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Automatic detection and
classification of coastal
Mediterranean fish from
underwater images: Good
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Further investigation is needed to improve the identification and classification of

fish in underwater images using artificial intelligence, specifically deep learning.

Questions that need to be explored include the importance of using diverse

backgrounds, the effect of (not) labeling small fish on precision, the number of

images needed for successful classification, and whether they should be

randomly selected. To address these questions, a new labeled dataset was

created with over 18,400 recorded Mediterranean fish from 20 species from

over 1,600 underwater images with different backgrounds. Two state-of-the-art

object detectors/classifiers, YOLOv5m and Faster RCNN, were compared for the

detection of the ‘fish’ category in different datasets. YOLOv5m performed better

and was thus selected for classifying an increasing number of species in six

combinations of labeled datasets varying in background types, balanced or

unbalanced number of fishes per background, number of labeled fish, and

quality of labeling. Results showed that i) it is cost-efficient to work with a

reduced labeled set (a few hundred labeled objects per category) if images are

carefully selected, ii) the usefulness of the trained model for classifying unseen

datasets improves with the use of different backgrounds in the training dataset,

and iii) avoiding training with low-quality labels (e.g., small relative size or

incomplete silhouettes) yields better classification metrics. These results and

dataset will help select and label images in the most effective way to improve the

use of deep learning in studying underwater organisms.
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Introduction

Underwater marine images are widely used to study fish

abundance, behavior, size structure, and biodiversity at multiple

spatial and temporal scales (Aguzzi et al., 2015; Dıáz-Gil et al., 2017;

Follana-Berná et al., 2022; Francescangeli et al., 2022). In recent

years, advances in artificial intelligence and computer vision,

specifically deep learning (DL), have enabled the reduction of the

number of hours required for manually detecting and classifying

species in images. Studies have demonstrated the capabilities of

these techniques, particularly deep convolutional networks (CNN;

LeCun et al., 1998; Lecun et al., 2015) in detecting and classifying

fish in underwater images or video streams (Salman et al., 2016;

Villon et al., 2018, see reviews in Goodwin et al., 2022; Li and Du,

2022; Mittal et al., 2022; Saleh, Sheaves and Rahimi Azghadi, 2022).

These studies have utilized different types of image databases and

have faced similar unresolved questions, such as the number of fish

needed for training ( Marrable et al., 2022), the need for color image

pre-processing (e.g., Lisani et al., 2022), the need for transfer

learning from large databases (e.g., Imagenet or coco), improving

results when working with small image areas or limited computing

power (Paraschiv et al., 2022), whether to use segmentation of

bounding boxes and how well a trained set will perform for different

habitats (backgrounds). In particular, the detection and

classification of multiple species using different combinations of

backgrounds (the “domain-shift” phenomenon: Kalogeiton et al.,

2016; Ditria et al., 2020), number of species, and labeling quality, is

an area that requires further investigation. In general, it is believed

that a greater volume of training data and a greater variety of

backgrounds can improve the performance of DL datasets

(Moniruzzaman et al., 2017; Sarwar et al., 2020; Ditria et al.,

2020). Highly varied backgrounds are typical in coastal areas,

where non-invasive video-based automatic fish censusing

methods are increasingly needed for conservation and fisheries

sustainability issues (Aguzzi et al., 2020; Connolly et al., 2021;

Follana-Berná et al., 2022). However, these types of exercises are

limited, and the need for a high number of labeled individuals from

many species can be challenging in areas or laboratories with

limited resources.

The Mediterranean Sea is an example of a scarcity of

approaches in the field of DL for fish detection. A recent search

in the Web of Science for papers on “Deep Learning”, “Fish” and

“Mediterranean” (conducted in December 2022) yielded only seven

results, with only one of them taking into account the variation of

background (seasonal variation over time, in a fixed station) in a

multispecific dataset of Mediterranean fish (Ottaviani et al., 2022).

