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Mexico from observing system
experiments and observing
system simulation experiments
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This study presents results from numerical model experiments with a high-

resolution regional forecast system to evaluate model predictability of the Loop

Current (LC) system and assess the added value of different types of observations.

The experiments evaluate the impact of surface versus subsurface observations

as well as different combinations and spatial coverage of observations on the

forecasts of the LC variability. The experiments use real observations (observing

system experiments) and synthetic observations derived from a high-resolution

independent simulation (observing system simulation experiments). Model

predictability is assessed based on a saturated error growth model. The

forecast error is computed for the sea surface height fields and the LC frontal

positions derived from the forecasts and control fields using two metrics.

Estimated model predictability of the LC ranges from 2 to 3 months.

Predictability limit depends on activity state of the LC, with shorter

predictability limit during active LC configurations. Assimilation of subsurface

temperature and salinity profiles in the LC area have notable impact on the

medium-range forecasts (2–3 months), whereas the impact is less prominent on

shorter scales. The forecast error depends on the uncertainty of the initial state;

therefore, on the accuracy of the analysis providing the initial fields. Forecasts

with the smallest initial error have the best predictive skills with reliable

predictability beyond 2 months suggesting that the impact of the model error

is less prominent than the initial error. Hence, substantial improvements in

forecasts up to 3 months can be achieved with increased accuracy

of initialization.

KEYWORDS
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1 Introduction

The Gulf of Mexico (GoM) marine basin provides significant

economic, ecological, and biological value. The Gulf provides 15% of

the total U.S. domestic oil and 1% of natural gas production (Zeringue

et al., 2022) with over 3,200 active oil and gas structures (NOAA NCEI

Gulf of Mexico Data Atlas, https://www.ncei.noaa.gov/maps/gulf-data-

atlas/atlas.htm?plate=Offshore%20Structures, accessed 23 January

2023). Accurate and timely forecasts of strong currents associated

with the energetic mesoscale features such as the Loop Current (LC)

and Loop Current eddies (LCEs) at the offshore production sites are of

great importance for oil and gas operations. Improved understanding

and predictive capabilities of the LC system have also major

implications for hurricane forecasts (Shay et al., 2000), oil spill

response and preparedness (Walker et al., 2011; Weisberg et al.,

2017), biogeochemical variability (Damien et al., 2021), sustainability

of fisheries (Weisberg et al., 2014; Selph et al., 2022), and forecasting

sargassum transport and harmful algal blooms (Gower and King, 2011;

Liu et al., 2016). The necessity of improved predictability of the LC

system from short-range (from a few days to a week) to long-range (3

months and longer) has been emphasized in a call to action by the

National Academies of Sciences, Engineering, and Medicine (NASEM,

2018). The importance of this problem has motivated the

Understanding Gulf Ocean Systems (UGOS) research initiative (part

of the NASEM Gulf Research Program) focused on improving our

knowledge and forecasts of the GoM circulation in spatial and time

scales useful for a broad community of stakeholders.

A modeling research project conducted by a consortium of

university researchers funded by UGOS Phase 1 (UGOS-1) has the

overarching goal to achieve greater understanding of the physical

processes that control the LC and LCE separation dynamics

through advanced data-assimilative modeling and analyses. One

of the objectives of the study is to examine the limits of

predictability of the LC system using multi-model forward

simulations. Several modeling groups conducted coordinated

experiments using different data-assimilative modeling systems to

test the performance and sensitivity of existing Gulf of Mexico

forecasting models and to evaluate long-range prediction

capabilities. The numerical experiments included Observing

System Experiments (OSEs) and Observing System Simulation

Experiments (OSSEs). OSEs apply existing observational data to

evaluate the sensitivity of a data assimilative system to different

types of observations and their combination (Fujii et al., 2019). In

OSSEs, synthetic observations derived from a realistic simulation

(“nature run”) are used as constraints in data assimilation systems

(Lahoz and Schneider, 2014).

