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Challenges, limitations, and
measurement strategies to
ensure data quality in
deep-sea sensors
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Ranveig N. Bjørk2 and Anders Tengberg4

1Department of Physics and Technology, University of Bergen, Bergen, Norway, 2NORCE Norwegian
Research Center, Bergen, Norway, 3Department of Computer Science, Electrical Engineering and
Mathematical Sciences, Western Norway University of Applied Sciences, Bergen, Norway, 4Aanderaa
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In this paper we give an overview of factors and limitations impairing deep-sea

sensor data, and we show how automatic tests can give sensors self-validation

and self-diagnostic capabilities. This work is intended to lay a basis for

sophisticated use of smart sensors in long-term autonomous operation in

remote deep-sea locations. Deep-sea observation relies on data from sensors

operating in remote, harsh environments which may affect sensor output if

uncorrected. In addition to the environmental impact, sensors are subject to

limitations regarding power, communication, and limitations on recalibration. To

obtain long-termmeasurements of larger deep-sea areas, fixed platform sensors

on the ocean floor may be deployed for several years. As for any observation

systems, data collected by deep-sea observation equipment are of limited use if

the quality or accuracy (closeness of agreement between the measurement and

the true value) is not known. If data from a faulty sensor are used directly, this may

result in an erroneous understanding of deep water conditions, or important

changes or conditions may not be detected. Faulty sensor data may significantly

weaken the overall quality of the combined data from several sensors or any

derived model. This is particularly an issue for wireless sensor networks covering

large areas, where the overall measurement performance of the network is

highly dependent on the data quality from individual sensors. Existing quality

control manuals and initiatives for best practice typically recommend a selection

of (near) real-time automated checks. These are mostly limited to basic and

straight forward verification of metadata and data format, and data value or

transition checks against pre-defined thresholds. Delayed-mode inspection is

often recommended before a final data quality stamp is assigned.
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Highlights
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• Define system limitations for autonomous underwater

sensors operating in deep ocean. We focus on long-term

deployed stationary sensors that communicate using

acoustic links.

• Identify factors impacting underwater sensors, focusing on

sensors deployed in deep ocean, and map out the effect of

relevant factors on selected measurement technologies.

• Propose methods to extend automated real-time data

quality control to cover some of the checks which are

now performed in delayed mode by experienced operators.
1 Introduction

Ocean observations for both shallow and deep water are

essential to understand environmental changes and ensure well

founded ocean management and sustainable ocean industry

operations. The collected data are among others used as input to

environmental models, and for monitoring ecosystems and the

environmental footprint of industrial activities. One of the

challenges in ocean observations is to provide sufficient coverage,

both horizontally and over depths, and provide sufficiently long

time-series of measurements with an appropriate temporal

resolution. The work presented here is a part of SFI Smart

Ocean1, a center of research-based innovation with an aim to

create a multi-parameter observation system for underwater

environments and installations. Sensors organized through

Underwater Wireless Networks can cover larger seafloor areas or

volumes while minimizing the energy cost related to

communication (Gkikopouli et al., 2012), but still face challenges

in terms of energy limitation, low data rates and unreliable

communication (Felemban et al., 2015), (Fascista, 2022).

Continuous communication of raw measurement data is therefore

generally not an option, and much of the data processing and

analysis, including quality control and sensor self-validation must

therefore be carried out at the sensor node. Although sensors

operating in deep ocean conditions are less prone to biofouling,

they are however exposed to several factors which may impact the

measurement quality, as high pressures, corrosion and low

current speed.

During the deployment period, the sensors typically operate

without external calibration references, and in situ sensor self-

validation and self-diagnostic properties are therefore relevant for

improving the quality and providing some level of trust in

measurement data. A long term deployed sensor in the deep sea

could thus communicate its “health” status back, together with

indications of any potential system malfunctioning or failures.

Based on the detailed knowledge of sensor quality status,

maintenance and retrieval missions can be planned in a more
ttps://sfismartocean.no/
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cost-effective way, than if no such diagnostics information

was available.

Many of the principles and techniques for fault diagnosis for

industrial manufacturing systems (Gao et al., 2015) may also be

relevant for quality control of deep-ocean measurement data.

(Altamiranda & Colina, 2018) stress how digital applications for

controlling and monitoring remote locations rely on high quality

and reliable data. Commenting on the potential developments of

real-time quality control of oceanographic data, (Bushnell et al.,

2019) and (U.S. Integrated Ocean Observing System, 2020a) point

out that sensors connected in autonomous underwater networks

open up possibilities for quality control through communication

and comparisons between sensors, as well as multivariate analysis.

In (Whitt et al., 2020) a future vison for autonomous ocean

observations is presented. Their review gives a good overview of

various ocean observation systems, and how autonomous sensors

may help fill some of the remaining information gaps. For the

international oceanographic in situ Argo program, (Wong et al.,

2022) divide the quality control of CTD (Conductivity,

Temperature, Depth) data into a series of checks and adjustments

that can be performed automatically in “real time”, and “delayed

mode” controls and adjustments performed by experts.

In chapter 2.1 we present a systematic overview of factors which

may affect the quality and reliability of underwater measurements.

Important factors covered here are environmental cross-sensitivity

including the effect of low currents, corrosion, sensor element

degradation, sensor drift as well as electronic component

malfunctioning. For each factor we point out possible effects on

sensor signal for a selection of measurement technologies frequently

used in deep-sea exploration. In chapter 2.2 we detail the system

limitations in subsea measurement applications, among others

related to power consumption and communication. In chapter 2.3

we describe two deep-ocean measurement data sets which we use as

a basis for exploring different quality control tests described in

chapter 2.4. We present results of the different automatic quality

tests in chapter 3, and discuss the test performance as well as

challenges in setting good thresholds in chapter 4. In chapter 5 we

give a summary and point out the direction for future work.
2 Background and methodology

Knowledge of sensor failure modes, system limitations and

effect of errors on sensor signal are prerequisites for establishing

methods for sensor self-validation and self-diagnostics. We

therefore start this chapter with a review of the predominant

factors which may affect sensors in deep-ocean exploration and

monitoring. These factors may directly or indirectly affect the

sensor signal and measurement result. We continue with an

overview of system limitations on sensors deployed long term in

deep sea, both with respect to lack of external calibration references

and limits in battery capacity and communication. Starting with

basic tests proposed in established oceanographic manuals, we take

the system limitations into account and propose additional tests

tailored for automatic, in situ quality control.
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Some of the central terms when discussion the quality of

measurement data are accuracy and measurement uncertainty. In

this paper we adhere to the definitions in (BIPM et al., 2012), with

accuracy as a qualitative expression of the “closeness of agreement

between a measured quantity value and a true quantity value(…)”,

and measurement uncertainty as a “non-negative parameter

characterizing the dispersion of the quantity values being

attributed to a measurand, based on the information used”.
2.1 Factors affecting sensors on deep-sea
observation equipment

To set up a systematic overview of factors which may affect the

quality and reliability of underwater measurements, we collected

and analyzed relevant literature regarding sensor challenges in

oceanographic measurements. A more general review on sensor

challenges in harsh conditions was also carried out, to identify any

additional error sources not accounted for in the oceanographic

measurement literature.