The Mediterranean is a highly diverse sea (Coll et al., 2010) where

underwater video monitoring exercises are primarily semi-

supervised (Aguzzi et al., 2015; Dıáz-Gil et al., 2017; Marini et al.,

2018b; Follana-Berná et al., 2019, Follana-Berná et al., 2022) and

monitoring is essential due to the high impact of invasive species

and climate change (Azzurro et al., 2022). In this context, the main

objective of this work is to evaluate, for newly generated

Mediterranean fish datasets of over 20 species, the relative

importance of combining backgrounds in the detection (of “fish”)

and classification (of species), how these combinations interact with
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the balance/unbalance in fish labeling, and how the labeling quality

affects the quality of fish detection. Additionally, we compare, as a

function of matrix size, the classification performance of a single-

step classifier (i.e., objects are classified into specific categories)

versus a classifier requiring a two-step procedure (objects are first

classified into a generic fish category, and then classified into more

specific categories).
Material and methods

Four different underwater image datasets were constructed for

analysis (Table 1). Datasets A through C are newly generated

images and are available in a free repository (Zenodo, https://

doi.org/10.5281/zenodo.7534425). Dataset A (Figure 1) was

created using images from an underwater cabled camera located

in a wreck inside Andratx Bay on the western coast of Mallorca

Island (Subeye, https://imedea.uib-csic.es/sites/sub-eye/home_es/).

The camera (SAIS-IP-bullet cam, 2096 x 1561 pixels) was situated

within the wreck (6 m depth) and has been sending still images

every 5 mins since 2019 to our research center. Dataset B was

obtained from various underwater video surveys in Palma Bay on

the southern coast of Mallorca Island. The cameras were used either

in drop-down surveys (Go-pro Hero 3, 1920 x 1440) or were

operated by scuba divers (Go-pro Hero 7, 1920 x 1440). The

obtained images included depths ranging from 5 to 20 meters,

and balanced backgrounds, including sand, seagrass meadows and

rocks were selected (Figure 1B). In both A and B datasets, more than

20 object classes (species/genus) were observed (Table 2) and

labeled by an expert using bounding boxes. The number of

observations of each species ranged from 2 to more than 3000;

this imbalance forced us to reduce the bulk of the main analyses to 9

fish classes with a higher number of observations, although some

species with a low number of labels were included for comparison

(Table 2). Subsets of the main datasets A and B were used as

validation sets, as detailed in Table 1. Training and validation

(approx 20% of the images) were conducted using an NVIDIA

QUADRO GV100 32 GB GPU. Four small test sets (images not

belonging to the validation or training sets) were also used, both

from datasets A and B and from two external datasets. The first

external dataset (dataset C, Table 1, Figure 1) consisted of images

from a second fixed camera located at 4 m from the wreck (8 m

depth, Sony Ipela SNC-CH210 2048 x 1536 pix). Additionally, a

small set (dataset D, Table 1; see Figure 1) from the OBSEA cabled

observatory located in Catalonia, NE Spain (Aguzzi et al., 2011) was

also used as a test set (Francescangeli et al., 2023).
Datasets pre-processing and scenarios

Underwater images often exhibit low contrast, color cast, noise

and haze due to depth-dependent attenuation of light wavelengths

and the scattering effect (Hsiao et al., 2014; Wang et al., 2019; Zhou

et al., 2020; Wang et al., 2023). To improve the dataset images, we

employed the Multiscale Retinex Model (MSR, Land and McCann,

1971), which has been identified as one of the best methods for
frontiersin.org
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detecting fish for labeling purposes using different backgrounds

(Lisani et al., 2022).

After image enhancement, labeling was conducted using the

free online software Supervisely (https://supervise.ly/). Six training

datasets were created to evaluate the relevance of the type of

background and number of fish within the images for neural

network training (Table 1).

Scenario E0 included all the training images available from both

datasets A and B (15128 objects and 1338 images for training, 3314

objects and 327 images for validation). Scenario E1 was a reduced

subsample of dataset A, comprising 196 images and 3074 fishes.

