required quantity Availability

source: GeoBON

Species population
EBVs

1 Species distribution The species occurrence
probability over
contiguous spatial and
temporal units
addressing the global
extent of a species
group.

Geo-referenced
presences that can be
used in species
distribution models.

Available, but species distribution models would need to take spatial and temporal
sampling biases into account. Only 1.23% of all OBIS-GBIF records for the region
are absence data.

2 Species abundance Predicted count of
individuals over
contiguous spatial and
temporal units
addressing the global
extent of a species
group.

Reliable abundance data
(here in the
organismQuantity and
organismQuantityType
fields, potentially in the
individualCount field).

Only 17.56% records (34.92% when considering only human observations) may be
considered trustworthy abundance data (defined by the organismQuantity and
organismQuantityType field explicitly mentioning unit taxa per unit space and/or
time). 18.99% of records (38.93% when considering only human observations)
have individualCount provided, but without information on the area sampled.
Note that extension tables were not evaluated here.

Community
composition EBVs

3 Community abundance The abundance of
organisms in ecological
assemblages.

Reliable abundance data
(if communities are
assumed to be
homogeneous over a
certain area and time
period).

See EBV2 for data on abundance in OBIS-GBIF.

4 Taxonomic/
phylogenetic diversity

The diversity of species
identities, and/or
phylogenetic positions,
of organisms in
ecological assemblages.

Geo-referenced
presences and
phylogenies that can be
matched based on
taxonomic names.

Geo-referenced presences available in OBIS-GBIF,
providing biases are taken into account. Phylogenetic
information not available in OBIS-GBIF - need for
external phylogenetic database(s), e.g., the “tree-of-life” databases (see http://
tolweb.org/tree/phylogeny.html).

5 Trait diversity The diversity of
functional traits of
organisms in ecological
assemblages.

Geo-referenced
presences and a trait
database that can be
matched based on
taxonomic names.

Geo-referenced presences available in OBIS-GBIF, providing biases are taken into
account. Trait information not available in OBIS-GBIF - need for external
functional traits database(s).

6 Interaction diversity The diversity and
structure of multi-
trophic interactions
between organisms in
ecological assemblages.

Geo-referenced
presences and an
interaction database that
can be matched based
on taxonomic names.

Geo-referenced presences available in OBIS-GBIF,providing biases are taken into
account. Interaction information not available in OBIS-GBIF - need for external
interactions database(s).

Ecosystem structure
EBVs

7 Live cover fraction The horizontal (or
projected) fraction of
area covered by living
organisms, such as
vegetation, macroalgae
or live hard coral.

Data on cover. Not available from OBIS/GBIF

8 Ecosystem distribution The horizontal
distribution of discrete
ecosystem units.

9 Ecosystem vertical
profile

The vertical
distribution of biomass
in ecosystems, above
and below the land
surface.

Depth information
related to geo-referenced
presences.

Depth information only available for 30.72% of the dataset, skewed towards
shallow depths (50.08% of the records with depth information in the top 10
meters of the ocean). Of these records with depth information, 62.21% % have a
measure of biomass (organismQuantity(Type) fields).

(Continued)
F
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observations for 60.11%, with the remaining ~3400 records being

unclassified or fossil records.

Only 19.39% of all (i.e., presence and absence) records contained

information on the number of individuals observed (individualCount

field), and 26.27% of all records contained abundance information

(i.e., explicit mention of number of individuals per unit of space and/

or time in the organismQuantity and organismQuantityType fields).

Note that absence records could be considered as carrying abundance

information (i.e., null abundance) but the individualCount and

organismQuantity fields were filled in for respectively only 3.46%
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and 68.17% of absence records. An occurrenceID was missing for

953,954 records (8.24%), probably pre-dating the implementation of

occurrenceID as an obligatory field.

