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Increased necessity to monitor vital fish habitat has resulted in proliferation of

camera-based observation methods and advancements in camera and

processing technology. Automated image analysis through computer vision

algorithms has emerged as a tool for fisheries to address big data needs,

reduce human intervention, lower costs, and improve timeliness. Models have

been developed in this study with the goal to implement such automated image

analysis for commercially important Gulf of Mexico fish species and habitats.

Further, this study proposes adapting comparative otolith aging methods and

metrics for gauging model performance by comparing automated counts to

validation set counts in addition to traditional metrics used to gauge AI/MLmodel

performance (such as mean average precision - mAP). To evaluate model

performance we calculated percent of stations matching ground-truthed

counts, ratios of false-positive/negative detections, and coefficient of variation

(CV) for each species over a range of filtered outputs using model generated

confidence thresholds (CTs) for each detected and classified fish. Model

performance generally improved with increased annotations per species, and

false-positive detections were greatly reduced with a second iteration of model

training. For all species and model combinations, false-positives were easily

identified and removed by increasing the CT to classify more restrictively. Issues

with occluded fish images and reduced performance were most prevalent for

schooling species, whereas for other species lack of training data was likely

limiting. For 23 of the examined species, only 7 achieved a CV less than 25%.

Thus, for most species, improvements to the training library will be needed and

next steps will include a queried learning approach to bring balance to the
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models and focus during training. Importantly, for select species such as Red

Snapper (Lutjanus campechanus) current models are sufficiently precise to begin

utilization to filter videos for automated, versus fully manual processing. The

adaption of the otolith aging QA/QC process for this process is a first step

towards giving researchers the ability to track model performance through time,

thereby giving researchers who engage with the models, raw data, and derived

products confidence in analyses and resultant management decisions.
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1 Introduction

Management of fish populations requires estimates of

abundance, age/length composition, fecundity, mortality, and

other life history variables sampled representatively from a stock

(Jennings and Kaiser, 1998). Monitoring efforts are becoming

increasingly critical as populations are impacted by multiple

stressors such as fishing, climate change, biotic perturbations

(e.g., hypoxia), habitat loss, and rising levels of pollution (e.g.,

microplastics). Historically, resource surveys were conducted

using a wide-variety of traditional fisheries gears such as trawls,

traps, and nets. Over the past 30 to 40 years, optics-based

sampling methods have become a more common practice as

they avoid issues with problematic habitats such as reefs, and

have fewer issues with size and species selectivity (Cappo et al.,

2007). Moreover, optical sampling with BRUVs (Baited Remote

Underwater Videos) is less invasive, non-lethal, and can also

provide valuable habitat data valuable for single-species and

ecosystem-based management (EBM) and ecosystem-based

fisheries management (EBFM).

One downside associated with optical sampling is the immense

amount of data collected and, in turn, the human effort required to

post-process collections (i.e. annotate). For example, one year of

sampling of the combined Gulf Fishery Independent Survey of

Habitat and Ecosystem Resources (GFISHER) and the Southeast

Area Monitoring and Assessment Reef Fish Video (SEAMAP-RFV)

surveys results in ~2000 camera deployments, ~1000 hrs of video,

and ~30 TB of data requiring annotation (hereafter GFISHER refers

to these surveys in combination). Extrapolated across NMFS

Science Centers, state agencies, academic laboratories, and non-

governmental organizations, the big-data issue quickly becomes

overwhelming. In response, the National Marine Fisheries Service

(NMFS) funded the Automated Image Analysis Strategic Initiative

(AIASI) with the goal of producing software that can be trained on

object detection and classification using artificial intelligence/

machine learning (AI/ML) across a wide variety of natural

resources. A major outcome of the AIASI was the development of

the Video and Image Analytics in the Marine Environment

(VIAME ©) software in partnership with Kitware Inc. (Clifton

Park, NY).
02
New developments in graphics processing units (GPU)

technology and artificial AI/ML processes can provide a means to

reduce human effort for post-processing data collected in marine

habitats (van Helmond et al., 2020). Frame level count data can be

generated using algorithm outputs from which any number of

metrics (e.g., MaxN and MeanCount) could be estimated. Among

the many advantages to applying algorithms to process data over

human video readers are that processing can occur 24/7, detection

and identification are standardized to a single algorithm, inter and

intra-reader variability is reduced, and computing costs are

relatively inexpensive, particularly when considering the

efficiencies in post-processing potentially gained. Additionally,

features that may be missed by human eyes can be discerned and

recognized by computer vision. The GPU-based classifications

remain consistent and do not change based on human moods or

energy levels. Despite their burgeoning development and promise,

questions pertaining to algorithm accuracy and precision remain,

particularly those related to sampling conditions that might limit

their reliability (e.g., water visibility). This is especially important

because long-term time-series require that data annotated using AI/

ML is compatible with the human annotations conducted

historically. This is critical in cases for which historic video is

unavailable for re-processing using AI/ML methods (e.g., non-

digital formats, or lost/destroyed video).

When evaluating model performance using a subset of training

imagery, AI/ML algorithms have demonstrated excellent

performance in detection and classification of a wide-variety of

object classes (Zion et al., 2007). Yet analysis of in situ collections

show less accuracy and precision than is suggested by analyzing

precision using a subset of training imagery (Salman et al., 2020). For

instance, water turbidity and/or low light intensity may reduce

model accuracy and precision (Marini et al., 2018). In addition,

videos with increased fish density (i.e., fish/unit area) and

higher levels of species diversity may be more difficult for

algorithms to process accurately. Rugose habitats of reefs may lead

to larger numbers of false negatives/positives in fish detections due to

cryptic behavior and/or coloring and mottling that resembles

complex habitat (e.g., lionfish). Fish species of different size classes

and with different swimming or schooling behaviors may be harder

to detect or classify than others (Lopez-Marcano et al., 2022),
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especially at variable distances from a camera at a fixed position

(mobile cameras face their own challenges). Regardless of the source

of error, the main challenge is that the annotation phase of post-

processing is likely impacted by detection and identification

differences arising from variable environmental conditions in

which video is collected, and therefore great care has to be taken

to ensure that time-series remain stable relative to changes made in

post-processing methods. Put more simply, there are inevitable

differences between manual and automated processing that have to

be analyzed, evaluated and compensated for if necessary.