The predictability of a model can be defined as the time extent

within which the true state can be predicted within some finite error

(e.g., Lorenz, 1965; Lorenz, 1984; Krishnamurthy, 2019). Many

metrics have been employed to measure the predictability (e.g.,

DelSole, 2004; Krause et al., 2005). In most studies, the

predictability is evaluated based on the square error or mean

square error between the predicted state and truth (Lorenz, 1965;

Lorenz, 1984; Dalcher and Kalnay, 1987; Oey et al., 2005). The

error-based measure of predictability follows a mathematical theory

of the growth of initial errors formulated by Lorenz (1965).
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According to this theory, the error of the forecast increases with

lead-time. The amplification factor of the error is not constant and

depends on the model parameters, the initial magnitude of the

error, as well as the system itself. Typically, forecast error growth

rate is largest at the beginning and then the magnitude of the

forecast error levels off, asymptotically approaching the limiting

value, called the saturation value. The saturation value is

comparable to the expected error of two randomly chosen states

of the system (Lorenz, 1965; Dalcher and Kalnay, 1987). This means

that when the forecast error approaches the saturation value, its

predictive skill is no better than any randomly selected state of the

system. The time taken to reach the saturation level has been used as

a measure of the predictability of forecasting systems (DelSole, 2004;

Krishnamurthy, 2019). Another measure of the model predictability

used in atmospheric forecasts is the doubling time of the errors (e.g.,

Charney et al., 1966; Lorenz, 1982). However, it has been shown

that this parameter is not a good measure of error growth and

predictability (e.g., Dalcher and Kalnay, 1987).

Some studies compare statistics derived from forecasts and

reference states to evaluate model predictive skill. For example,

Thoppil et al. (2021) compared RMSE computed from forecasts and

from a monthly mean climatology of ocean observations. This work

defined that the model has predictive skills if RMSE is lower than

RMSE from climatology data. In other studies, the predictability is

measured in terms of time when cross-correlation between the

forecast and observations drops below a threshold value (e.g., Latif

et al., 1998). Boer (2000) used cumulative scaled predictability

statistics derived from cross-correlation between the forecast and

observations to investigate the predictability of the coupled

atmosphere-ocean system on time scales of monthly to decadal.

The statistics were compared against threshold values to evaluate

model predictability. Many skill scores are referenced with respect

to persistence prediction or persistence (Mittermaier, 2008).

Alternatively, predictive skill scores can be referenced with

respect to a random forecast (Wilks, 2006) or climatology

(DelSole, 2004).

The type of predicted characteristics selected for evaluation of

the predictability dictates the choice of the metrics. In the GoM, the

shape and location of the LC and LCEs are the main predicted

characteristics. The model prediction skill assessment is performed

by comparing the LC/LCE frontal positions in the forecast and

control data set. In many studies, the LC/LCE fronts are defined

from the sea surface height (SSH) fields using a threshold value (e.g.,

0.17 m in Leben, 2005; 0.45 m in Zeng et al., 2015). Oey et al. (2005)

defined forecast frontal positions by contouring the 18°C isotherm

at 200 m. Dukhovskoy et al. (2015a) used SSH gradient field to

correct the first guess of the LC frontal position derived from the

SSH 0.17 m contour. Comparison of the contours or shapes requires

special metrics providing robust error estimates that measure

dissimilarity of the objects. Oey et al. (2005) used shortest

distance from the LC/LCE fronts to several locations in the Gulf

derived from the forecasts and observations to deduce the forecast

error in frontal position. This metric may provide an acceptable

measure of the model forecast skill for the predicted characteristic

defined as the shortest distance from the LC/LCE front to specific

locations. However, it does not provide information about the shape
frontiersin.org
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of the LC front. In theory, there are an infinite number of possible

LC/LCE shapes that will have identical distances to the specified

locations. To address this, Dukhovskoy et al. (2015b) tested five

metrics for contour and shape comparison and demonstrated that

the Modified Hausdorff Distance (MHD) method (Dubuisson and

Jain, 1994) exhibits high skill and robustness in quantifying

similarity between the objects. This metric has been successfully

applied for evaluation of model skill for simulating river plumes

(Hiester et al., 2016). There are other methods specifically designed

for contour comparison in geophysical applications that could

potentially be applied for LC/LCE frontal position skill

assessment (Goessling and Jung, 2018; Melsom et al., 2019).