Scenario E2 included all of dataset B, comprising 546 images and

3032 fishes. Scenario E3 was a balanced scenario, containing around

3000 fish for each dataset A and B. Scenario E4 contained all the

training images of dataset A (12096 objects and 762 images for

training, 2442 objects and 184 images for validation). Finally,

scenario E5 consisted of a selected group of images from both

datasets A and B (approx 1500 fish each), avoiding images that
Frontiers in Marine Science 03
appeared to disturb the training, particularly those that did not

include small fish (<100 pixels2, Figure 2) or overlapping fish.

Fish detection and classification were compared in two steps.

First, two state-of-the-art CNNs (Faster R-CNN and YOLOv5M)

were compared across scenarios for single-class detection (fish/no

fish). Second, classification metrics were compared between the

best-performing network in classifying fish/no fish, which was then

used as both a detector and classifier, and a pure classifier network

(the latter using only the bounding boxes previously classified as

“fish”). For classification training, fish were pre-classified to the

lowest taxonomical category possible (species, genus, or family).

Models metrics

Model comparison and evaluation (see below) on validation or

test sets was conducted through the analysis of the interaction of

two standard metrics: precision (P) and recall or sensitivity (R)

(Everingham et al., 2010). For a given fish class, precision is defined
TABLE 1 Combination of images and number of fish for each of the scenarios (E0-5) used to detect fish.

Scenarios

Train and Validation
datasets

Fish or image (train/valida-
tion/test)

E0 E1 E2 E3 E4 E5

Imb; all A
& B

Imb; reduced A,
no B

Imb;
All B

Bal; A
& B

Imb; All
A

Bal; reduced and
selected A & B

A FISH (train) 12096 3074 0 3074 12096 1462

FISH (validation) 2422 892 0 892 2431 140

B FISH (train) 3032 0 3032 3032 0 1716

FISH (validation) 892 0 892 892 0 388

TOTAL FISH (train) 15128 3074 3032 6106 12096 3178

TOTAL FISH (validation) 3314 892 892 1784 2431 528

A IMAGES (train) 762 196 0 196 762 168

IMAGES (validation) 184 69 0 70 184 24

B IMAGES (train) 576 0 576 576 0 305

IMAGES (validation) 143 0 143 142 0 58

TOTAL IMAGES (train) 1338 196 576 772 762 473

TOTAL IMAGES (validation) 327 69 143 212 184 82

Test datasets

A FISH (test) 235 235 235 235 235 235

IMAGES (test) 15 15 15 15 15 15

B FISH (test) 290 290 290 290 290 290

IMAGES (test) 13 13 13 13 13 13

C FISH (test) 369 369 369 369 369 369

IMAGES (test) 43 43 43 43 43 43

D FISH (test) 103 103 103 103 103 103

IMAGES (test) 21 21 21 21 21 21
A and B datasets were split into training, validation and test sets. Further, test sets C and D were obtained from different areas and backgrounds. For classification, see further in the text. Imb,
imbalanced scenario. Bal, balanced scenario.
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as the fraction of relevant fish among all retrieved fish, whereas

recall is the fraction of retrieved and relevant fish among all relevant

fish. They are defined as:

P =
TP

TP + FP
;R =

TP
TP + FN
Frontiers in Marine Science 04
where TP=true positive, FP=false positive and FN=false negative.

Neither P nor R provide a full picture of the model

performance. To attain a more global metric for comparisons, we

calculated the F1 score and the mean average precision (mAP). The

F1 score will only be high if both P and R are high and is calculated

as:
A

B

DC

FIGURE 1

Example images from the main coastal Mediterranean datasets (A) fixed observatory, (B) varied coastal bottoms, and two other test datasets (C) fixed
observatory in Mallorca, (D) fixed observatory in Catalonia.
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TABLE 2 Count and image example (after MSR model pre-processing) of the main fish classes appearing in datasets A and B.