A common approach to solving the wide variety of problems

associated with using AI/ML for classification and enumeration

(e.g., schooling) is to use different model architectures and

mathematical algorithms. For instance, convolutional neural

networks (CNN) have been shown to produce higher accuracy

than older methods such as Support-Vector Machine (SVM)

models, Gaussian-Mixture Modeling (GMM), or You-Only-Look-

Once (YOLO) based approaches (Cui et al., 2020; Marrable et al.,

2022). Fish detection at the frame level has been achieved by many

researchers and with relatively high levels of accuracy (Chuang

et al., 2014; Villon et al., 2016; Allken et al., 2021); however, tracking

an individual across the field-of-view (FOV) by linking detections

through multiple frames has been more challenging – especially

over the course of extended videos (Ditria et al., 2020). Performance

of object detection models is most often evaluated by mAP (Mean

Average Precision), receiving operator characteristic, or precision-

recall curves, which are usually generated by testing trained models

on a fraction of the annotated images (which are not used in

training models). Literature review on the topic produced only a

single study that compares fish classification performance

alternatively to ground truth counts from unannotated video

(Connolly et al., 2021). While mAP is a reliable metric for

determining performance during training, methods for evaluating

performance must be adapted for the practical application and

Quality Assessment/Quality Control (QA/QC) of model

algorithms. One purpose of this manuscript is to propose an

automated workflow that can reliably produce equivalent data to

current manual processes and, incorporates accuracy and precision

metrics that can be tracked through time as AI/ML models improve

or as camera technology changes.

Training AI/ML models to reliably track and classify fish

requires manual annotation of each individual detected, per

frame, for all frames included in training sets. Creation of the

training library in VIAME software can include both still and video

imagery and begins with manually drawing boxes around fish

targets and labeling the target with an identification (i.e. labeled

imagery). Tracks follow individuals over video frames and may

include a fish swimming at a constant speed from one end of the

FOV to another; however, tracks quite often result in one target

passing behind another, passing behind habitat, moving into and

out of turbidity plumes, or only partially crossing the periphery of

the FOV. Manually annotating these tracks while labeling all species

is a time consuming process, but is necessary to ultimately train a

comprehensive model which requires lots of imagery for a complex

set of fish assemblages, habitats and water conditions. Many studies

have achieved high accuracy in performing similar tasks while
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focusing annotation on few classes of target species (Shafait et al.,

2016; Villon et al., 2016; Garcia et al., 2020; Lopez-Vasquez et al.,

2020; Tabak et al., 2020; Connolly et al., 2021); however, in high

diversity sampling stations, this could lead to a loss of community

assemblage data and increased false-positive classifications on fish

species that are detected, but not included in the training dataset

(Marrable et al., 2022).

In the early stages of the machine learning process, all

annotations must be produced manually. This initial annotation

necessitates a high cost of effort, but ultimately produces models

that have increased ability to perform fish tracking and

identification. Once a model can generate annotations with

moderate success, it can enter a stage of supervised learning. At

this point, human effort can be spent editing the computer-

generated tracks rather than manually annotating each individual.

Editing includes correcting false identifications and adjusting or

deleting bounding boxes that are out of place. Additional editing

might be required to split tracks that include multiple fish, or merge

tracks where one individual’s time in the FOV is incorrectly split up

into multiple pieces. In the supervised stage of learning, the rate of

new annotations produced for the training library is drastically

increased from the manual learning stage, driving the machine

learning process faster towards true automation. As automated

methods accelerate in the development and uptake, concurrent QA/

QC processes must be developed to evaluate outcomes with

confidence, which will be necessary when data undergo review for

use in stock assessment models.

As image libraries increase in size and complexity between

training periods, each new iteration theoretically reduces error and

increases agreement relative to validation sets. However, other

factors will impact both precision and agreement, and we

hypothesize this will likely be a function of site-specific species

assemblage, species diversity, optical conditions, fish density, and

site complexity. Based on previous studies (Marini et al., 2018;

Connolly et al., 2021), it is likely that model counts become less

accurate as fish counts increase. It is also possible that the

algorithms ability to detect and classify fish will be reduced with

increased scene complexity (e.g., complex habitat and fish density)

or under less than ideal water visibility conditions (e.g., dark and

turbid). The limits at which counts become less accurate are

important to discern for practical model implementation because

it can be used to determine which datasets models can be trusted for

automation, and which datasets still require a supervised QA/QC

process in the least. In this study, we seek to report our experience

in coming to the supervised learning stage, and evaluate model

performance as a function of a variety of precision metrics. This

study also proposes developing methods and metrics for comparing

model performance using video with known counts (i.e. validation

sets in otolith aging), in addition to traditional AI/ML model

precision metrics such as mAP.

The primary use of the combined GFISHER data set is to

estimate relative abundance for focal species primarily associated

with the snapper-grouper complex and as of 2023 has been used to

assess 19 species in 28 separate assessments (https://sedarweb.org/).

While all three surveys are now combined into a singular design

(GFISHER, Thompson et al., 2022), they were historically
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conducted under separate survey designs, with identical standard

operating procedures and cross trained staffing. Thus

implementation of automated image post-processing requires that

we understand AI/ML model agreement and precision across

multiple laboratories, video annotators, video archives, and data

sets. In addition, common precision metrics such as mAP do not

appear to be reflective of precision on full-length, high frame-rate

videos beyond the domain of the training library. Thus, a method to

evaluate agreement and precision will be necessary as post-

processing moves to implementation of AI/ML models in vital

time-series data.

Currently, manual post-processing of the GFISHER video data

sets necessitates a subsampling approach (Thompson et al., 2022) in

order to provide timely products for evaluation and use in stock

assessments (e.g., relative abundance indices). A wide variety of

metrics have been used to convert video observations into datasets

used to assess fish and among the more commonly used metrics are

MaxN (Ellis and DeMartini, 1995; Campbell et al., 2015),

MeanCount (Bacheler and Shertzer, 2015), and time-at-first-

arrival (Priede et al., 1994). Ideally, a single automated annotation

would provide a dense data set that could be used to generate any

metric currently desired. For example both MaxN and MeanCount

could be generated from a dataset with frame level identification

and counts. Developers for automated processes should not only

consider current metrics in use, but also attempt to generate data

sets that could be used to create a number of as yet envisioned

metrics that are otherwise not possible to generate due to the

aforementioned constraints (namely, time).

In lieu of creating an entirely new framework to evaluate

accuracy and precision of AI/ML models, we looked to existing

structures and methods built for otolith aging (Campana, 2001).