Review articles regarding underwater environmental

monitoring by autonomous sensors and sensor networks refer to

a selection of underwater measurement challenges. Stability over

time, notably from biofouling are listed as the primary challenges for

autonomous sensors by (Whitt et al., 2020). (Fascista, 2022) lists

challenges as corrosion and adverse conditions, whereas (Xu et al.,

2019) list among others hardware robustness and resistance to

water ingression as prerequisites for sensors operating in harsh

underwater environments. (Altamiranda & Colina, 2018) list sensor

failures, noise, drift, offset, degradation in time and unavailability as

data quality impairing factors. A strategy for detecting and handling

data gaps as well as time-delays between signals from different

sensors is mandatory when measurement data is used to make

stat i s t ics or are used as input to environmenta l or

ecosystem models.

Risks identified for other applications with comparable harsh/

extreme conditions may also be relevant for deep-ocean

monitoring. For sensors emerged in a glacier, (Martinez et al.,

2006) list among others measurement challenges from damage to

sensors, water ingress, communication breakdown, transceiver

damage, power shortage if the sensor fails to go into sleep mode.

For geotechnical monitoring by micro-electro-mechanical systems

(MEMS), (Barzegar et al., 2022) list water ingress, electromagnetic

interference, noise, and degradation/damage from corrosion, as well

as self-noise/intrinsic noise from Brownian/thermal motion and

thermal-electrical noise from the sensor electronics. Focusing on

MEMS inertial sensors, (Gulmammadov, 2009) lists drift related to

switch-on/warm-up as a source of error, together with thermal

hysteresis, other temperature-dependent drift as well as drift over

time. More general error sources as offset, gain, non-linearity,

hysteresis, cross-sensitivity, and long-time drift are listed by Horn

& Huijsing (1998 cited in Barzegar et al., 2022).

Underwater measurement challenges are also commented upon

in oceanographic guidelines and best practice documents. The

QARTOD real-time quality control manual (U.S. Integrated

Ocean Observing System, 2020b) points out that in addition to
Frontiers in Marine Science 03
calibration accuracy, both electronic stability, sensor drift,

biofouling, and spatial and temporal variability of the measurand

itself contribute to the measurement uncertainty. More sensor-

specific, the Argo Data Management Quality Control Manual for

CTD and Trajectory Data (Wong et al., 2022) list common errors or

failure modes related to conductivity cells: Leakage of anti-

biofouling poison, pollution on conductivity cell, degradation of

the cells glass surface, geometry change, electrical circuit changes and

low battery voltage, as well as incorrect pressure sensor coefficients

which could also be caused by air bubbles in a pressure transducer.

Based on the short review above, we will in the following sections

give a brief description of different sensor-affecting factors relevant for

deep sea monitoring and exploration. We also comment on how these

factors are expected to affect the measurement signal of some common

oceanographic sensors, focusing on conductivity sensors (both

conductivity type cell and inductive type), oxygen optodes issued by

Aanderaa Data Instruments AS and acoustic doppler-based current

measurements. The sensor-specific findings are summarized in Table 1.

2.1.1 Degradation or contamination of sensing
material

Depending on the measurement technology, sensors may have a

sensing material which is exposed directly or indirectly to the harsh

conditions in the deep sea.

2.1.1.1 Oxygen optodes

Over long time periods the sensing foil in an oxygen optode

may degrade or bleach depending on number of excitations

(Tengberg et al., 2006). (Bittig et al., 2018) separate between

sensor drift during storage and during deployment. (Bittig et al.,

2018) found some indication for an initially stronger, then

exponentially decreasing sensitivity, and a positive drift at zero

oxygen for oxygen optodes on moored equipment, but note that no

sound conclusion could be drawn based on the measured data, and

that more studies were recommended.

2.1.1.2 Conductivity sensors

Surface films from oil spills may result in an isolating film of the

probe of an electrode type conductivity sensor, causing a sudden

drop in measured conductivity.

2.1.2 Current speed
The speed of current where the sensor is deployed may affect the

measurement result both directly and indirectly. High currents,

especially combined with high concentration of plankton or other

substances can result in abrasive scouring, for example of the

conductivity cell (Freitag et al., 1999; Ando et al., 2005;

Venkatesan et al., 2019). This is however not relevant for deep-

ocean environments. As pointed out by (Lo Bue et al., 2011), low

current and low dispersion environments are typical for the

deep ocean.
2.1.3 Corrosion of the sacrificial anode
A sacrificial anode is used as a protection when there are

corrosive metals at the measurement platform.
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2.1.3.1 Conductivity sensors

If the sacrificial anode is too close to the sensor element, its

metal surface decreases as it corrodes, and this has a direct effect on

the local conductivity (Cardin et al., 2017).

2.1.3.2 Oxygen optodes

The chemical reaction consumes oxygen when metal is in

contact with anode, resulting in local dips of oxygen

concentration (Cardin et al., 2017). In situations with low

currents (ref. previous paragraph) these local dips might not

dissipate efficiently (Lo Bue et al., 2011), and the oxygen

measurements are therefore less representative of the

environment the sensor is intended to measure.

2.1.4 Sensor platform movement
If the sensor platform is moved, this may result in change or

local spikes in the measurements (for example of oxygen

concentration, conductivity, temperature, pressure). If

measurement data are used for making statistics or as input to

models, this may lead to erroneous results if the effects due to

platform movement are not taken into account. For current sensors,

one factor that could lower the quality of current measurements is

how well the current sensor is able to compensate for tilt, vibrations

and changes in heading for the sensor platform (Tracey et al., 2013).

2.1.5 Measurement conditions/environmental
cross-sensitivity

A sensor is in most cases not only sensitive to the parameter it is

aiming to measure, but will also be affected by other environmental

parameters such as pressure or temperature. Additional

measurements of affecting parameters are therefore often used to

correct the sensor output. This environmental cross-sensitivity

should be taken into account when calibrating the sensor prior to

deployment, to establish a measurement function enabling

continuous correction of such environmental effects. (Berntsson

et al., 1997), (Tengberg et al., 2006) recommend that multivariate
Frontiers in Marine Science 04
calibration should be considered for sensor technologies where the

measurement result is highly correlated with multiple parameters.

The extreme pressure and temperature conditions encountered in

the deep ocean may pose challenges related to calibration. At high

pressures the temperature may fall below 0°C, and a regular

temperature calibration using water is not possible due to

freezing. Effects on the sensing elements due to very high

pressure can also cause measurement errors.