For most of the documented GoM forecast systems,

predictability of the LC position is approximately 3–5 weeks (Oey

et al., 2005; Mooers et al., 2012). Forecasting a LCE separation event

is a challenging prediction task for GoM circulation models and its

predictability is on the order of a month (Mooers et al., 2012). It

should be noted that predictability estimates from other model

studies are not comparable when different measures of

predictability, predicted characteristics, reference state, and type

of control data sets are used. Also, predictability characterizes

predictive skills of the particular model used for prediction and

does not describe the predictability of the process being forecast,

although, the process determines the time scale of the model

predictability (Krishnamurthy, 2019).

This paper summarizes results of numerical experiments

performed using a high-resolution (~2.5 km) regional data-

assimilative system to systematically assess the impact of different

types of observations on the predictive time scale in the GoM. To

evaluate the impact of specific observations (SSH, temperature (T)

and salinity (S) profiles, etc.) on the predictive skills of the

forecasting system, we perform free-running (no data

assimilation) forecasts initialized from the runs that assimilate

real observations (OSEs) and synthetic observations derived from

a high-resolution independent simulation (OSSEs). Results of the

OSEs and OSSEs demonstrate the importance of minimizing the

error in the forecast initial fields for accurate forecasts. In its turn,

the accuracy of the hindcasts providing initial fields depend on

availability of observations and assimilation techniques.

The layout of the paper is as follows. Section 2 describes the

data-assimilative system and the methods for model skill

assessment. Then, results of the OSEs using various combinations

of observations are presented in section 3. In section 4, we use

OSSEs and a nature run to further assess the predictability of the

forecasting system. Finally, the results are discussed and

summarized in section 5.
2 Model configuration, nature run,
and metrics

2.1 The 1/32.5° intra-American seas
HYCOM-TSIS

A regional configuration of the HYbrid Coordinate Ocean

Model (HYCOM; Bleck, 2002; Chassignet et al., 2003; Halliwell,
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2004) is used for the data-assimilative OSEs and OSSEs. The

computational grid has uniform 1/32.5° horizontal spacing (~2.5

km) between 98.08°W and 56.08°W and 7.03°N and 31.93°N

(Figure 1). The Intra-American seas (IAS HYCOM) domain

includes the GoM and the Caribbean Sea. This configuration

keeps the open boundaries away from the Gulf reducing the

boundary effect on the numerical solution in the GoM, which is

the study region. The model bathymetry is a combination of global

1-arc-min ocean depth and land elevation from the U.S. National

Geophysical Data Center (ETOPO1; https://www.ngdc.noaa.gov)

and the 15-arc-second General Bathymetric Chart of the Oceans

(GEBCO; ht tps : / /www.gebco .ne t /da ta_and_products /

gridded_bathymetry_data/) 2020 grid with local corrections in the

Gulf of Mexico. The model employs 30 vertical hybrid layers with

potential densities referenced to 2000 db and ranging from 27.10 to

37.17 sigma units. The model is forced with NCEP CFSR and CFSv2

atmospheric fields of air temperature and specific humidity at 2 m,

surface net short- and long-wave radiation, precipitation, and 10 m

wind stress. Monthly climatological river discharge is prescribed at

all major rivers resulting in a negative salt flux at the river sources. A

combination of Laplacian and biharmonic mixing is used for

horizontal momentum diffusion. The mixing is specified in terms

of diffusion velocity, that is 2.86×10-3 m s-1 for Laplacian

momentum dissipation, 5.0×10-3 m s-1 for scalar diffusivity, and

0.01 m s-1 for biharmonic momentum dissipation and layer

thickness diffusivity. The K-profile parameterization (KPP; Large

et al., 1994) is used for vertical mixing with default values.

For data assimilation of the observations in HYCOM, we use

the Tendral Statistical Interpolation System (T-SIS) version 2.0. The

interpolation algorithm is based on the Kalman filtering approach

with a novel technique for solving the least squares normal

equations. The suggested solution uses the information matrix

(inverse of the covariance matrix), which significantly reduces

computational complexity of calculation of the filter gain matrix.