Records originated from 3,484 individually identified datasets

(based on unique value in the datasetName field) and 570

institutions (institutionCode field) - but note that 10,751,553 records

had no data in the datasetName field and 5,582,236 records had no

data in the institutionCode field. The contributions of individual

datasets were highly variable: 2,929 datasets had less than 10 records,

while 6 datasets had more than 50,000 records (including “The
TABLE 1 Continued

Essential Ocean
Variables (EOVs)

source: GOOS

1 Phytoplankton biomass
and diversity

Geo-referenced
presences and reliable
abundance data (in the
organismsQuantity
(Type) fields, potentially
in the individualCount
field)

82,466 (1.98% of total) records for phytoplankton, of which 68.46% contain info in
the organismQuantity(Type) fields and 16.92% in the individualCount field.

2 Zooplankton biomass
and diversity

60,5491 (14.54% of total) records for zooplankton
(based on functional groups from WoRMS), of which
68.68% contain info in the organismQuantity(Type)
fields and 23.28% in the individualCount field.

3 Fish abundance and
distribution

24,858 (0.60% of total) records for fish (defined as in Table S1), of which 15.16%
contain info in the organismQuantity(Type) fields and 12.85% in the
individualCount field.

4 Marine turtles, birds
and mammals
abundance and
distribution

2,906,071 (69.80% of total) records for birds, and mammals (defined as in Table
S1), of which 1.83% contain info in the organismQuantity(Type) fields and 15.74%
in the individualCount field.

5 Microbe biomass and
diversity

No clear taxonomic definition of microbes to estimate the amount of available
data.

6 Invertebrate abundance
and distribution

3,910,534 (93.92% of total) records for invertebrates (defined here as the kingdom
Animalia minus the phylum vertebrates), of which 14.04% contain info in the
organismQuantity(Type) fields and 19.51% in the individualCount field.

7 Seagrass cover and
composition Data on cover and

representative geo-
referenced presences to
estimate composition.

Data on cover not available from OBIS/GBIF; seagrasses absent from the Southern
Ocean (0% of the data in the families Zosteraceae, Hydrocharitaceae,
Posidoniaceae or Cymodoceaceae).

8 Macroalgal canopy
cover and composition

Data on cover not available from OBIS/GBIF; no clear taxonomic definition of
macroalgae to estimate amount of available data.
Unless explicitly mentioned, percentages are expressed as percentages of the working dataset (after quality control and removal of duplicates).
FIGURE 1

Sankey diagram of quality control steps: removing records on land, records with no match in WoRMS for their scientificName, records with
incomplete or missing dates, absences, potential within-database duplicates, potential between-databases duplicates, and fossil records. Each
category is followed by the number of records that fits in it. Orange: data from GBIF, red: data from OBIS, blue: unique records across the two
combined databases, grey: discarded data.
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Retrospective Analysis of Antarctic Tracking (Standardised) Data from

the Scientific Committee on Antarctic Research” and “Southern Ocean

Continuous Zooplankton Recorder (SO-CPR) Survey”). Molecular

data (“DNA sequence reads” in the organismQuantityType field, as

recommended in Andersson et al., 2021) represented 2.76% of the

whole dataset.

Only 54.88% of all records contained information in the

samplingProtocol field. When present, information in this field was

not always recorded in a standardised manner, resulting in 4,885

unique values in this field, making a systematic study of the impact of

sampling protocols on spatial and temporal biases impractical.
3.2 Exploration of distributions and biases

All subsequent results will refer to the filtered dataset (no

terrestrial records, presences only, unique records, complete and

realistic dates, machine or human observations).

3.2.1 Temporal distribution
Most observations were collected during the 20th and 21st

centuries (only 0.04% of records prior to 1900, 63.9% of which

classified as preserved specimen), with an increase starting around the

1950s and a decrease in the last decade – for both machine and
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human observations (Figure 2A). There was also a consistent seasonal

bias in the data, particularly for human observations, which showed

higher sampling intensity during the austral summer months

(Figure 2B). Note that the peak in human observations in May in

the last decade is dominated by what seems to be one campaign

collecting and analyzing environmental DNA (i.e., “DNA sequence

reads” in the organismQuantityType column) in 2016 in the West

Pacific MEASO sector (70.37% of the 2000-2019 May peak;

Supplementary Figure 1A, B). Overall, molecular data only started

to represent a significant amount of data in the last decade (2010-

2019; Supplementary Figure 1A).