2.1.5.1 Conductivity sensors

As salinity is estimated as a function of measured conductivity

and measured temperature, the quality of the temperature

measurement will influence the quality of the estimated salinity.

An offset between the temperature in the conductivity cell and the

measured temperature at a slightly different location may lead to

spikes and thus more noise in the estimated salinities, especially in

environments with rapidly changing temperatures (Jansen

et al., 2021).

2.1.5.2 Oxygen optodes

(Bittig et al., 2018) give a detailed overview of how

environmental factors affect oxygen concentration measurements

by optodes, listing both temperature, pressure and salinity as

parameters that should be corrected for. An individual (as

opposite to batch) multi-point calibration, including a

characterization of the temperature dependency is recommended

to minimize the effects of the affecting parameters (Bittig et al.,

2018). For high pressure environments (depths larger 2000 m), a

negative, foil dependent drift has been observed, steepest at the

beginning of the deployment period (Koelling et al., 2022).

2.1.6 Biofouling
Biofouling on sensors is mainly the focus for instruments

deployed in shallower water exposed to sunlight, and less critical

for stationary instruments that are permanently deployed in the

deep-sea. However, macrofauna is observed also in deep-sea
TABLE 1 Factors commonly affecting conductivity sensors, oxygen optodes and current sensors in long-term operations underwater, and the
resulting effect on measurement result.

Affecting
factor

Conductivity sensors Oxygen optodes Acoustic Doppler Current sensors

Degradation or
contamination of
sensing element

Isolating film or similar on conductivity probe →
drop

Maturing of sensing foil → Negative
drift decreasing with time

Current speed
and water
movement

Abrasive scouring by high current, increased cell
diameter, positive drift for conductivity cell type,
change in response for inductivity cell type.

Corrosion of sacrificial Zn anode
leads to Local decrease in oxygen level
→ negative dips in periods with low
current

Low current may result in spikes and noise in
measurements of current direction. Tilt, vibrations
and changes in heading may affect the
measurement quality.

Corrosion Metal surface of sacrificial anode decreases →
change in conductivity response

Environmental
cross-sensitivities

Offset in measured temperature and temperature
at conductivity sensor → Spike in estimated
salinities

Negative drift at high pressures,
steepest in the beginning of the
deployment period

Correction for sound speed velocity should be
carried out adequately.

Biofouling Reduced cell diameter → negative drift Local change in oxygen level, effect on
sensor depends on biofouling activity.

Low sensitivity to biofouling.
References are listed in chapter 2.1. Faulty measurements due to electronic component malfunctioning have not been investigated thoroughly in this work and are not covered in the table.
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ecosystems (Kamenev et al., 2022). There are observations of fouling

also at instruments long-term deployed in the deep sea, as reported

by (Blanco et al., 2013) and evidence that biofouling may grow on

plastic pollution sinking and accumulating in the hadal zone over

time, described by (Peng et al., 2020). In addition, Autonomous

Underwater Vehicles may spend part of their deployed time

exposed to biofouling in shallower water. We therefore find it

relevant and necessary to include a discussion of potential effects

of biofouling on sensor performance, also for deep sea observations.

Biofouling can cover the sensing element and thus directly affect

measurements, but it can also change the local environment around

the sensing element.

2.1.6.1 Conductivity sensors

Biofouling can reduce the cell diameter of the electrode type

conductivity cell (Venkatesan et al., 2019), resulting in an apparent

increase in resistance and thus a negative drift (Bigorre & Galbraith,

2018), (Alory et al., 2015). Conductivity sensors based on the

inductive principle are less sensitive to biofouling than electrode

type conductivity cell sensors (Aanderaa Data Instruments AS,

2013), but a decrease in sensor bore diameter due to biofouling

may still cause a negative drift (Gilbert et al., 2008), (Aanderaa Data

Instruments AS, 2013), (Friedrich et al., 2014), (Tengberg

et al., 2013).

2.1.6.2 Oxygen optodes

Oxygen optodes are primarily affected by biofouling indirectly,

as the presence of fouling close to the sensing foil alters the oxygen

content in the immediate environment. This effect is described in

(Tengberg et al., 2006) and (Friedrich et al., 2014).

2.1.7 Electronic component malfunctioning
Errors in the sensor electronics may come from external factors

such as vibrations before and during the deployment and ingression

of seawater, or from internal factors such as drift in electronic

components. One example of this is self-heating of the sensor

electronics, which may affect measurements, lead to other

electronic component failures and to a premature battery

discharge. If water enters into the sensor housing, this may

directly affect the sensor element and the sensor electronics, and

usually the sensor stops operating. The effect on the measurement

may range from sporadic outliers, a decreased signal to noise ratio, a

sudden offset, a gradual drift or even a frozen value to complete

sensor and communication failure.
2.1.8 Acoustic noise
For instruments sensitive to acoustic noise as well as for

acoustic communication of measurement data, it is relevant to

mention that (Dziak et al., 2017) measured and evaluated the

acoustic noise levels in the Challenger trench, and listed both

seismic activity (as earthquakes), biological activity (as whale

communication) and anthropogenic activity (as shipping, seismic

air guns for oil and gas exploration, active sonars), in addition to

storm-induced wind- and wave noise propagating from the surface

to the largest depths. Although somewhat sheltered both from the
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trench walls and refraction in heterogenous water layers, (Dziak

et al., 2017) observed that the noise levels in deep waters were still

significant in the deep hadal trench.
2.2 System limitations due to subsea
application

In this chapter we discuss system limitations for long-term

deployed autonomous sensors operating subsea, relying on wireless

communication of measurement data.

Sensors on moored observation equipment are today typically

calibrated before and after deployment. In situ calibration

campaigns can also be carried out, where the equipment is

mounted, calibrated on a ship and re-deployed directly.

Depending on the sensor technology and reference

instrumentation available at the ship, such in situ calibration may

consist of multi-point comparison and adjustment, or only of

comparing a few measurement values against a reference. Using

the vocabulary proposed by (BIPM et al., 2012), a calibration

(comparison against a reference) is performed in both cases, but

the term in situ (point wise) verification may be a more intuitive

term for the latter case without adjustment. The in situ calibration

or verification campaigns can be performed on regular time

intervals which depend on the expected variability of the

measured variable – which may differ significantly between

seasons. Sensors on AUVs can be compared with neighbor

sensors when two vehicles are sufficiently close, or sensors on

(Argo) gliders can autocalibrate when the vehicle surfaces, as an

in-air reading by oxygen optodes (Bittig and Körtzinger, 2015;

Johnson et al., 2015; Nicholson & Feen, 2017; Bittig et al., 2018). For

long-term deployed sensors in the deep sea however, periodic in situ

calibration from ships may be practically and economically

challenging, due to the remote measurement locations and large

depths. This lack of access to external calibration leads to a need for

on-line data quality control, self-validation and diagnostics at the

sensor level and through the sensor network.