Our logic is that counts in a video are akin to counts of annual

otolith layers used to age fish. Each read of a video, just like an

otolith, should produce similar results across reads and thus also

provide a means by which we can evaluate precision. Further,

evidence of bias associated with a particular model will have to be

dealt with in the post-processing workflow or using analytical

approaches (Connolly et al., 2021). We propose here to make use

of the analytical approaches reviewed in Campana (2001) to create a

QA/QC process to evaluate AI/ML against manually reviewed,

ground truth data sets. This will be critical as most AI/ML

models show significant improvement with increased size of

training image sets (Ding et al., 2017). Therefore there will be a

constant need for a thorough QA/QC process so that the resultant

time-series data do not risk issues with changing detection

(increasing or decreasing), classification, and enumeration

capacity. More importantly, if models do show significant drift in

those properties, then video archives could be re-run with updated

models. Finally, this process should not be confused with validation

(Campana, 2001), but rather a way to evaluate and quantify

accuracy and precision through time and across laboratories.

Further and more complex calibration work will be required to

create a validation set (i.e., one that can be used to tune absolute

abundance or density estimates). Therefore we use the term

validation here to simply refer to the manually processed and

QA/QC videos against which precision will be measured.
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2 Methods

2.1 Model training

In 2020, VIAME developers, Kitware Inc., deployed the Cascade

Faster Region Neural Network (CFRNN; Cai and Vasconcelos,

2018), along with a fish-motion based tracking approach similar

to past attempts (Hsiao et al., 2014; Salman et al., 2020; Dawkins

et al., 2022). VIAME software was used to manually annotate

marine fish species on video data obtained during the combined

GFISHER reef fish video survey (Figure 1). Coincidently, in January

of 2021, a new version of VIAME (0.13.0), began to employ a two-

step process that was used to train model 2.1. The first step includes

consolidating tracking data from all labels in a single-class fish

detector/tracker (either with motion infusion (m) into the CFRNN

training, or as a single-frame classifier (s) with standard CFRNN

training). The second step trains object classifiers using each label as

an individual class. Models were trained using a 4x system of RTX

6000 GPUs.

For the fully manual training stage (hereafter ‘manual’) of the

machine learning process, we compiled the initial image library

with 61.5k frame extractions from 2018 and 2019 surveys with no

discrimination towards species or video station locations. Frames

were extracted from videos at variable rates from 1 to 10 fps. In

March of 2021 software was updated to include interface options to

annotate video in addition to single frame imagery - leading to a

rapid increase in the amount of annotations compiled in the

training set. All annotations included in the training library were

produced on videos with frame rates of at least 5 fps. During May of

2021, model 2.3 was developed with a library of 170,000 annotations

across 135 classification groups (Figure 1). The data in this model

was mostly labeled at the species level, but some classifications are at

genus or family levels if identification cannot be determined with

greater resolution. Model version 2.3 was deemed capable enough

to shift the annotation efforts from the manual process, to a semi-

automated process. Following six months of performing corrections

on model 2.3 annotations, the training library vastly expanded to its

current size at 603,533 annotations across 146 classification groups

in order to train model iteration 2.4 (Figure 1).
2.2 Model parameters

Each model package has a set of configurations and pipeline

files available that can be modified to optimize performance. To

facilitate reproduction of these methods, the following paragraphs

describe the model nomenclature and text designations within the

configuration files that can be selected or altered for different

application purposes.

There are designations for the size of video fed into networks

including 0.5x, 1.0x, 2.0x. The 0.5x size processes videos at 640x640

pixels, 1.0 at native input resolution, and 2.0x increases image

resolution by a factor of 2 to 2.5. All results reviewed here were

generated at the 1.0x scale configuration for all models. The fish

tracking pipelines have been created with two different types of

models: motion (m) and single-frame (s). The 2.4m (motion) model
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is an updated version of 2.3m but uses a larger annotation library.

Model 2.3 runs a CFRNN across two motion channels and native

intensity. Model 2.4s (single-frame) is a single-frame detector

(CFRNN without motion training), built on the same library as

2.4m, but across one optical intensity input channel.

All pipelines run two classifier models by default - a ‘big’ and

‘small’ classifier, which target larger and smaller fish (measured

via raw pixel area) for better performance at each, using the

‘resnet’ or ‘resnext’ 50 and 101 architectures (He et al., 2016; Xie

et al., 2017). Only one classifier is applied for a size dependent

detection state. The small fish classifier and big fish classifier are

based on the size of annotation boxes with limits that can be

adjusted a priori. For all three model iterations compared in this

study, the area pivots of positive 7000 and negative 7000 were used

as a threshold to discriminate between “large” and “small” fish.

This means that, in the pipeline, only one model is applied for

each detection state, greater or smaller than 7000 pixels. When the

localization area (width multiplied by height) of the bounding box

is greater than or equal to 7000 square pixels, the big classifier is

used; conversely, when less than 7000 square pixels are used, the

small classifier is employed. When under the lower bound of 1000,

no classifier is applied and the detection is labeled as an

UNKNOWNFISH. The bound of 1000 was also arbitrarily

selected, although it should be noted that these detections carry

little weight if they occurred on the same track as larger detections.
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These classifiers were trained on only small and big area input

chips, respectively, for improved classification performance in

each condition. Model 2.3 employed resnext architecture for

both the large and small classifier, while both 2.4 models used

resnext101 for the large classifier, but resnet50 for the

small classifier.
2.3 Model evaluation

Automated counts from 315, 25-minute, videos from the 2021

GFISHER combined survey were generated using models 2.3, 2.4m,

and 2.4s. Videos were annotated at a rate of 5 fps, yielding 7500

frames per video. The 315 videos were selected from stations west of

the Mississippi River Delta (-89.5 W). With each object

classification, VIAME estimates and provides a confidence value.

The confidence score is calculated in eq 1.0:

scoret(c) = (b + (1:0 − b)*
on

i=0deti
n

)*
on

i=0deti*clsi(c)

on
i=0deti

Eq 1:0(a)

OR

scoret(c) = (b + (1:0 − b)*
on

t=0fish _ conf (t)

n
)*
on

t=0fish _ conf (t)*class _ conf (t, c)

on
t=0fish _ conf (t)

Eq 1:0(b)
FIGURE 1

Combined workflow of model development and the annual survey process. MaxN manual counts are the maximum number of the same species,
observed in the same frame, during a 25-minute station video. Model nomenclature “s” denotes single-frame fish tracking algorithms and “m”
denotes motion-based tracking. Models 2.4s and 2.4m are available in a GitHub repository (https://github.com/VIAME/VIAME). These models are
also available for public use as embedded pipelines on the VIAME web application.
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Variables are given as c = the class ID; n = total number of

unique localizations along the frames of each track; deti = detection

value for a particular state in a track frame i; fish_conf(t) = fish

detection value for a particular state in track time t; clsi(c) =

classifier value for class c at the track frame i; class_conf(t,c) =

classifier confidence value for class c at time t; b = posterior

probability that a track is definitely a fish [default = 0.1].