Class name Example Image Occurrence in A Occurrence in B Total

Unidentified fish – 3309 771 4080

Chromis chromis 2788 1357 4145

Coris julis 7 572 579

Dentex dentex 5 0 5

Diplodus annularis 121 637 758

Diplodus puntazzo 2 5 7

Diplodus sargus 3301 12 3313

Diplodus sp. 1090 8 1098

Diplodus vulgaris 1155 379 1534

Epinephelus costae 2 0 2

Epinephelus marginatus 2 0 2

Lithognathus mormyrus 395 0 395

Mugilidae (prob Chelon) 483 0 483

Mullus surmuletus 3 12 15

Oblada melanura 972 68 1040

Pomatous saltatrix 234 0 234

Sarpa salpa 20 75 95

Seriola dumerilii 1256 0 1256

(Continued)
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F1   score =
2 · P · R
P + R

The P and R values from the nets were obtained so that they

maximized the F1 score, thus achieving their best balance. The mAP

is often used for global model comparison and is calculated as the

area under the precision vs recall curve, at all levels of intersection

over union (http://cocodataset.org/). Here, we calculated mAP@0.5,

meaning that true positives are defined as detections whose bounding

boxes have at least a 50% overlap with the ground truth bounding

boxes. This overlap is measured in terms of the Intersection over

Union (IoU), which ranges from 0 to 1, as the ratio between the area

of their intersection and the area of their union.
Frontiers in Marine Science 06
Object detection

For object (class “fish”) detection, we first compared the

performance of Faster RCNN (Ren et al., 2015) and several

configurations of the fifth version of the You Only Look Once

(YOLO) algorithm (first described by Redmon et al., 2016), using the

implementation fromUltralytics (https://github.com/ultralytics/yolov5 ).

YOLOv5 has been shown to work particularly well in underwater

environments (Wang et al., 2021). The medium pre-trained model

from YOLOv5, YOLOv5m (pre-trained on COCO image database,

http://cocodataset.org/ ) was selected after training on the E0 scenario

with the l, m and x pre-trained models (Supplementary Table S1).
TABLE 2 Continued

Class name Example Image Occurrence in A Occurrence in B Total

Serranus scriba 17 203 220

Sparus aurata 80 0 80

Sphyraena viridis 27 0 27

Symphodus sp. 22 257 279
frontie
Some species were aggregated to a genus level if species could not be recognized, or it was a genus with many species appearing in low abundances (e.g., Symphodus).
FIGURE 2

Left panel, images excluded from scenario E5 due to small fish and abundant overlap (note inset in the lower-left picture for small fish). Right panel:
types of images included in scenario E5, selected for clearly identifiable species.
rsin.org
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YOLOv5m (hereafter referred to as YOLO) produced the best

compromise between metrics (mAP@0.5 = 0.84, precision=0.83,

recall=0.78) and computation time and was selected for subsequent

analyses. For Faster RCNN we used the implementation for object

detection from de TensorFlow API (https://www.tensorflow.org/

api_docs), with the ResNet50 configuration, pre-trained on ImageNet

(https://www.image-net.org/). Object detection performance was

evaluated on each training scenario using the aforementioned metrics.
Classification

Fish can be classified in a single step using the YOLO algorithm,

which scans the entire image, identifies fish, and classifies them.

Alternatively, a classifier that only operates on pre-defined

bounding boxes of fish can also be used among other possibilities.

We compared the results from a state-of-the-art classifier,

EfficientNet V2 (here forth EfficientNet) (Tan and Le, 2021)

implemented with the TensorFlow API, with those from the best-

performing YOLO model. The EfficientNet was trained on the

Google Colab platform (https://colab.research.google.com/), while

the YOLO network was trained locally on an NVIDIA GPU. An

initial comparison was conducted using two sets of increasing fish

object classes (4 and 8 classes) to observe the effect of the number of

classes and instances on classification success. Given the superior

performance of YOLO on classification (see corresponding section),

it was used to further compare the effect on increasing the number

of fish categories with more than 50 individuals (4, 8, 14 species) in

expanded class sets. Each trial was trained using only the selected

classes in each set. Confusion matrices are provided for selected

results, and specific variations in the species composition were

made, re-training the network to illustrate the confounding effect of

including new fishes at the genus level that could not be classified to

species level but were morphologically similar. Direct comparisons

between YOLO and EfficientNet performance using mAP cannot be
Frontiers in Marine Science 07
made due to structural differences in the networks, so F1 score