Deep-sea observation equipment relying on underwater wireless

communication would need to adapt to severe limitations on data

rates and battery capacity. In the case of acoustic communication, the

underwater speed of sound is much lower than speed of light,

resulting in long propagation delays and high doppler distortion,

and only low frequencies are possible for communicating over the

long ranges typically encountered in deep sea exploration (Van

Walree et al., 2022). Underwater acoustic communication has high

power demands, and continuous transmission of sensor raw data will

be too energy-demanding, in practice infeasible for deep sea

applications. As a natural consequence, more of the signal pre-

processing must be handled locally on the sensor prior to

transmission. This includes calculation of measurement output

signal based on input measurements, averaging, but also filtering

out of erroneous data. (Woo & Gao, 2020) point to data processing at

sensor level to filter out information that is not relevant to avoid

overloading of a network communication channel. Computationally

demanding algorithms for real-time processing are however limited

by the available battery power (Whitt et al., 2020). Battery lifetime can
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be optimized by intelligent data transmission strategies and active use

of power saving mode combined with adaptive sampling schemes, for

example as described by (Law et al., 2009). Depending on the

intended use of the data, different time-resolutions may be required

for different parameters, and a possibility for the user to adjust

sampling rates remotely would be useful.
2.3 Data description

Historical measurement data from moored pressure,

conductivity, temperature, and oxygen sensors (SeaGuard,

Aanderaa Data Instruments) deployed in deep-ocean environments

in the Drake Passage (≈3950 m, data from 2009-2010, 60 minutes

measurement interval) and Deep Atlantic (≈4000 m, data from 2010-

2011, 20 minutes measurement interval) are used for illustrating the

algorithms for sensor self-validation described in chapter 2.4. In the

Drake Passage, data from two SeaGuards at different heights were

compared, referred to as Drake 136 and Drake 137.

Table 2 give more information on the sensors. The Drake

Passage and Deep Atlantic moorings were not part of a wireless

network for acoustic communication of measurement data. We use

this historical data for illustrating the proposed algorithms for real-

time quality control at the sensor node which would be highly

beneficial if the data from the moorings were a part of a wireless

network. The measurement data is provided as Supplementary

Material: Data Sheet 1.CSV for Drake Passage, Data Sheet 2. CSV

for Deep Atlantic 136 and Data Sheet 3. CSV for Deep Atlantic 137.
2.4 Algorithms for sensor self-validation

In this chapter we describe algorithms for sensor self-validation

which are tailored for real-time, in situ operation on sensor node level,

considering the system limitations and challenges as described in

chapter 2.2. We identify and compare quality control manuals

currently referred to in the oceanographic measurement community

(chapter 2.4.1). We proceeded to investigate methods to extend

automated real-time data quality control to cover some of the checks

which are now typically performed in delayed mode. Based on

proposals found in some of the manuals on quality control for

oceanographic measurement data, we propose tests combining

measurements of different variables (chapter 2.4.2). To enable

detection of sensor element or electronic drift, we also investigate

strategies for automatic sensor self-validation relying on redundant

measurements (chapter 2.4.3). Test results are presented in chapter 3.
2.4.1 Quality control currently applied in
oceanographic measurements

Most of the guidelines and recommendations related to data

quality control procedures in the oceanographic community are

collected and accessible from the Ocean Best Practice System

(OBPS) (Pearlman et al., 2019). In (Bushnell et al., 2019), established
Frontiers in Marine Science 06
quality assurance of oceanographic observations are categorized into

real-time, near real-time, delayed mode and reanalysis quality control.

For CTD devices, there are several best practices/

recommendations proposed by the various projects or networks

operating such equipment. The U.S. Integrated Ocean Observing

System (IOOS) proposes a manual for real-time quality control

(U.S. Integrated Ocean Observing System, 2020b). In addition to

corrections due to response time and thermal mass, the manual

lists a set of required tests (gap, syntax, location, gross range,

climatological), strongly recommended tests (spike, rate of change

and flat line), and suggested tests (multi-variate, attenuated signal,

neighbor, Temperature-Salinity (TS) curve/space, density

inversion). The QARTOD (Quality Assurance/Quality Control

of Real-Time Oceanographic Data) initiative (U.S. Integrated

Ocean Observing System, 2020b) stresses among others that

observations should have a quality descriptor (for instance

quality control flags pass, suspect, fail) and be subject to

automated real-time quality test. The Argo Quality Control

manual for CTD devices (Wong et al., 2022) describes two levels

for quality control and eventual adjustment: A real-time,

automatic system and a delayed-mode system requiring expert

interference. The Copernicus project for marine environment

monitoring has published “Recommendations for in-situ data

Near Real Time Quality Control” (EuroGOOS DATA-MEQ

Working Group, 2010), listing automatic tests comparable to

the ones recommended by the QARTOD and Argo Float

programs. The Pan-European Infrastructure for Ocean &

Marine Data Management (SeaDataNet) proposes a data

Quality Control manual (SeaDataNet, 2010), together with a list

of quality flags. In addition to valid date, time, position, global and

regional ranges, the SeaDataNet manual proposes checks for

instrument comparison.

The International Oceanographic Data and Information

Exchange committee (IODE) and the Joint Commission on

Oceanography and Marine Meteorology (JCOMM) have through

the “Global Temperature and Salinity Profile Programme GTSPP”

issued the “GTSPP Real-Time Quality Control Manual” (UNESCO-

IOC, 2010). This manual proposes several tests aimed at

Temperature and Salinity profiles, but also relevant for other

marine data. The tests are grouped into different stages, ranging

from position, time, and profile identification checks to consistency

with climatologies, and finally to internal consistency checks before

a visual inspection. Below is an overview of basic tests proposed by

established manuals (EuroGOOS DATA-MEQ Working Group,

2010; U.S. Integrated Ocean Observing System, 2020b; Wong et al.,

2022) for (near) real time quality control of oceanographic sensor

data, adapted for this work as described by the pseudocode.
• Valid range: If value is outside the given range, then fail.

• Flat line: If n consecutive values differ less than ϵ, then fail.

• Spike – absolute threshold: If the value of a measurement i is

more than a sensitivity factor S times the average of

measurements i-1 and i+1, then fail.
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Fron
• Spike – dynamic threshold: If the value of a measurement i is

more than a sensitivity factor S times the standard deviation

of the n last measurements, then fail.

• Rate of Change – threshold based on first month of data:

If ((abs(measurement i – measurement i-1)+abs(measurement

i - measurement i+1)) > 2·2·std.dev(first month), then fail.

• Rate of Change – dynamic threshold: If the difference between

measurement i and i+1 is more than a threshold S times the

standard deviation of the n last measurements, then fail.
The results of the tests are recommended Quality Flags, to be

approved by the operator. The “GTSPP Real-Time Quality Control

Manual” (UNESCO-IOC, 2010) expects that some of the process of

visual inspection can be converted to objective tests but points out

that there will always be a need for visual inspection. The manual

further proposes that variables may be calculated based on others, to

evaluate if the observed values are reasonable (for instance density

based on temperature and salinity).