Automated counts at the model confidence thresholds (CTs) of

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.95 were used to filter

VIAME output and then subsequently compared to manually

derived and reviewed data sets for 280 stations (hereafter

validation set). It is assumed in this analysis that the manual

post-processing and estimates of MaxN counts are accurate.

However it is important to understand that these are uncalibrated

values, and thus our definition of validation set is reliant on this

assumption until a field calibration method is devised. We base our

analysis, and proposed QA/QC method, from otolith aging models

outlined in Campana (2001). Calculations were executed with the

FSA Analysis R script developed by Derek Ogle of Northland

College (Ogle, 2013). In these calculations our automated counts

by multiple models are analogous to age estimations of otoliths

generated from multiple reads against the validation set. We

calculate the percent of videos with exact agreement, percent of

videos within 1 and 2 counts, the ratios of false-positive and false-

negative detections, and model coefficient of variation (CV, %). For

each increase in CT the number of stations used for calculations is

reduced number of stations with 0 automated detections increases.

Stations with zero fish detected in automated processing were

removed from the analysis so total percent agreement would not

be inflated by agreement of zero, given that most species only

appear in a fraction of the videos. Species and model specific

estimates are calculated at each CT level, for all stations with

positive observations of the selected species (i.e. verified by

manual post-processing). CV was calculated as illustrated in

Campana (2001) and eq. 2.0 below:

CVj = 100% *

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oR

i=1
(Xij−Xj)

2

R−1

q

Xj
Eq 2:0

where Xij is the ith count of the jth number of fish, Xj is the mean

count of the jth number of fish, and R is the number of times each

fish is counted (in this case 2 – one manual, one automated).

Finally, the ratio of false-positives was determined by dividing the

number of stations with automated detections when the species was

not present in the ground truth, over the total number of stations

where the species was not present as determined by the validation set

(proportion of stations with false detections). False-negatives were

also determined by dividing the number of stations without

automated detections when the species was present in the ground

truth, over the total number of stations where the species was present

(proportion of stations with undetected species). Correlation (r2) and

slope were also calculated from the linear regression of manual versus

automated model run output. Slope was used to evaluate if the linear

relationship between manual and automated counts deviated from 1

(i.e. a 1:1 relationship), while correlation was used to evaluate

variability about that predicted relationship.
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3 Results

We used a combination of false-positive rate (proportion),

percent of exact count agreement (%), percent of data within 1-2

counts (%), and model CV (%) to assess model quality per species

and provide guidance on confidence filters to apply in post-

processing automated output from VIAME when using the

models discussed in this paper (Figures 2–5; Table 1). Evaluation

of these variables is considered collectively with more weight placed

on reducing false-positives, percent of data within 1-2 counts, and

model CV. For example, model 2.4s achieved a slightly higher

percent agreement than model 2.4m for Vermilion Snapper

(Rhomboplites aurorubens) at a CT of 0.4, but had a higher rate

of false-positives than the similarly performing model 2.4m at a CT

of 0.6 – thus 2.4m @ 0.6 was chosen as the optimal model for this

species (Figure 6). Given those criteria, we determined that model

2.4s was the optimal model for 13 of the 23 evaluated species
FIGURE 2

Percent Agreement of automated counts with top performing
model 2.4s to expert derived counts for twelve commercially and
ecologically important species of reef fish commonly observed in
the Gulf of Mexico. Lines are labeled with the initials of the species
name in the legend. Species with high percent agreement coupled
with low false-positives and CV’s can potentially filter data with
higher confidence values, whereas models with worse performance
would use a decreased confidence value to filter data.
FIGURE 3

False-positive detections of automated counts with top performing
model 2.4s to expert derived counts for twelve commercially and
ecologically important species of reef fish commonly observed in the
Gulf of Mexico. Lines are labeled with the initials of the species name in
the legend. The false-positive ratio was determined by dividing the
number of stations with automated detections when the species was
not present in the ground truth, over the total number of stations where
the species was not present as determined by the validation set.
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FIGURE 4

CV% for automated counts with top performing model 2.4s to expert derived counts for twelve commercially and ecologically important species of
reef fish commonly observed in the Gulf of Mexico. Lines are labeled with the initials of the species name in the legend. Only 7 of 23 species make it
below 25% threshold: B. capriscus, C. leucosteus, H. bermudensis, L. campechanus, P. Pagrus, S. dumerili, S. rivoliana.
FIGURE 5

Percent agreement, ratio of false-positive detections, ratio of false-negative detections, and CV values across all confidences (0.1-0.95) for models
2.3, 2.4m, and 2.4s for (Lutjanus campechanus, the most observed species of the survey) with a maximum percent agreement of 42.03, and a
minimum CV value of 24.5).
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(Table 1). For 8 species, model 2.4m was optimal. Model 2.3m,

performed better for the remaining two species. In general, model

performance was greatly improved from model iteration 2.3 to 2.4

with both fish tracking methods and across most species. In

contrast, cryptic Lionfish (Pterois sp.), the 2.4 models greatly

reduced the amount of high-confidence false-positive detections.

As a pattern for most species, counts were overestimated at low

CTs, maximum percent agreement was achieved for CTs between

0.3-0.7, and counts were underestimated at high CTs (0.8-0.95). At

the CTs showing maximum percent agreement, most of the species

were undercounted, suggesting that the models tend to make
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conservative estimates in comparison to the validation set as CTs

become more restrictive. This outcome is heavily influenced by

applying more restrictive filter criteria (increased CT) because the

sample available to analyze the data is reduced by definition (i.e.

high CTs reduce detections and thus sample sizes to

conduct analyses).

Figure 2 displays the percent agreement curves for model 2.4s

counts across 12 of the most frequently observed species and are

representative of diverse groups of fish. As most automated counts

are initially overestimated, the ratio of false-positives is also greatest

at low CTs and decreases with increasing thresholds and as low
TABLE 1 Summary of model performance for 23 commercially and ecologically important species commonly observed in the 2021 SEAMAP Reef Fish
Video Survey on reef structures along the shelf of the Gulf of Mexico West of the Mississippi River (< -89.5° W).