3.2.2 Geographic distribution
Human observations were highly clustered (Figure 3A), with

high record densities around Sub-Antarctic islands, and visible

cruise tracks, e.g., between the Antarctic continent and New-

Zealand or Australia. The number of human observation records

per unit area was highest – and increased the most in recent years –

in the Sub-Antarctic zone of the Central Indian sector, the Antarctic

zone of the East Pacific sector, and the sub-Antarctic and Northern

zones of the East Indian sector (Figure 4). High numbers of human

observations were found around sub-Antarctic Islands, and along

routes leading to research stations (Supplementary Figure 2A). In

winter, human observations were almost absent from large areas
B

A

FIGURE 2

Temporal distribution of the data (after quality control): (A) number of records per year, along with some key expeditions (Discovery Investigations,
Biological Investigations Of Marine Antarctic Systems and Stocks (BIOMASS) survey, Southern Ocean Continuous Plankton Recorder surveys (SO-
CPR) and Census of Antarctic Marine Life (CAML); (B) number of records per month, separated into decades and human vs. machine observations.
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covered by sea ice (Supplementary Figure 3), although areas in the

Central Indian Ocean remained sampled in winter despite the

presence of sea ice. In contrast, although most abundant around

research stations (Antarctic Peninsula, sub-Antarctic islands, some

areas on the Antarctic coast; Supplementary Figure 2B), machine

observation data covered a larger part of the Southern Ocean and

appeared not to be confounded by ship movement (Figure 3B,

Supplementary Figures 2B, 4). However, in the case of tracking data

from central-place foragers (a large part of the dataset), they will

likely be biased by sampled colonies.

3.2.3 Taxonomic composition
Overall, the data included 23,947 different taxonomic units, based

on values from the scientificName field, after matching with the

WoRMS taxonomic backbone. These units ranged from (sub-)species

to kingdom-level identifications. After matching with the WoRMS

taxonomic backbone, we identified 93 individual phyla in the data.

The 10 best represented phyla for the whole working dataset

(machine and human observations) were Chordata (3,146,356

records), Arthropoda (506,936), Mollusca (70,372), Echinodermata

(66,693), Foraminifera (57,147), Ochrophyta (56,567), Cnidaria

(36,977), Proteobacteria (28,092), Bryozoa (25,822), and Annelida

(25,512). The evolution of the number of records through time varied

across phyla, with several phyla increasing until 2001-2010 and then

plateauing or decreasing in the last decade, while Proteobacteria,

which were absent from the databases until the decade 1980-1989,

showing a very marked increase continuing in the last decade,

making them to the 3rd currently most-sampled phylum

(Supplementary Figure 5).

The depth of taxonomic identification varied with observation

types: while 99.95% of machine observations were identified at the
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genus level, and 99.93% at the species level, only 83.96% of human

observations were identified at the genus level, and only 70.48% at the

species level. The depth of taxonomic identification also varied

among phyla, with large and morphologically easily identifiable

phyla such as Chordata (but also Mollusca, up to genus level)

identified more precisely than phyla such as Radiozoa,

Chaetognatha, Foraminifera and Proteobacteria (Supplementary

Figure 6), those phyla often requiring microscopy to reach fine

level identifications or DNA-based techniques, which often identify

currently undescribed taxonomic units (Andersson et al., 2021). As

an illustration of this, only 6.99% of molecular data were identified at

the species level.

86.3% of filtered records could be unambiguously matched to

benthic/pelagic categories. Overall, pelagic species appeared better

sampled than benthic species, with a higher number of records and

higher spatial coverage (Figure 5). There were large disparities in the

number of human observations covering each focal group (Figure 5A),

as well as in the spatial coverage of each group (Figure 5B). Birds and

mammals were by far the most sampled group, followed by Crustacea.