Both (SeaDataNet, 2010) and (U.S. Integrated Ocean Observing

System, 2020b) propose some form of multi-variate test to make use

of the correlations between related variables, but it is acknowledged

that such tests are considered advanced and not usually

implemented as a part of (near) real-time quality control. In

addition to the (near) real-time quality control tests proposed in

the manuals referred to above, extensive guidance for quality

control typically performed as delayed mode are provided by

(Thomson & Emery, 2014) and (Kelly, 2018).
2.4.2 Test based on correlated parameters
In delayed mode inspection of measurement data by experts, a

scatter plot over the whole measurement period of related variables

can be very useful for detecting measurement anomalies (Thomson

& Emery, 2014). However, this is not adaptable to real-time

autonomous sensor self-validation. We therefore propose two

other methods for exploiting correlated measurements below.
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• Label one variable based on a breached threshold for an
affecting variable

One use especially relevant for deep-ocean conditions, is to

label oxygen concentration measurements where the current

velocity is below a set threshold to indicate possible sacrificial

anode oxygen consumption (as discussed in 2.1.3). Another

example is where the moorings are dragged down or moved.

Such movement can be detected by comparing pressure

measurements against a set threshold, and parameters which

may be affected by this can be labelled accordingly. In more

generic terms, measurements of variable 1 are marked as

suspicious (or faulty), if the value or rate of change of a related

variable 2 is below or above a certain threshold.

• Running correlation between pairwise related variables

Another possibility is to calculate the running covariance for

pairwise related variables. A challenge with this method is to discern

between a change in the correlation due to an erroneous

measurement, and due to a change in the environmental

conditions affecting the two variables differently. Designing a test

based on the running correlation will therefore require detailed

knowledge of both the sensor technology and the expected

environmental conditions and events.

It is important that a basic time-stamp verification test is carried

out before different measurements are combined or compared.

2.4.3 Reference measurements
An important limitation to the basic quality checks proposed in

existing manuals for (near) real-time quality control is that they

cannot be used to detect gradual changes in long-term system

response such as sensor drift. To detect a systematic error, either

constant or varying with time or other variables, a comparison with

an independent estimate of the same variable is required. In this

section we list different types of reference measurements that can be

used for detecting systematic errors.
TABLE 2 Sensor descriptions and stated accuracies.

Measured parameters Product name, number Stated accuracy Drake 136 Drake 137 Deep Atlantic

Current Doppler Current Sensor, 45201 ± 1% of reading x x x

Pressure incl. temperature Pressure Sensor, 4117F2 ± 0.02% FSO standard
0.05°C

x x x

Oxygen concentration incl. temperature Optode Sensor, 43303 8µM < 160µM,
5% > 160µM
0.05°C

x x x

Conductivity incl. temperature Conductivity sensor, 43194 (inductive type) ± 0.018 mS/cm
0.05°C

x x x

Temperature Temperature Sensor 40605 0.03°C x
All sensors are manufactured by Aanderaa Data Instruments. “x” indicates if the sensor is included in a particular measurement station.
1https://www.aanderaa.com/media/pdfs/d367_aanderaa_zpulse_dcs.pdf.
2https://www.aanderaa.com/media/pdfs/d362_aanderaa_pressure_sensor_4117_4117r.pdf.
3https://www.aanderaa.com/media/pdfs/oxygen-optode-4330-4835-and-4831.pdf.
4https://www.aanderaa.com/media/pdfs/d369_aanderaa_conductivity_sensor_4319.pdf.
5https://www.aanderaa.com/media/pdfs/d363_aanderaa_temperature_sensor_4060_4060r.pdf.
frontiersin.org

https://www.aanderaa.com/media/pdfs/d367_aanderaa_zpulse_dcs.pdf
https://www.aanderaa.com/media/pdfs/d362_aanderaa_pressure_sensor_4117_4117r.pdf
https://www.aanderaa.com/media/pdfs/oxygen-optode-4330-4835-and-4831.pdf
https://www.aanderaa.com/media/pdfs/d369_aanderaa_conductivity_sensor_4319.pdf
https://www.aanderaa.com/media/pdfs/d363_aanderaa_temperature_sensor_4060_4060r.pdf
https://doi.org/10.3389/fmars.2023.1152236
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Skålvik et al. 10.3389/fmars.2023.1152236
2.4.3.1 Internal reference measurements

For many sensor technologies, a point-based local reference

measurement can be used to correct a model parameter. A zero-

point reference reading gives the system response in absence of any

measurement signal or external excitation. In practice such

reference measurements are tailored to specific measurement

technology. One example is the reference phase reading by use of

a red LED that does not produce fluorescence in the foil,

implemented in Aanderaa oxygen optodes (Aanderaa Data

Instruments AS, 2017). Another example is magnetic or Hall

sensors with internal reference measurements using internal chip

heaters (Schütze et al., 2018).

2.4.3.2 Redundant measurements at sensor node

Depending on the sensor node configuration, more than one

measurement of the same parameter may be carried out sufficiently

close, enabling pairwise verification by comparison. In deep sea

environments where battery power is a scarce resource, a variation

of such a test could be a duty-master configuration, commonly

found in metering stations for custody transfer of petroleum liquids

(Americal Petroleum Institute, 2016), (Skålvik et al., 2018). A high-

quality sensor, possibly with self-validation systems or biofouling

protection can be activated at defined intervals, providing reference

for validation of a (set of) regular sensor(s). Depending on the

measurement principle, the master sensor can be partially protected

from environmental wear and tear, thus prolonging the duration of

its status as a high-quality reference. It is a clear advantage if

different measurement technologies are used to obtain the

redundant measurement, reducing the risk of common-mode

errors such as uncorrected influencing environmental effects,

electronic or sensor element drift, among others.

For mobile sensing units, the “neighbor test” proposed in the

Argo manual for CTD Real time QC (Wong et al., 2022) is an

example of a redundancy-based test, modified to apply to

measurements with a certain distance in both space and time. In

the Drake Passage dataset, measurement data from two nodes

deployed close to each other provide redundant measurements

that can be monitored both by setting absolute difference

thresholds and by calculating running correlations between

measurements of the same variable. Note that the definition of

“acceptable close” depends on the variability of the environment, as

well as the targeted data quality in terms of uncertainty.
2.4.3.3 Analytic redundancy/modelling surrogates

If the measured quantity can be estimated from combining

measurements of other parameters, this estimate can be used as an

analytical redundancy or indirect reference measurement. One

example of this is the use of modeling surrogates presented by (Jesus

et al., 2017), corresponding to “model-based” method for fault

detection described in (Li et al., 2020) and (Gao et al., 2015).