Species % Exact
Agreement

False- Positive
Ratio CV % of videos +/- 1 of

truth
% of videos +/- 2 of

truth
Best Model
and CT

r2 at Best
CT

Balistes capriscus 52.94 0 19.97 76.47 100 2.4s @ 0.3 0.612

Bodianus
pulchellus

42.11 0.025 59.62 94.74 100 2.4m @ 0.3 0.665

Caranx crysos 47.83 0.004 27.5 73.91 78.26 2.4s @ 0.6 0.748

Calamus leucosteus 86.96 0 7.17 95.65 100 2.4s @ 0.7 0.454

Calamus nodosus 55.56 0.004 26.34 88.89 100 2.4m @ 0.4 0.333

Chaetodon
sedentarius

70 0 12.26 100 100 2.3m @ 0.5 0.238

Haemulon
aurolineatum

38.89 0.011 52.52 66.67 77.78 2.4s @ 0.6 0.664

Holacanthus
bermudensis

75 0 8.42 100 100 2.4s @ 0.6 0.781

Lutjanus
campechanus

42.03 0.071 25.39 79.22 85.99 2.4s @ 0.7 0.944

Lutjanus griseus 33.33 0 30.55 33.33 33.33 2.4s @ 0.7 0.969

Lutjanus synagris 100 0 0 100 100 2.4s @ 0.7 –

Mycteroperca
interstitialis

100 0 0 100 100 2.4s @ 0.5 1

Mycteroperca
microlepis

16.67 0.018 117.9 100 100 2.4s @ 0.5 –

Mycteroperca
phenax

47.62 0.007 26.37 80.95 92.86 2.4m @ 0.7 0.385

Pristipomoides
aquilonaris

5 0.064 96.11 37.5 45 2.4m @ 0.6 0.174

Paranthias furcifer 16.67 0 65.72 50 50 2.4m @ 0.3 0.268

Pagrus 52.17 0.011 21.34 95.65 98.55 2.4s @ 0.6 0.741

Pterois 4 0.082 132 100 100 2.3m @ 0.8 –

Rhomboplites
aurorubens

17.02 0.082 75.54 54.26 63.83 2.4m @ 0.6 0.396

Stenotomus
caprinus

14.29 0.018 68.56 71.43 100 2.4s @ 0.5 0.848

Seriola dumerili 50 0 23.57 100 100 2.4s @ 0.95 –

Seriola rivoliana 69.57 0 14.21 86.96 95.65 2.4m @ 0.7 0.749

Serranus phoebe 50 0.021 56.31 94.44 100 2.4m @ 0.7 0.46
fr
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confidence identifications become filtered out (Figures 3, 5;

Table 1). False-negatives were much less common than false-

positives, but occur at a higher rate at high CTs. Whitebone

Porgy (Calamus leucosteus) was the species that achieved the

highest percent agreement (86.96) and lowest CV value (7.17),

while reducing false-positives to zero. Some maximum percent

agreements are reported as 100% (Table 1), however caution

should be made in these interpretations as sample size is greatly

reduced when using CT to filter out low confidence detections.

While there is limited performance in percent exact agreement,

automated counts for almost all species were within 1 of true counts

for at least 50% of stations where the species was detected.

Strength of the linear relationship between automated and

manual counts (r2) varied by species (0.2-0.9) and improved with

increased observations in the data (Figures 6–8; Table 1).

Correlation between automated and validation set counts was

dependent upon the number of observations in the data set, site

specific fish density, and life history patterns. For instance, Red

Snapper showed high proportions of positive observations and

yielded a strong enough correlation for symmetry tests to be

conducted (Automated MaxN = Validation Set MaxN *(0.7) + 1,

r2 = 0.9439). Results of that analysis indicate decreased reliability at

sites with species specific counts >10. Thus model accuracy

deteriorates with increasing site abundance, low count values

were always more accurate, and most of the variability is

contained to those high count values. For species with low

counts, accuracy issues have less to do with site specific

abundance and more to do with the training model itself. Scamp

(Mycteroperca phenax), show weaker correlation than Red Snapper

(Automated MaxN = Validation Set MaxN *(0.37) + 0.86, r2 =

0.3847), however have ~193k fewer annotations in the library

(Figures 7, 8; Table 2). For all species, the slope of these best-
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confidence regression lines are less than one, which is an additional

indication that the models conservatively undercount fish (a perfect

model would have a slope = 1). Thus models would likely be less

sensitive to increases in abundance depending on the frequency of

high counts in the database.

Increased annotations used to train models resulted in

increased accuracy and precision in most cases; however there are

species-specific complexities that confound results (Table 2). For

example, while a 180% increase in annotations led to a strong

increase in percent agreement and reduction in false-positives for C.

leucosteus, model performance does not improve similarly in

cryptic and schooling species. A 266% increase in annotations

only resulted in a 1.76% improvement in maximum percent
FIGURE 6

Comparison of automated counts at the top performing model
(2.4s) and confidence threshold (0.7) for Red Snapper, Lutjanus
campechanus (the species with the most observations across all
stations of the survey). Total agreement sample size (n) at
confidence of 0.7 was 207. Residual standard error is 1.451 on 205
df. Linear regression is VIAME MaxN = Validation Set MaxN *(0.7) + 1
with r2 of 0.9439. F-statistic is 3450 on 1 and 205 df, p = 2.2e-16.
79.22% of counts within 1, and 85.99% were within 2 of validation
set counts.
FIGURE 7

Comparison of automated counts at the top performing model
(2.4m) and confidence threshold (0.7) for Scamp, Mycteroperca
phenax (a commonly observed grouper species in the Gulf of
Mexico). Total agreement n at confidence of 0.7 = 42. Residual
standard error is 1.64 on 40 df. Linear regression is VIAME MaxN =
Validation Set MaxN * (0.37) + 0.86 with R2 of 0.3847. F-statistic is
25.01 on 1 and 40 df, p-value is 1.81e-5. 80.95% of counts within 1
of ground truth, 92.86% within 2 of ground truth.
FIGURE 8

Comparison of automated counts at the top performing model
(2.4m) and confidence threshold (0.6) for Vermilion Snapper,
Rhomboplites aurorubens (a commonly observed snapper species in
the Gulf of Mexico). Total agreement n at confidence of 0.6 = 94.
Residual standard error is 16.8 on 92 df. Linear regression is VIAME
MaxN = Manual MaxN (0.12) + 1.9 with R2 of 0.3963. F-statistic is
60.4 on 1 and 92 df, p-value is 1.073-11. 54.26% of counts within 1
of ground truth, 63.83% within 2 of ground truth.
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agreement for Lionfish. While model 2.4s could achieve 4.76%

agreement for Pterois at a CT of 0.2, this was not selected as the best

option, because low CT resulted in more false-positives than the

best 2.3 model (which tracked 4% agreement at a confidence of 0.8).