Birds and mammals, and Crustacea were also the groups with the best

spatial coverage. However, some groups had relatively low sampling

but relatively good coverage (e.g., Mollusca, Gelatinous zooplankton,

or Annelida). No group had a spatial coverage higher than 65%. Both

the distribution of records among groups and spatial coverage also

varied across MEASO areas (Supplementary Figures 7, 8). In addition,

when considering molecular data only, the four dominant phyla

were all micro-organisms (by order of data quantity: bacteria,

microzooheterotrophs, eukaryote primary producers, and protozoa;

Supplementary Figure 1C).

In most sectors, no plateau was reached in the genus

accumulation curves (Supplementary Figures 9-11), and even in
A B

FIGURE 3

Geographic distribution of the number of records. (A) Human observations, (B) Machine observations.
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the sector where a plateau was reached, there were very few cells

that appeared to be sampled enough. In addition, the fit was poor

for most sectors.

3.3 Suitability of the available data
for a MEASO

Table 1 shows, for each relevant EBV or EOV, the data required

for its calculation, and the fit for purpose of OBIS and GBIF data. In

general, geo-referenced data are available for a range of taxa but (as

discussed below) their suitability for a MEASO is hindered by the

spatial, temporal, and taxonomic biases identified above. For

variables that require abundance, biomass, trait, or depth data,

large proportions of records do not contain suitable information.

4 Discussion

By exploring the temporal, spatial and taxonomic distributions of

open biodiversity data in the SO, we found a strong seasonal and spatial
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bias, as well as an unbalanced representation of the different taxa. These

limitations, along with limited information on certain variables of

interest (e.g., absences, abundance, depth) might constrain the utility of

such data for a MEASO. We also found consistent differences between

human and machine observations, highlighting the need to treat these

two data types separately when using these to calculate EBVs or EOVs.
4.1 Opportunities arising from open
biodiversity databases for a MEASO

By providing enormous amounts of geo-referenced data (millions

of records), on a large taxonomic diversity (thousands of taxonomic

units) and with large spatial extent, OBIS and GBIF represent

promising data infrastructures for mapping distributions in the

Southern Ocean. These data aggregators are continuously growing,

due to increased data collection and incentives to submit data to

publicly accessible repositories, while standards for publishing these

data are also constantly improving (Van de Putte et al., 2021). Several
FIGURE 4

Number of human observations per km2 per decade for each MEASO area. The MEASO areas divide the Southern Ocean into five longitudinal sectors:
the West Pacific (WP), East Pacific (EP), Atlantic (AO), East Indian (EI), and Central Indian (CI). Each of these sectors is further subdivided into three
longitudinal zones (from South to North): Antarctic (WPA, EPA, AOA, EIA and CIA), Sub-Antarctic (WPS, EPS, AOS, EIS and CIS), and Northern (WPN, EPN,
AON, EIN and CIN).
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key expeditions and joint efforts can be related to periods with

increased data collection visible in Figure 2 – e.g., the Discovery

Investigations (1924-1951), the Biological Investigations Of Marine

Antarctic Systems and Stocks (BIOMASS) survey (1980-1985), the

Southern Ocean Continuous Plankton Recorder surveys (SO-CPR,

1991-), or the Census of Antarctic Marine Life (2005-2010) (see

Griffiths, 2010 for a more detailed perspective). The rate of data

accumulation has also increased drastically until the last decade –

probably due to a delay between data collection and publication, and

increased interest in certain (until recently under-sampled) taxa,

suggesting that the utility of the database could keep increasing. This

delay is often caused by the fact that samples need to be collected in the

field, transported to a research institute and identified by experts who

may only have limited time and resources. Here machine based

observation can help close this temporal gap between observation

and publication of data. Guidance on how to implement this exists for

DNA derived data, GPS data (van der Kolk et al., 2022) and imaging

devices (Mortelmans et al., 2019)
4.2 Challenges with using open biodiversity
databases for a MEASO