Details of the parameterization of the inverse covariance using

Markov random fields are in Srinivasan et al. (2022). In the

numerical experiments presented here, different types of

oceanographic fields are assimilated as discussed in sections 3 and

4 (OSEs and OSSEs, respectively). All experiments consist of data-

assimilative hindcasts simulations (analysis) followed by 3-month

free-running forecasts initialized from the analysis fields at

specified times.
2.2 OSSE nature run

In the OSSE hindcasts (section 4), synthetic observations,

derived from another simulation, the so-called nature run (NR),

are assimilated in the forecasting system. The NR model is chosen

to perform the most statistically realistic simulation of the ocean as

possible. The NR should be an unconstrained simulation performed

at high resolution using a state-of-the-art general circulation model.

For OSSEs to be credible, it is essential that the NR provides the

most accurate possible representation of the true system, that is,

possess a model climatology and variability with statistical

properties that agree with observations to within specified limits.
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Here, the NR solution is provided by a GoM simulation performed

with the Nucleus for European Modeling of the Ocean program

(NEMO.4.0; Madec et al., 2017) ocean model at Centro de

Investigación Científica y de Educación Superior de Ensenada

(CICESE, Mexico). This model is configured on a 1/108°

horizontal grid (~900 m spatial grid spacing) with 75 vertical

levels. The model domain is shown in Figure 1 with the dashed

red lines. The NR is initialized from the 1/12° GLORYS12 global

reanalysis (Lellouche et al, 2021) and is integrated using boundary

(surface and lateral) forcing and no assimilation for the period from

1 January 2009 to 31 December 2014. The lateral boundary

conditions are derived from the GLORYS12 reanalysis. At the

surface, the atmospheric fluxes of momentum, heat and

freshwater are computed by bulk formulae using the COARE 3.5

algorithm (Edson et al., 2013). The model is forced with the

Drakkar Forcing Field (DFS5.2) atmospheric fields product

(Dussin et al., 2016) which is based on the ERA-interim

reanalysis and consists of 3-hour fields of wind, atmospheric

temperature and humidity, atmospheric pressure at the sea level,

and daily fields of long, short wave radiation and precipitation.
2.3 Metrics, forecast predictability, and
skill assessment

The performance of the data-assimilative runs and forecasts is

assessed by two metrics: the root mean square error (RMSE) and the

MHD. Both metrics quantify the disagreement between the forecast

and the true state and can be used as a measure of predictability and

skill assessment of the model simulation.
Frontiers in Marine Science 04
2.3.1 The root mean square error
The RMSE is computed to quantify the difference between

spatial distributions of a scalar field from the simulation and the

control run, and is computed as

ERMSE = on
i=1(xi − ~xi)

2

N

� �1=2

, (1)

where xi is scalar value at the i
th point in the simulation and ~xi is

the value at the corresponding point from the control data field. The

comparison is performed for spatial fields; in this case, i is the grid

point index. The RMSE provides a quantitative estimate of the

overall agreement between two fields (a forecast and a control field)

based on a statistical score (eq. 1). However, for the purposes of this

study, more precise assessment of a model run was needed to

evaluate the model skill in predicting the LC system in terms of the

LC position and shape; therefore, a topological metric, the MHD, is

also employed.

2.3.2 Modified Hausdorff distance of the loop
current front

There are two steps in this skill assessment approach. First, the

contours representing the LC and LCE fronts are derived from the

SSH fields of a tested simulation and control data (e.g., control

model run, altimetry gridded data) following Leben (2005) and

Dukhovskoy et al. (2015a). Second, the MHD score (DMHD) is

computed for the two contours considered as sets of points (A

and B)

DMHD(A,B) ≡ max
1
Aj joa∈Ad(a,B),

1
Bj job∈Bd(A, b)

� �
, (2)
FIGURE 1

Bathymetry map of the computational domain of the 1/32.5° IAS HYCOM-TSIS forecast modeling system (yellow dashed box) nested within the
outer model. In OSEs, the domain is nested into the 1/12.5° Global HYCOM reanalysis (GOFS3.0). In OSSEs, the domain is nested into the 1/12°
GLORYS reanalysis. The red dashed lines delineate the outer boundaries of the NEMO domain providing the nature run fields. The orange bullets in
the eastern GoM indicate PIES locations. The Yucatan Channel (YC) and the Florida Straits (FS) are indicated. The red line designates location of the
vertical section of the mean along-channel velocities shown in Figure 4.
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where |A| and |B| are the cardinality of sets A and B, d(a,B) ≡
min
b∈B

 d(a, b) and d(A, b) ≡ min
a∈A

 d(a, b). Next, the MHD scores are

used for evaluating the predictability skills of the forecast compared

to control data. Identical LC frontal positions result in zero MHD.