The smaller, fast-moving, and denser schooling species such as

Wenchman (Prisitpomoides aquilonaris) and Vermilion Snapper

(R. aurorubens) both had substantial increases in the number of

annotations, but achieved less than 4% increases in percent

agreement despite the massive increase in annotations used to

train the models (Table 2). Model counts for Vermilion Snapper

also produced poor linear regression fits (Automated MaxN =

Manual MaxN *(0.12) + 1.9, r2 = 0.3963; Figure 6).
4 Discussion

Our efforts to create automated, fish detection and

classification algorithms, has highlighted the importance of

understanding accuracy and precision using methods that
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analyze field-collected video against ground-truthed video

collections as a complement to methods such as mAP that

evaluate a subset of training data. Ideally this would be

accomplished using a calibrated validation set but this level of

understanding remains elusive at present. Estimation of accuracy

and precision of AI/ML models is a crucial step towards their

implementation and integration into existing post-processing

frameworks because continuity of time series is critical for use

in stock assessments. For instance, stock assessment models can

now incorporate time varying catchability (Wilberg et al., 2009),

and thus if a technology changes catchability (e.g. AI/ML catches

things humans do not), abundance estimates have to be able to

measure and compensate for that effect. Critically, current manual

methods have been vetted via thorough review in assessment or

publication outlets, and thus any automation of post-processing

will have to be validated and precision metrics tracked through

time, including estimates from historic video archives. Critically,

this study assumes that human annotation produces accurate data,

but the manual counts should not be treated as a calibrated set.
TABLE 2 Count of annotations per species that contributed to the training library for each model and the difference in maximum percent agreement
between iteration 2.3 and 2.4.

Species Classification
Number of Annotations

Difference in Max % Agreement
2.3 Count 2.4 Count % Increase

Lutjanus campechanus 32440 206452 536.4 20.7

Pagrus 15625 25303 61.9 19.45

Mycteroperca phenax 7932 13062 64.7 28

Pristipomoides aquilonaris 6462 9749 50.9 2.3

Rhomboplites aurorubens 6171 27439 344.6 3.64

Mycteroperca microlepis 5032 7836 55.7 14.2

Seriola dumerili 4519 6416 42 14.3

Serranus phoebe 3055 8299 171.7 16.7

Calamus nodosus 2941 11639 295.7 22.2

Balistes capriscus 2939 12968 341.2 14.7

Calamus leucosteus 2883 8099 180.9 53.6

Holacanthus bermudensis 2404 8256 243.4 57.1

Seriola rivoliana 2228 5505 147.1 9.6

Chaetodon sedentarius 2004 8306 314.5 -7.5

Lutjanus griseus 1902 11311 494.7 33.3

Pterois sp 1606 5878 266 1.76

Caranx crysos 1571 3747 138.5 35.3

Haemulon aurolineatum 1046 7821 647.7 29.6

Mycteroperca interstitialis 989 1016 2.7 83.3

Bodianus pulchellus 967 1032 6.7 24.4

Lutjanus synagris 642 3452 437.7 75

Paranthias furcifer 480 480 0 0

Stenotomus caprinus 12 27975 233025 14.3
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We demonstrate that model performance largely depended

upon the number of classification specific annotations used in

model training, fish density, and the incidence of various

behaviors (e.g., schooling). Regardless of model iteration and

application of a confidence filter on the data, model variability

increased with increasing number of fish observed. This effect of

decreasing precision with increased abundance is particularly

pronounced for schooling or shoaling species of fish (e.g.,

Vermilion Snapper). Cryptic and small fish (e.g., Lionfish,

Butterflyfish) were also problematic as they look very similar to

the habitat and are often not detected, presumably because the

algorithm believes them to be background (e.g., soft coral).

Regardless of the underlying source of error, the method we

propose here provides researchers with defined metrics to track

model performance as a standard component of post-processing

video data sets, will help external researchers evaluate model utility

for other projects, and suggests species specific output filters for

current SEFSC-VIAME models. We believe the current precision of

our best model (2.4s) allows for implementation of a semi-

automated approach to post-processing by pre-filtering low

complexity videos (e.g., low abundance) for full automation and

light QA/QC, versus those that will require more intensive manual

processing. Thereby we can more efficiently direct manual

annotation efforts, reduce time needed to generate usable data

sets, and reduce potential effects of reader bias.

Mean Average Precision (mAP) is a standard metric for gauging

model precision and is calculated by withholding a portion of the

training set against which precision is estimated (Padilla et al., 2020).

Efforts using a portion of the dataset (the library for iteration 2.2)

reported a mAP50 value of ~70% for detection precision and achieved

~70% for top-class accuracy (Boulais et al., 2021). For model 2.4

detection precision was reported with a mAP50 of 79% for 2.4s, and

74% for 2.4m (supplementary 1). Our analysis clearly shows that

additional metrics such as percent agreement, ratio of false-positive

detections, and CVs, are necessary for understanding accuracy and

precision of models run on naive videos as opposed to evaluation of a

subset of training data. Further, these metrics are likely more valuable

for implementation of automated methods for post-processing critical

time-series survey data as they provide direct inference to performance

against existing reads that can be thought of as validated annotations.

This is especially true for generating count data for long term time-

series containing long-length, high-resolution, and high frame-rate

videos. We believe this because mAP scores are based on a selected

level of intersection of union (IoU) between frames, and are therefore

considered a measure of frame-based precision, rather than precision

over the course of a video relative to counts (i.e. abundance). A high

mAP, may not be indicative of a models capacity to produce accurate

count estimates from novel unlabeled video sets (i.e., annual survey

collection). Recent review of fish detection and monitoring methods

(Barbedo, 2022) highlights the need for a standardized measurement

of accuracy and precision between different models working in

different applications, and especially the need for doing so with

large sets of unlabeled data that represent natural conditions. This

step towards standardization is ultimately necessary to build

trustworthy models that can emulate humans in surveys and

practical situations.
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One of the more obvious results was that increases in training

library size, and specifically to class specific annotations, resulted in

improved model performance in general and within classes.