(Mitchell, 2007) and (Zhu et al., 2021) propose “multi-sensor fusion”

to predict a sensor output and compare with the measured values.

Another example for validation of in situ measurements based on

redundant measurements and functional relationships, is described in
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both (Cullison Gray et al., 2011) and (Shangguan et al., 2022). They

showed that the relationship between pH and other carbon

measurements could be used for data quality control. Once again, a

thorough knowledge of the sensor technologies and environmental

dynamics is required for exploiting such analytical redundancies. One

challenge with this approach is to consider the different time-delays

between a change in the environment and change in sensor signal, as

well as the distance between the involved sensors, referred to as

sampling differences by (Cullison Gray et al., 2011).
3 Results – automatic tests for sensor
self-validation

In this chapter we start by presenting the studied data sets from

Deep Atlantic and Drake Passage, pointing out errors, outliers and

other anomalies which are identified as erroneous or suspicious by

manual inspection. We proceed to apply the automatic quality tests

recommended by established manuals as listed in chapter 2.4.1,

such as flat line/frozen values, spike/outlier, and rate of change,

leaving out the most basic range tests. We then show how tests

relying on correlations between different parameters as proposed in

chapter 2.4.2 can be carried out to identify possible measurement

errors related to low current speed and changes in mooring location

from pressure measurements, before we move on to a comparison

with redundant measurements on the same node and across nodes

as proposed in chapter 2.4.3.
3.1 Visual test performed manually as a
delayed mode quality control

Although there exist various software packages that can be used

to assist in the delayed mode quality control, one important step is

the visual identification of suspicious or clearly erroneous data.

Figures 1, 2 give an overview of the Deep Atlantic and Drake

Passage measurements. Table 3 summarizes the manual quality

control observations of the time series. Each distinct observation of

any suspicious or erroneous measurement is marked with a unique

number (Obs1, Obs2, Obs3 etc.), to enable tracing the observations

across the different manual and automatic tests.
3.2 Basic automatic quality tests

Figure 3 shows that the basic flat line test successfully identifies

many, but not all, of the Drake Passage conductivity measurements

that would be labelled as suspicious or stuck by a visual

inspection (Obs1).

Both the spike tests and rate of change tests, illustrated in

Figure 4 for Drake 136 oxygen concentration, label the spikes in the

oxygen concentration measurement as suspicious or erroneous.
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This corresponds to the manual/visual observation Obs4. We notice

from the figures that the test performances strongly depend on the

set thresholds and number of measurements used for calculating

thresholds based on standard deviation (further discussed in in

chapter 4.2). A combination of such tests could result in a more

robust performance, (further discussed in in chapter 4.3). Similarly,
Frontiers in Marine Science 09
Figure 5 shows that the automatic tests detect a strong dip in

Drake137 conductivity measurements in June 2010, corresponding

to the manual/visual observation Obs6. The best performing test

was a rate of change test with threshold set from the standard

deviation in the first month as proposed by (EuroGOOS DATA-

MEQ Working Group, 2010).
FIGURE 1

Overview of the Deep Atlantic measurements.
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3.3 Tests based on correlated parameters

Figure 6 shows Drake 136 measurements labelled for low

absolute current speeds measured at the same node. The figure

shows that a threshold on low currents can be used as a filter for

identifying suspicious measurements of oxygen concentrations, and

that most (but not all) of the manually observed “dips” in measured

oxygen (Obs4) are identified by this test.
Frontiers in Marine Science 10
Figure 7 show Drake 136 measurements labelled for high

pressure ranges (Obs2). The test shows that several periods with

changes in measured conductivity, increases in measured oxygen

concentration as well as changes in temperature measurements are

coinciding with increased pressure events. Such observations are

not evident from a purely visual delayed mode control. Figure 7 also

shows that all periods with measured absolute current speed above

≈35 cm/s are coinciding with increased pressure/depth. Even
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Overview of the Drake 136 and Drake 137 measurements.
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though these measurements are not necessarily faulty, they are not

representative for the intended environment/depth/location, and

the labelling is thus useful for filtering data prior to analysis.
3.4 Redundant measurements of the same
parameter

One example of verification by pairwise comparison on a typical

CTD-node may be temperature measurements performed by both the

conductivity sensor, pressure sensor, and on a dedicated temperature

sensor. A change in the deviation between temperature measurements

on the same node may be identified automatically on the node level,

either by setting a threshold on the absolute difference or on the

running correlation between the measurements.

Figure 8 shows that the difference between the Deep Atlantic

conductivity temperature measurement and temperature

measurements are above the set threshold for one specific data
Frontiers in Marine Science 11
point in April 2011, which corresponds to the manual/visual Obs5.

Figure 9 shows how a test based on the difference between Drake

136 and Drake 137 conductivity measurements can identify the

Drake 137 dip in conductivity (Obs6). Similarly, Figure 10 shows

how a test based on the difference between Drake 136 and Drake

137 measurements of oxygen concentration identifies many of the

manually observed “dips” (Obs4). Figure 11 shows a plot of the

difference between Drake 136 and Drake 137 oxygen

measurements, labelled for low currents measured at Drake 136,

showing that the periods with large differences between the two

nodes often correspond to periods with low current speeds. The

comparison of two measurements based on the same sensor

technology does however not detect the manually observed drift

in both Drake 136 and Drake 137 oxygen measurements (Obs3).

Figure 12 shows the running correlation between pairwise

conductivity measurements at the Drake 136 and 137 nodes. The

running correlation test identifies a strong dip in correlation between

the two datasets in the end of May 2010, corresponding to (Obs6).
TABLE 3 Summary of manual observations and automatic tests for labeling data.

Parameter Manual/visual observation Identifier Automatic test labelling observation

Conductivity Oscillations around a constant value at the end, potentially a variant of a
flat line error. (Deep Atlantic)

Obs1 Flat line test

Large dip in May 2010 (Drake 137), possibly due to animal occupying
conductivity cell.

Obs6 Spike + Rate of change tests + Rolling correlation Drake
136 and 137 conductivity measurements

Pressure Periods with important increases as the moorings are dragged down by
strong currents

Obs2 Range tests with carefully chosen thresholds.

Oxygen
concentration

Negative drift Obs3 Not detected

Periods with important “dips” Obs4 Spike + Rate of change tests + Multivariate test (absolute
speed vs oxygen concentration)

Temperature Outlier in the conductivity (Deep Atlantic) and pressure (Drake 136)
temperature measurements.