However, the strong biases we highlighted in the data, severely limit

their direct and widespread use for aMEASO. First, the data (particularly

human observations) were strongly seasonally biased, because of sea-ice

and prolonged darkness in the winter, complicating accessibility and

work in the Southern Ocean. Second, the data were strongly biased

towards certain regularly sampled sectors of the ocean. Most concerning
Frontiers in Marine Science 10
is the spatial bias in human observations, with more data in recurrently

visited areas –mostly around research stations of the Antarctic Peninsula

and sub-Antarctic Islands, and along routes between other continents

and these stations. Note that the environmental and socio-economic

drivers of spatial sampling bias differ between the Southern Ocean and

other systems [with the importance of, e.g., proximity to settlements or to

well-funded research institutions (Meyer et al., 2016; Ramıŕez et al.,

2022)]. But care also needs to be taken with machine observations,

because of potentially stronger spatial autocorrelation in data such as

animal tracking data (e.g., GPS), potential limitations in the types of taxa

that can be observed by machine methods (e.g. tracking tags can only be

deployed on certain animals), and other biases that might differ from

those affecting human observations. Third, there was a strong imbalance

in the representation of different taxa, with birds and mammals largely

dominating the database, followed by other widespread and conspicuous

taxa [e.g., Crustacea, as in (Ramıŕez et al., 2022)]. This taxonomic bias is

also evolving, with certain taxa becoming comparatively increasingly

sampled – e.g., some microbes, due to developing technologies. Finally,

missing relevant information – such as limited records of absences, or

missing abundance or depth information for many records – can also

strongly limit the utility of such data for a MEASO.
4.3 Recommendations for using open
biodiversity databases for a MEASO

There are two avenues for enhancing the utility of open biodiversity

databases for a MEASO: (1) improvements in the available data, and (2)

corrections for the above-mentioned biases by using appropriate models.
BA

FIGURE 5

Data and spatial coverage for a range of focal groups, for human observations only. (A) Percentage of records belonging to each focal group; (B) for
each focal group, percentage of cells of a 3° x 3° grid covering the MEASO area with at least one record.
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As mentioned above, there is a strong need for additional data in

under-sampled areas (e.g., in the Pacific), in the winter, and for less

charismatic and smaller taxa. This can be achieved both by data

collection and data mobilization. Indeed, if we strongly encourage

data collection programs to fill in the gaps, we must be conscious of

the costs involved in collecting and publishing those data. To

complement new collection activities, there are existing data that

are not yet in GBIF or OBIS – either because they have not yet been

made publicly available, or because they have been submitted to other

(often more local) databases not linked to GBIF or OBIS.

Encouragements to publish data in public databases linked to GBIF

or OBIS (possibly extending existing requirements by funding

agencies to make data openly available) should be reinforced, and

particularly target those key missing taxa, areas, and season. Some

data types, e.g., molecular data or data from autonomous observation

devices, are becoming more and more important and allow access to

under sampled organisms or areas. However, these data are currently

found only in limited amounts in GBIF and OBIS, while geospatial

information is often missing in the databases in which they are

published (e.g., consistently low percentage of georeferenced data on

NCBI GenBank, Gratton et al., 2017). Encouraging linking between

databases, following good practices (including efforts to address

shortcomings related to taxonomic reliability and lack of

standardized metadata vocabulary; Andersson et al., 2021), would

enhance their discovery and use in a spatial context. In general,

making more data available through GBIF and OBIS, the most widely

used biodiversity research data infrastructures in the Southern Ocean

would comply with the FAIR principles (Wilkinson et al., 2016),

which aim to increase the Findability, Accessibility, Interoperability

and Reusability of digital datasets. Indeed, the two portals are

recognized as the key repositories by many international instances

– e.g. the Intergovernmental Science-Policy Platform on Biodiversity

and Ecosystem Services (IPBES; see https://assets.ctfassets.net/

uo17ejk9rkwj/6ddNMnbw7CiSIkusowkS4e/f5fd21478e21

f984b6276709eca31b3b/IPBES_memorandum.pdf, https://

www.ipbes.net/sites/default/files/factsheet_gbif_growth_in_

species_occurrence_records.pdf), the Convention on Biological

Diversity (CBD), or the International Panel for Climate Change

(IPCC; see Johnson et al., 2023) – and follow common data

standards (DwC standards). Finally, encouragement by data

aggregators to fill in certain fields that are not currently mandatory

(e.g., fields related to abundance or depth) or to also publish absence

records (to provide information on the distribution of sampling

effort) could increase the utility of the data.