(mean ± SD) was used to compare equal sets of species datasets.
Results

Fish detection

The comparison of the two networks, YOLO and Faster RCNN,

across six scenarios revealed that YOLO performed notably better than

Faster RCNN both in validation and test sets in most cases (Tables 3, 4)

with mAP@0.5 values over 0.8 in most scenarios in the validation

datasets (Table 3). The inferior performance of Faster RCNN was

primarily attributed to lower R values. In general, using a larger

number of fish resulted in slightly better results. However, it was

noteworthy that E5 achieved nearly as good results using one-tenth

the number of objects for training, but only considering images without

small fish and using a balanced set of backgrounds. Comparing YOLO

results in the test sets across scenarios, the following patterns were

apparent (Table 4, see Supplementary Figure S1 for examples): the

evaluation of scenarios that were not trained with either A or B datasets

performed poorly on the test sets from datasets not used in training, but

not necessarily with other never-before-seen datasets (C and D, scenarios

E2, E4). The best results across test sets were obtained using a YOLO

network trained in scenario E0 (high number of fish but unbalanced

background), followed by E3 (trained on approximately half the objects

but with balanced datasets) and E5 (half the images than E3, balanced

datasets and selected images). These three training scenarios yielded

mAP@0.5 values ranging from 0.70-0.84 across all test scenarios.
Species classification

As expected, classification metrics tended to improve with an

increasing number of objects. On average, YOLO performed better
TABLE 3 Performance metrics for each scenario computed over the training datasets (see Table 1).

Training Scenario Model P R mAP@0.5

E0 Faster RCNN 0.80 0.48 0.60

YOLO 0.83 0.78 0.84

E1 Faster RCNN 0.66 0.45 0.37

YOLO 0.75 0.75 0.77

E2 Faster RCNN 0.76 0.52 0.83

YOLO 0.84 0.73 0.80

E3 Faster RCNN 0.81 0.45 0.70

YOLO 0.82 0.73 0.80

E4 Faster RCNN 0.71 0.53 0.42

YOLO 0.81 0.79 0.84

E5 Faster RCNN 0.78 0.53 0.83

YOLO 0.88 0.71 0.83
fr
See Table 4 for test sets. Noticeably, E5 yielded relatively good results with a low number of training objects (by eliminating fish that are only dots or very difficult to recognize at the species level).
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than EfficientNet when using eight species, although both networks

performed similarly on four species (Table 5). The average F1 score

for both networks was around 0.75 for four species. For eight

species, YOLO showed around 14% higher values than EfficientNet,

with a standard deviation one order of magnitude lower. In some

cases, EfficientNet had high precision and F1 score for classes with a

low number of objects (e.g., S. scriba) when the number of classes

was low. Overall, YOLO was considered a more convenient tool,

providing reasonable results in an integrated detection and

classification process. A test for confounding species showed that

if a class that could contain two similar species was included

(Diplodus sp.), YOLO confused it with D. sargus at the same

proportion as the generic Diplodus sp. (Figure 3). The category

“background” (Figure 3, see also Figure S2) comprises different

objects depending on the matrix size. In small matrices (e.g., four

sp.), wrongly classified information is included in the background

category, which in fact contains general categories like “fish”, plus

others (See Supplementary Figure S2). When the category “fish” is

included, most of the information previously attributed to

background is, in many instances, attributed to this “fish”

category (see Figure S2). This general category is comprised by

fish that were unidentifiable at a higher taxonomic resolution.