Obs5 Difference between redundant temperature
measurements
FIGURE 3

Result of flat line test on Deep Atlantic conductivity measurements. The tests identify many, but not all, of the Drake Passage conductivity
measurements that would be labelled as suspicious or stuck by a visual inspection (Obs1).
frontiersin.org

https://doi.org/10.3389/fmars.2023.1152236
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Skålvik et al. 10.3389/fmars.2023.1152236
4 Discussion

We will first evaluate how effective the automatic, real-time tests

described in 2.4 are for detecting the manual delayed-mode

observations. Then we discuss how knowledge of sensor

technology and deep-sea environments are important

prerequisites for designing tests and setting well-founded

thresholds. We proceed to discuss how tests can be combined to

allow for robust sensor self-validation. Furthermore, we argue that

limitations imposed by deep sea measurement systems must be

balanced against user requirements related to sampling frequency,

data availability and quality of measurement. We round off the

discussion by highlighting how the choice of sensor quality,

calibration frequency, sensor redundance and communication

requirements are case specific, before pointing to other data

analysis techniques that can be included in tests for sensor

self-validation.
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4.1 Comparison of manual and automatic
observations

Except for the observed drift of the measured oxygen

concentration (Obs3), the manual/visual observations of possible

measurement errors in the two studied datasets are found to be

detectable using automatic tests as long as thresholds and running

evaluation time period are set carefully.

For the Deep Atlantic dataset, the oxygen concentration did not

correlate strongly enough with any of the other measured variables

at the same node to determine if the measurand changes over time

or if the manually observed negative drift (Obs3) was related to the

sensing element or electronics. Similarly, comparison of the oxygen

concentration measurements in the Drake 136 and Drake 137

datasets did not reveal any systematic offset increasing with time.

Without information from post-deployment calibration, and only

based on the in situ measurements, it is not possible to evaluate if
A B

DC

FIGURE 4

Spike/outlier and rate of change tests, for oxygen concentrations measured at the Drake 136 node. (A) shows a spike/outlier test with absolute
thresholds 5 mM and 8 mM for suspicious and fail labels respectively. (B) shows a spike/outlier test with dynamic thresholds set as 3 times and 4 times
the standard deviation of the last 100 measurements for suspicious and fail labels respectively. (C) shows a rate of change test with dynamic
thresholds set as 3 times and 4 times the standard deviation of the last 500 measurements for suspicious and fail labels respectively. (D) shows a rate
of change test with a threshold based on the standard deviation of measurements in the first month. The tests identify many, but not all, of the
measurements that would be labelled as suspicious or stuck by a visual inspection (Obs4). Similar effects are observed for Drake 137.
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both sensors had approximately equal drift, or if the measured, slow

decrease in oxygen concentration was the true evolution of this

parameter. A calibration of the sensor upon retrieval can be used for

correcting the measurement drift (Koelling et al., 2022), but to

detect and correct for drift automatically, real-time and in situ, a

redundant measurement relying on a different technology

is required.
4.2 Knowledge of sensor technology and
the deep-sea environment – setting the
right thresholds

The most basic tests proposed in guidance documents and

manuals for (near) real-time quality control of oceanographic

measurements consist of checking if the measurement is inside

the expected range, based on location-specific statistics such as

maximum and minimum values, or more general limits based

on physical possible values. The other tests proposed by the
Frontiers in Marine Science 13
established oceanographic manuals such as spike, rate of change

and flat line tests, rely on setting well-adapted thresholds or

sensitivity limits, based on a minimum of sensor technology and

environmental knowledge.

For a flat line test, the expected temporal variation of the

measurand needs to be considered, as well as sensor sensitivity.

For spikes/outlier-detection, and rate of change tests on the other

hand, the choice of thresholds is less straight-forward and must be

customized for the specific technology and application. Compared

with absolute thresholds, dynamic thresholds may be an

improvement, but one still must choose a sensitivity level of the

detection algorithms. Too sensitive algorithms will result in alarm

noise, and too lenient algorithms will detect fewer of the

measurement errors.

If the standard deviation of a representative time period is

chosen as a basis for the dynamic thresholds, such a period should

ideally be identified automatically for sensors to be truly

autonomous. The number of measurements to include when

calculating such statistics must also be chosen with care.
A B

DC

FIGURE 5

Spike/outlier and rate of change tests, for conductivity measured at the Drake 137 node. (A) shows a spike/outlier test with absolute thresholds 0.5
mS/cm and 1 mS/cm for suspicious and fail labels respectively. (B) shows a spike/outlier test with dynamic thresholds set as 3 times and 4 times the
standard deviation of the last 100 measurements for suspicious and fail labels respectively. (C) shows a rate of change test with dynamic thresholds
set as 3 times and 4 times the standard deviation of the last 500 measurements for suspicious and fail labels respectively. (D) shows a rate of change
test with a threshold based on the standard deviation of measurements in the first month. The dip of approximately 2.5 mS/cm in June 2010 (Obs6)
is partially detected by the spike/outlier (A, B) and rate of change test with dynamic threshold (C), and fully detected by the rate of change test based
on the standard deviation of the first month of measurements (D).
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FIGURE 6

Drake Passage 136, measured oxygen concentration, labelled based on absolute current speed ranges. Most of the manually observed “dips” in
measured oxygen (Obs4) coincide with periods with low current speeds. Similar effects are observed for Drake 137.
A B

DC

FIGURE 7

Drake Passage 136 measurements of conductivity (A), current speed (B), oxygen concentration (C) and temperature measurements at the oxygen
optode (D), labelled based on pressure ranges (Obs2). A high-pressure threshold is set to 40 400 kPa and a low-pressure threshold is set to 40 100
kPa. Similar effects are observed for Drake 137.
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4.2.1 Environmental dynamics
When setting up tests, a thorough knowledge of both the

measurement technology and the expected environmental dynamics

(both physical and bio/geochemical) is a pre-requisite. Both spikes/

outliers and long-term drift in the measurement signal can be

representative of the measurand and should not uncritically be marked

as suspicious or erroneous, as illustrated by (Thomson & Emery, 2014).

The time-response of the sensor must be seen in relation to the expected

time-variability of the measurand/the environmental dynamics.
4.2.2 Measurement uncertainty

To avoid too many false negatives (correct measurements labelled

suspicious or erroneous), the intrinsic measurement uncertainty of

the sensor should be considered when designing tests. The sensor

repeatability, the underlyingmodel uncertainty, the uncertainty in the

calibration process; all these uncertainty contributions can be

combined to calculate the combined uncertainty of a measurement.