The collection and mobilization of additional data is a process

that takes time and money. Modelling techniques cannot replace

primary data collection, but might provide complementary

approaches that can go some way towards correcting for biases –

particularly spatial biases. Modelling is a potential avenue for

obtaining improved information and derived products such as

species distributions, both in the shorter term as more data is

collected but also as a means of maximizing the value of larger data

collections. However, there are multiple precautionary steps to

correctly apply species distribution models (SDMs) to these data.

First, data should be rigorously quality controlled before any

application. This involves basic quality control steps as those
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carried out in this study, but should ideally be more thorough,

and more specific to the study taxa, involving experts to remove

other potentially erroneous records (e.g., likely misidentifications,

errors in coordinates). This was done for example in the

Biogeographic Atlas of the Southern Ocean ( de Broyer and

Koubbi, 2014). Second, caution should be taken when

extrapolating results to environmental conditions absent from the

data (Guillaumot et al., 2020), which is likely to occur across such

large scales considering the large gaps in the data. Additionally, and

most importantly, there are a whole range of modelling difficulties

that can impact model performance. An obvious example of this is

spatial sampling bias (Beck et al., 2014; Pender et al., 2019).

Correcting for sampling bias in species distribution models

requires some layer representing sampling effort, used for

example to guide the selection of background locations

(Guillaumot et al., 2021) or as a control variable (e.g., Warton

et al., 2013). Contrary to certain cases where sampling completeness

can be known (e.g., when there is some reference of species ranges,

e.g. Meyer et al., 2015, 2016), in other cases it must be estimated or

modelled (e.g., as a function of other spatial variables (Zizka et al.,

2021), or based on records of similar species – sampled with similar

protocols (Guillaumot et al., 2019)). Other forms of sampling bias

can be introduced when combining datasets collected with different

survey designs, sampling protocols or gear (e.g. human vs. machine

observations, or different net types and sizes), recording

methodology (e.g. presence-only, presence-absence, abundance),

seasonal timing, or other factors. Some information about these

factors may be provided in the aggregated records, for example in

the samplingProtocol field. However, as noted above, we found this

field to be inconsistently populated and with varying terminology.

Adoption of stricter requirements in this field might improve this

situation. However, bias correction is an active field of research and

methods can be non-trivial (Renner et al., 2019; Matthiopoulos

et al., 2022). While the Darwin Core standard has the capability to

include the detailed metadata that would be necessary to support

these kinds of advanced analyses, it is perhaps impractical to expect

such a degree of metadata to be consistently populated in large,

aggregated data infrastructures like GBIF and OBIS. However, even

for such specialized applications, these data infrastructures provide

a valuable service by indexing available datasets that might be

provided in other, more detailed forms elsewhere, including as

primary data from the author’s institutional data repository. Data

collected specifically for MEASO activities might reasonably be

published through multiple data networks (e.g. as in Andrews-Goff

et al., 2022), and this can potentially be done using dedicated

packages, e.g., movepub package (Desmet, 2023) to publish data

from Movebank (movebank.org) to GBIF. The above-mentioned

modelling difficulties inherent to biased data, along with others that

go beyond the scope of this discussion, need to be carefully

considered (for more recommendations on applying SDMs to

data from global open biodiversity databases, see for example

Anderson et al., 2016) and highlight the fact that modelling

should not be considered as a replacement for more primary

data collection.

In conclusion, although open biodiversity databases offer

promises for MEASOs, care must be taken when using these data
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because of their inherent spatial, temporal, and taxonomic biases.

There is a considerable need for additional data in under-sampled

regions, in the winter, and for less conspicuous taxa, as well as

reliable abundance or depth data, along with improvements in

modelling techniques that can better account for the biases and

limitations of Southern Ocean marine biodiversity data and thereby

support balanced and informative ecosystem assessments.
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