Additionally, a large proportion of true Diplodus sp was inferred

to be background, likely due to initial labeling issues: the contour of

these Diplodus sp. could not be fully determined due to partial

overlap with other fish. Using YOLO in a larger dataset (Table S2,

Supplementary Figure S2) showed that, although the average

classification power decreased, i) increasing the number of species

did not necessarily decrease the classification success for the species

with large numbers (e.g., C.chromis, D.sargus, D.vulgaris) or

conspicuous shape differences with respect to the others (e.g.,

Mugilidae) (See Figure S1 for an example), ii) several other

species with a low number of labels were reasonably classified
Frontiers in Marine Science 08
(e.g., L.mormyrus, P.saltatrix). These well-detected species were

conspicuous and largely different in shape or color from the rest

(see Table 2).
Discussion

In this paper, we present a new labeled dataset of underwater

images of coastal Mediterranean fishes and investigate the best

dataset combinations for obtaining optimal deep learning (DL)-

based classification results that can be applied to various habitats.

Firstly, we compared two popular architectures, Faster RCNN and

YOLO, in terms of their object detection capabilities. Results

indicate that YOLO significantly outperforms Faster RCNN in

detecting the category “fish” and performs better than

EfficientNet in many cases, without the need for pre-defining

bounding boxes. However, in some instances, such as classifying

conspicuous species in scenarios of limited training data, directly

utilizing bounding boxes may yield better results, as observed in

other studies (Knausgård et al., 2022).

Using YOLO, we addressed specific areas that required further

investigation, particularly the “domain shift” phenomenon

(Kalogeiton et al., 2016; Ditria et al., 2020) characterized by a

decrease in classification performance with varying habitat

backgrounds and fish species assemblages. Automatic fish

classification often involves the use of relative or absolute (e.g.,

Campos-Candela et al., 2018) abundance estimators that utilize

underwater baited cameras (Connolly et al., 2021) or cabled

observatories (Bonofiglio et al., 2022) to count, classify or track

fish (Saleh et al., 2022). These underwater images differ significantly

from typical free datasets that contain single individuals; these

images contain a high diversity of species and large variability in

abundance, resulting in reduced classification success. However, as
TABLE 4 Results of the application of YOLO to the four test datasets (never seen by the trained DL nets, see Table 1).

mAP@0.5 value for each test dataset Number of training objects

Training Scenario Model A B C D Training objects Backgrounds

Faster RCNN 0.34 0.34 0.48 0.63

E0 YOLO 0.84 0.83 0.80 0.78 15128 Unbalanced

Faster RCNN 0.35 0.16 0.47 0.57

E1 YOLO 0.82 0.34 0.78 0.83 3074 Unbalanced

Faster RCNN 0.15 0.35 0.39 0.42

E2 YOLO 0.34 0.64 0.49 0.43 3032 Unbalanced

Faster RCNN 0.32 0.30 0.47 0.55

E3 YOLO 0.82 0.81 0.80 0.76 6106 Balanced

Faster RCNN 0.35 0.18 0.48 0.74

E4 YOLO 0.86 0.45 0.79 0.82 12096 Unbalanced

Faster RCNN 0.32 0.29 0.48 0.69

E5 YOLO 0.79 0.80 0.76 0.76 3178 Balanced
Balanced and unbalanced scenarios and the number of training objects are specified.
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previously identified (e.g., Saleh et al., 2022), it is necessary to

develop models that can generalize their learning and perform well

on new, unseen data samples, bridging the gap between DL and the

requirements of image-based ecological monitoring (e.g. MacLeod

et al., 2010; Christin et al., 2019; Aguzzi et al., 2020; Goodwin

et al., 2022).
Frontiers in Marine Science 09
Related to the above, another common problem in classification

is the imbalance of objects per class, as the DL model tends to weigh

more heavily on the more abundant classes. Class-aware

approaches have been proposed for fish classifications (Alaba

et al., 2022). Beyond confirming that balancing improved

classification in our datasets, we found that comparable results to

an imbalanced dataset with an order of magnitude more training

images could be obtained by carefully selecting images.