A method for estimating the combined uncertainties in measurement
FIGURE 8

Deep Atlantic temperature measurements, labelled based on
differences between temperature measurements at the pressure and
conductivity sensor, with a threshold for “Fail” at 0.05°C. The outlier
in the conductivity temperature measurement which can be
manually observed from a scatterplot in delayed mode (Obs5) is
identified by this test.
FIGURE 9

Drake 137 conductivity measurements, labelled based on differences
between redundant Drake 136 and Drake 137 measurements, with a
threshold of 0.2 mS/cm. The dip of approximately 2.5 mS/cm in
June 2010 (Obs6) is labelled as “Fail” by this test.
FIGURE 10

Drake 137 oxygen concentration measurements, labelled based on
differences between redundant Drake 136 and Drake 137
measurements, with a threshold of 5 mM. Many of the manually
observed “dips” in measured oxygen (Obs4) also result in a
difference between the redundant measurements above the set
threshold. Similar effects are observed for Drake 137.
FIGURE 12

Drake 137 conductivity measurements, labeled based on running
correlation (Pearson) over 500 measurements between redundant
Drake 136 and Drake 137 measurements, with a threshold of 0.8.
The dip of approximately 2.5 mS/cm in June 2010 (Obs6) is labelled
as “Fail” by this test.
FIGURE 11

Difference between Drake 136 and Drake 137 oxygen
measurements, labelled based on current speed.
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systems is detailled in (BIPM, 2008), and a very simplified application

of this method to in situ temperature measurements is proposed by

(Waldmann et al., 2022).

4.2.3 Intended use
Accurate or precise data, or high (enough) measurement quality

are ambiguous terms which may have very different meanings for

different applications and different users. One example is how the

effect of nearby animals can be perceived as unwanted spikes or

measurement noise for one user/application, masking the primary

measurand that user intended to measure. For other users primarily

interested in biological activity at the measurement site, such spikes

can provide valuable information. When data are labelled according

to well documented tests, and not deleted, it is easier for new users

to re-evaluate the data with a different application in mind. The

intended use of the measured data will also play a role when

choosing optimal thresholds (Jansen et al., 2021).
4.3 Combining tests

Each automatic test identified some, but not all, of themeasurements

which visually appear suspicious for a delayed mode inspector. A more

robust approach could be to run each test individually on the data set,

and then follow some logical rules for combining the different data labels.

A multistep solution could also be explored.
4.4 Finding the right balance

The quality control checks recommended in established best

practice and guidance documents are typically carried out after data

transmission but should in theory be possible to implement locally on

the observation equipment. When developing or adapting algorithms

for in situ self-validation and self-diagnostic, one must consider deep

sea constraints such as communication bandwidth, data processing

and power supply limitations. The optimal balance between

processing power for in situ quality assurance, battery usage for

communication of processed results or data harvesting using AUVs

will be very case-specific, but in general there are strong restrictions

on power usage, and methods should be chosen with care.

Some of the factors to consider when choosing an optimal self-

validation strategy:
Fron
• User requirement on data quality and communication

• Measurement resolution

•Transmission frequency

• Measurement uncertainty

• Tolerance against false positives or false negatives

• Sensor coverage/density

• Expected (spatial) variation of the parameter one intends to

measure
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• Energy consumption of internal signal analysis/treatment of

raw data

• Energy consumption of communicating with neighboring

sensor

• Sensor cost

• Sensor node battery capacity, CPU performance, memory
4.5 Possible other tests and methods for
automatic in situ quality control

4.5.1 Multivariate analysis
An extension of the tests proposed in chapter 2.4.2 is to

compare the measurement of more than two parameters and thus

take advantage of correlation over multiple dimensions.

4.5.2 Advanced signal analysis
The algorithms explored in this paper are examples of time-

domain signal-based analysis. (Gao et al., 2015) divides signal-based

fault diagnostic methods into time, frequency, and time-frequency

domain. A discrete Fourier transform, among others, can be used to

transform data from the time to the frequency domain. Different

methods for spectral analysis can then be applied, for instance

calculation of the spectral density and periodograms. (Lo Bue et al.,

2011) employed a spectral analysis to find that observed drops in

measured oxygen were not due to random noise, but had a

periodicity related to tidal effects. For systems where the

frequency spectrum varies over time, time-frequency analysis

methods can be applied for fault diagnostics (Gao et al., 2015).

4.5.3 Neural networks and machine learning
Machine learning can be used for quality control of ocean data

(Mieruch et al., 2021), and can be one solution to the challenge of

setting efficient thresholds. Based on a separate training dataset or a

running training period, the machine learning model will predict a

(range of) measurement values. If the discrepancy between the

predicted and measured data is higher than a dynamically adopting

threshold (see for instance (Blank et al., 2011)), the data will be

labeled accordingly. A self-learning method for fault-detection is

described in (Li et al., 2020), where fuzzy logic and historical data can

be used, provided that the modeler has knowledge of the system. A

more data-driven approach also described in (Li et al., 2020) is

pattern recognition. (Zhu et al., 2021) separate between self-detection

of faults, proposing Least Square Support Vector Machine and back

propagation neural network, self-identification of faults from

historical data using wavelet packet decomposition for feature

extraction, then decision tree algorithms and back propagation

neural networks for pattern recognition and classification. (Han

et al., 2020) proposes discrete wavelet transforms and grey models

for detecting sensor drift, but do not propose any method for

discerning between a trend in the measurand itself or an

instrument drift. Other methods have been proposed, for example

Bayesian calibration of sensor systems (Tancev & Toro, 2022).
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As the built-in data processing capacities of existing smart sensors

may in many cases not be sufficient to support artificial intelligence

algorithms such as machine learning, a dedicated microcomputer

installed locally on the sensor node could be an option.

4.5.4 Calibration through network
When several sensors or sensor nodes are operating over a

defined geographic location, wirelessly connected through a

(acoustic) network, it is possible to calibrate the sensors by

comparison with neighboring nodes. (Delaine et al., 2019)

separate between reference based and blind pairwise calibration,

and (Chen et al., 2016) shows how Data Validation and

Reconciliation can be used for calibration through networks.
5 Summary

Deep sea exploration and monitoring requires high-quality

measurement data from sensors deployed in harsh conditions.

Understanding of how sensors may be affected by the specific

environment, combined with knowledge regarding both the parameter

and correlations between different variables, are pre-requisites for setting

up automatic tests for in situ data quality control. In this paper we have

explored, basic range, flat line, spike/outlier, and rate of change tests as

proposed in oceanographic real-time quality controlmanuals, in addition

to more complex tests exploiting correlations between different

parameters measured on the same or neighboring node. Comparisons

between redundant measurements of the same parameter is particularly

useful, preferably between sensors based on different measurement

principles if the goal is to detect systematic drift.

Machine learning is a promising tool for automatic quality control

of measurement data, but simpler, more transparent algorithms are

worth investigating further. This is both due to the explainability and

traceability of simpler algorithms, but also due to computing, power,

and memory limitations for long time deployed sensors in remote

locations. As different tests may reveal different types of errors, logic for

combining the labels from a set of tests based on detailed knowledge of

the measurement system and environment, may enhance the sensors

self-validating and self-diagnosing properties. This is subject for future

work, together with further exploration of tests in the frequency

spectrum and time-series decomposition.

In the broader picture, transparent algorithms with well-

documented thresholds for in situ quality control can contribute

to increase the trustworthiness and decrease the uncertainty of

EOVs (essential ocean variables).
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