Although sample size does generally increase model performance

the resultant datasets can be imbalanced in the direction of

ubiquitous species, an issue known as longtail distribution (Cai

et al., 2021), and which is evident in the training library used in the

set of projects dealing with this data set (Table 2, Boulais et al., 2021;

Alaba et al., 2022). The longtail problem arises naturally from the

imagery as ubiquitous species are frequently observed, and thus

labeled, even from frames in which more rare species are being

targeted. While the improvements to the models can be significant,

those gains may not benefit all classes included in a model. In

contrast, uniquely mottled and/or shaped taxa (e.g., Sheepshead –

Archosargus probatocephalus) generally required fewer annotations

to generate reasonable models than for species with conspecifics

that share similar appearance (e.g., Scamp –Mycteroperca phenax

and Yellowmouth Grouper – Mycteroperca interstitialis).

An approach to dealing with the longtail distribution problem is

continued development and integration of active learning

algorithms into the training process. Active learning algorithms

include output that directs training towards the most important

classes to add to the annotation library on which models are trained.

Thus creating a focused training for species with fewer annotations

and introducing better balance to the training set. Human

supervision combined with active-learning algorithms can begin

to produce true artificial intelligence systems that recognize what is

not understood by the neural network and can autonomously

generate new classes for the training library (Lv and Dong, 2022).

Further discussion is required to determine whether there could be

a longtail bias, based on this distribution of the annotation library,

or if such bias should be integrated into model training since it is

part of the natural system (Alaba et al., 2022). The fact that Red

Snapper has the highest rate of false-positives of any species at the

optimal CT (Table 1, Figure 3) may be evidence of longtail bias.

Recent efforts (Dawkins et al., 2022) combined several large

annotation datasets, including the annotation library used for

iteration 2.4, to train an improved and versatile tracking model in

VIAME. Following another round of library growth and training

with these foci, model performance can again be compared to gauge

improvements, along with any alternative architectures or

competing model developments. For example, mathematical

changes could be made to replace the fish detection output score,

with a dedicated classifier which asks how well the fish is showing

(i.e., a score given to each fish detection based on quality of the

image in terms of the number of pixels and the fish orientation to

the camera). The detector output is currently used as a surrogate

because its score likely has some correlation with how well the fish is

displayed, even though it wasn’t created explicitly for that purpose.

Many other adjustments to parameters can be tested within the

current model configurations due to the versatility of the VIAME

software as a machine learning application. Capabilities currently

exist to estimate lengths offish and ongoing studies are using AI/ML

for otolith age/length indices. Eventually combining these systems

will lead to the future of AI/ML based governance in fisheries

management. Given the increased performance of model 2.4s from
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2.3, there should be a reduced cost in supervised correction effort,

and therefore a more efficient path to a more proficient model

2.5 (Figure 1).

For some schooling and cryptic species, increasing the number

of annotations in the training library was not entirely effective. For

instance in the case of Vermilion Snapper the training library was

increased 344% (Table 2), but model performance showed high

variability, low percentage of exact counts, and high model CV

(~75%, Table 1). Despite increased annotation, there was minimal

improvement for Lionfish classification. We hesitate to speculate on

the reasons for variable performance improvement with annotation

increases, nor can we suggest methods to deal with this problematic

bias, but challenges with high abundance obviously translates to

issues for schooling species. The first suggestion is that knowing this

bias, we can use this in a similar way to the VIAME generated CT

data, to filter out videos for automation versus those that require

more intensive supervision or a completely manual process. For

instance if initial post-processing indicates a high number of tracks

for Vermilion Snapper, we would pull that video for intensive QA/

QC or fully manual processing. In all cases in which we see this kind

of effect the frequency distribution of high-density sites indicates

that these tend to be rare occurrences, and thus filtering in this

fashion will result in decreased annotation time and effort. Recent

efforts to mathematically deal with this issue were presented in

Connolly et al. (2021). Another approach would be to train models

to detect schools and create software functionality that would subset

the portion of the image with the school to estimate a count (Li

et al., 2022). Regardless of the approach taken there will be an

obvious need to understand model performance especially at high

abundance sites.
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VIAME model output includes classification confidence

information (i.e. CT) which can be used to filter model output

and thereby optimize workflows by decreasing post-processing

effort. The value of the CT itself is not used to determine model

performance, but it may be important for gauging performance

between models that will likely use increased training library sizes

(2.3 vs 2.4), or with different training parameters (2.4m vs 2.4s). For

instance, if the best confidence for a class is at 0.5 in model 2.3, but

0.7 in model 2.4, then that could be indicative of model

improvement. Critically we observed that we can easily reduce

false-positives by increasing confidence filters even in the worst

performing models. These false-positives were common in model

2.3 and were often associated with clouds of turbidity (Figure 9),

debris, parts of the camera array, and habitat structures. Whereas

the incidences of false-positives were greatly reduced in model 2.4,

likely as the result of improved training and better background

identification. Thus, our method provides a general framework for

fine-tuning VIAME output generated using the SEFSC models we

presented in our analysis and that are hosted online (https://

viame.kitware.com/#/root), as a tool to assist human readers in

producing accurate counts and reduce post-processing effort

(Table 1). Critically, the CT filter enables video annotators to

focus on conditions and species that require more intensive

review. For instance videos with few individuals and/or with high

confidence species could be processed using automated methods

and follow up quality control processing. Species with high

percentages of automated counts within 1 of true counts will

require minimal QA/QC compared to those with lower

percentages. In contrast, models with high abundance and/or low

confidence species would require a semi-automated approach with
FIGURE 9

Example of reduction of false-positives and increase in confidence of detection and identification (Station 762101220 as turbidity plume clears the
field of view). “50% confidence” in figure refers to the confidence threshold of the model.
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an intensive manual QA/QC process. Importantly for Red Snapper,

the 2.4s model may reliably provide automated counts for stations

in the West Gulf up to a MaxN of 10 fish. Of the 280 stations

evaluated, 244 had counts <11 Red Snapper. Thus if a request were

made for red snapper data we could reliably automate ~90% of the

reads, leaving manual annotation to the remaining 10% plus a full

QA/QC process to complete for all annotations. Further training

and testing of larger sample sizes is required to establish reliability

limits for other species. We anticipate as model performance

improves through time, annotation speed will increase due to a

reduction in effort during the quality control process.