Additionally, our results showed that avoiding training with

images containing many small bounding boxes yields better

precision and recall values on validation and test sets. The

relation between object size and classification properties has been

described previously, and it is recommended to separate the

classification analyses as a function of object size (e.g., Connolly

et al., 2022). However, to our best knowledge, this practice is not

commonly used in fish ecology studies applying DL algorithms to

underwater images. Overall, the fact that a model trained with a

limited number of images performs relatively well across multiple

test scenarios is a promising result for applications in

ecological studies.

Recent reviews (e.g., Goodwin et al., 2022; Saleh et al., 2022)

have concluded that for the application of DL methods to fish

ecology research, transparent and reproducible research data and

tools are necessary. This paper aims to contribute to this goal. There

have been few studies on Mediterranean fish that have been

experimental in nature (e.g., testing new network developments

on a reduced number of species, such as Paraschiv et al., 2022 for a
TABLE 5 Results of comparable classification metrics between YOLO and EfficientNet using either 4 or 8 classes.

YOLO EfficientNet

4 classes Training objects Validation objects P R F1 score P R F1 score

C. chromis 2730 854 0.80 0.65 0.72 C. chromis 0.86 0.97 0.91

D. sargus 2281 492 0.79 0.73 0.76 D. sargus 0.81 0.85 0.83

D. vulgaris 1011 251 0.83 0.61 0.70 D. vulgaris 0.74 0.37 0.50

S. scriba 152 48 0.87 0.75 0.80 S.scriba 0.94 0.71 0.81

Av F1 score 0.75 Av F1 score 0.76

Sd F1 score 0.05 Sd F1 score 0.18

8 classes

C.chromis 2730 854 0.79 0.67 0.73 C.chromis 0.62 0.96 0.75

D.sargus 2281 492 0.73 0.75 0.74 D.sargus 0.73 0.78 0.76

D.vulgaris 1011 251 0.75 0.64 0.69 D. vulgaris 0.71 0.16 0.27

S. scriba 152 48 0.81 0.75 0.78 S.scriba 0.97 0.60 0.74

S.dumerilii 870 172 0.89 0.89 0.83 S. dumerilii 0.88 0.66 0.75

D.annularis 434 195 0.85 0.72 0.78 D. annularis 0.87 0.51 0.65

O.melanura 691 184 0.80 0.80 0.62 O.melanura 0.93 0.14 0.24

C. julis 368 132 0.78 0.78 0.82 C. julis 0.87 0.82 0.84

Av F1 score 0.75 Av F1 score 0.63

Sd F1 score 0.07 Sd F1 score 0.23
fro
Bounding boxes are extracted from 343 images.
FIGURE 3

Confusion matrix based on YOLO results for eight species,
background, and one genus (Diplodus sp) that could not be attributed
to other congeneric species. Refer to the text for further explanations.
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few pelagic species). To increase the use of DL in this field, we

concur with other authors that not only should common databases

and reproducible methods be made available (e.g., Francescangeli

et al., 2023), but also that more integrated engineers-ecologists

interactions are institutionally needed (Logares et al., 2021).

Additionally, statistical corrections to DL estimates must be

developed (Connolly et al., 2021) and the use of lighter networks

(e.g., Paraschiv et al., 2022) should become more common, as

computer power may be a significant limitation for unplugged

underwater devices (e.g., Lisani et al., 2012).

In summary, our research has discovered or reinforced several

key findings that have important implications for fish ecology.

Firstly,we found that using fast, single-step classifiers like

YOLOv5, we can classify fishes in entire images cost-effectively,

without the need for a two-step approach. Secondly, while having a

large number of labeled fish images is important, a better approach

may be to use a variety of backgrounds with a smaller, more

carefully selected set of images. When selecting images, it is

important to ensure that the bounding box fully captures the fish,

and that the bounding box is not too small relative to the image.

Lastly, we found that increasing the number of classes in the

training dataset may lower overall classification metrics, but it

may not significantly affect species with a high number of labels

and can improve the identification of less abundant species.
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