There are also benefits for a reader viewing the low confidence

VIAME detections, as sometimes the AI/ML algorithm is better at

detecting minute differences, or was trained over a range of

augmented orientations and shades simultaneously that enables

classification on characters that a human may not have seen or be

tuned to recognize. In cases where specific classification is not

necessary VIAME has a general fish detector that can be helpful

for generating counts and for visualizing individual fish. We believe

methods outlined here will provide researchers a consistent and

robust method by which model performance can be evaluated as

technology, both on the camera and algorithm sides, continues to

improve. Importantly, this approach provides a method by which

future model performance can be gauged. In the case that ecosystem

based management processes require improved assemblage data, the

automated methods provided here would offer precision metrics that

are invaluable in calibrating and tuning ecosystem models.

Moreover, the proposed methods here for a QA/QC process could

be adapted to any type of machine learning model development in

the future, and could be beneficial both inside and outside offisheries

research to ensure globally cooperative systems of trustworthy AI.

Future efforts for model improvement must include increased

annotation for species that demonstrated high levels of

misclassification rates, decreased matching to exact counts, and

increased CV values. Methods that bring balance into the training

model are therefore needed such as the queried learning or longtail

alleviation approaches mentioned earlier (Alaba et al., 2022).

Conversely, effort should not be expended on increasing

annotations for species with associated high precision models.

Many observed species have low levels of percent agreement and
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high levels of false-positives, whereas many others have not yet been

annotated in the training library. Thus a deliberate analysis that

highlights those species is needed to help direct efforts to improve

the image library itself. At times ‘handoffs’ occur when one or more

fish cross paths and causes track identity to switch among

individuals (i.e. more than one individual included in a single

track). This can result in misclassification to the wrong species

which we hope to address with the global tracking model. Dense

schools have not been annotated and represent a gap in the

annotation library. Schools of baitfish (e.g., Scad – Figure 10),

even smaller than Vermilion Snapper, will likely require

alternative annotation methods that allow for density estimation

rather than individual tracking. Other issues such as gaps in tracks,

double-boxing of single individuals, and single-boxes on multiple

individuals can also occur but are mostly nuisances and should

reduce as software and algorithms improve. Automated workflows

show promise in these early phases of development, but for many of

the reasons highlighted here it is our opinion they will always

require some variety of human oversight, thus frameworks that

include model metadata and performance against validation sets

need to be developed in concert with the algorithms themselves.

Accuracy and precision present significant hurdles for the

implementation of automated processes, but nearly as important

will be realizing the benefits of automation in reduced annotation

time. The track-based annotation and modeling can provide more

accurate identifications because they are derived from multiple

frames strung together to create a majority-vote classification over

many frames. A single correction of a track, corrects all annotations

associated with the track in a single pass and the end result is

decreased post-processing time. Using this method increases the

number of images, fish angles, and light conditions used to classify

fish, and therefore is theoretically increasing classification

agreement. It is also beneficial from a memory-cost standpoint.

One 25-minute video, which is 7500 frames at 5 fps, is compressed

to 1.17 GB (camera specifications from this survey) but when

extracted as 7500 individual PNG files, it amounts to 9.84 GB.

This reduction in memory is due to the ability to exploit correlation

between frames in storing video. (Jain, 1989). Critically, because

VIAME produces frame level counts and identifications, any

current metric in the literature can likely be produced (e.g.,
FIGURE 10

Example of a successful detection of a Sheepshead (Archosargus probatocephalus) with juxtaposition to the breakdown of performance with large
schools of small, less distinguishable fish (Scad).
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MaxN, MeanCount, Time-At-First-Arrival, etc). This will have the

additional benefit of facilitating analysis on the use of the various

derived metrics and perhaps others not yet conceived.

Our translation of the otolith aging methodology for use in

estimating the accuracy and precision of automated image analysis

models shows promise as a means to ensure data quality for time-

series creation and for both existing and anticipated data analysis

needs. Model precision and agreement varied by species, number of

annotations used in the training set, and only slightly by choice in

tracking model (motion or single frame). CV comparisons have

historically been acceptable up to around 10% in the otolith aging

literature (Campana, 2001). Few of the CV values of the presented

species with acceptable sample sizes fall in to this acceptable range

in this analysis – only 7 of 23 species have CVs less than 25%, and

only 2 are less than 10% (Figure 4). However, for this new

application of these quality control methods, it must be decided if

those are applicable in this example or determine what level is

acceptable. There is a significant amount of investigation still

needed on this topic, but we believe the framework presented

here is a good first step towards establishment of best practices

for integration of automated image post-processing into existing

standard-operating-procedures.
5 Conclusion

Advanced technology, in particular miniaturization of computing

and sensors, is providing researchers with data and insights into

marine systems that were previously inaccessible. These technological

advancements are both a boon, in that enormous amounts of data can

be collected, but simultaneously present significant bottlenecks often

due to being limited to manual post-processing methods (i.e. most

data is in storage). Therefore, it is clear that AI/ML will be a

significant component of marine laboratory toolkits to help

facilitate post-processing necessary for further analysis and optimal

use of datasets. This is particularly important in situations for which

data timeliness is an important consideration for management

decision making processes. Our experience over the course this

investigation is that AI/ML has shown significant progress in

utility, enough that we believe their integration into post-processing

pipelines is a logical next step in the near future (e.g. 5-10 years). Our

advice for researchers interested in deployment of AI/ML in optical

post-processing is to develop accuracy and precision metrics in

concert with the models themselves. This step is critical as many

iterations of models can be simultaneously developed, but for their

proper deployment their effectiveness has to be measured objectively.

Our method presented here offers a way to judge model performance

by evaluating model accuracy and precision against ground-truthed

video sets. The method assumes a linear relationship between

ground-truthed and automated counts and thus we have a simple

model by which we can evaluate bias and drift as annual collections

are analyzed and new versions of AI/ML models are developed.

While the future is bright there remains significant hurdles associated

with cryptic, schooling species, and with those having similar looking
Frontiers in Marine Science 14
conspecifics. Some problems are likely going to be resolved by

increasing the number of class specific annotations for rare species

(e.g. gag) and bringing balance to training libraries, whereas solutions

for schooling species are not as obvious and are potentially a limit of

the technology. In addition to implementing model QA/QC

protocols, programs that are looking to integrate automation into

post-processing pipelines should also look to build equivalent manual

data sets over an overlapping period of time to evaluate conservation

of important time-series data.
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