The MHD score increases as the two contours (i.e., the LC frontal

positions) become more dissimilar. The MHD units depend on the

positional units or can be unitless (normalized distances, for

instance). Here, MHD is in km for ease of interpretation.

While MHD is a robust objective metric, measuring

dissimilarities in two-dimensional and which can be generalized

to N-dimensional fields (Dukhovskoy et al., 2015b), different

definitions of the LC front may result in different contours

impacting the MHD score and model skill assessment. This is

particularly true during LCE detachment and reattachment when

the LC shape drastically changes within several hours. As an

illustration, the daily mean SSH fields from the NEMO NR and
Frontiers in Marine Science 05
one of the HYCOM OSSE forecasts are shown for two consecutive

dates (Figure 2). The LC front is defined using the 17-cm contour of

demeaned SSH shown with the red lines in the upper and middle

panels. The bottom panels show the two contours representing the

LC fronts from the control field (NR) and the forecast and the MHD

score is computed for these contours. At the end of the 3-month

HYCOM forecast, the LC shapes from the NR truth and the forecast

are notably dissimilar. Yet, there is some agreement in the

positioning and size of the LC on April 9, 2012. Between April 9

and the following day, the LC sheds an eddy in the forecast, but not

in the NR (Figure 2B). If one were to adopt a definition of the

contours that only include the LC, this would result in a drastic

increase of the MHD score (or decrease in the prediction skill) for

the forecast because the LC is in the retracted position whereas it is

in the extended position in the NR. In many cases, a LCE reattaches

the LC several days later now causing a sudden decrease in the
A B

FIGURE 2

The SSH fields and the LC/LCE fronts from the NEMO NR (top row) and one of the 1/32.5° IAS HYCOM OSSE forecasts (middle) for April 9, 2012 (left
column, A) and April 10, 2012 (right column, B). The red lines indicate LC/LCE fronts defined as the 17-cm contours of the demeaned SSH. The
bottom panels show the LC/LCE fronts used for the MHD calculation with the MHD score listed. For the NR, only LCEs that are in the east of 90°W
are considered for the MHD (the eddies that are in the shaded area are ignored). For (B), the two MHD scores of the forecast (blue) are given: for the
LC front only and the LC with the LCE fronts combined.
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MHD score. In this study, the prediction skill is assessed for the

whole LC system that includes LCEs that are within a certain

distance to the LC (somewhat similar to Oey et al., 2005). The

definition of the predicted characteristics would be different if the

predictability of the shedding event were the main focus of

this study.

To mitigate the impact of LCE detachment and reattachment on

the MHD score, keeping in mind that the focus of the experiment is

on the frontal locations for the entire LC system (including eddies)

rather than the timing of the LCE shedding, the following approach

is used to define the fronts for MHD skill assessment. An automated

algorithm tracks the LC and LCEs in the SSH fields similar to

Dukhovskoy et al. (2015a). LCEs west of 90°W are discarded

(shaded region in Figure 2). For other LCEs, the MHD is

computed for all possible combinations of the LCEs (including

none) with the LC both for the forecast and the control fields. Then

the best (smallest) MHD score is selected. For the case presented in

Figure 2B, the combination of the LCE contour with the LC from

the forecast yields a smaller MHD score than for the LC alone (53 vs

131.3 km) and, therefore, both the LCE and LC contours from the

forecast versus the LC contour from the control field are used

for MHD.

2.3.3 Assessment of predictability
As mentioned above, two metrics, RMSE and MHD, are used to

evaluate the model predictability. The predictability is considered to

be lost when the RMSE is comparable to the saturation value.

Sensitivity testing of the MHD metric conducted by Dukhovskoy

et al. (2015b) demonstrated that the MHD linearly responds to the
Frontiers in Marine Science 06
linearly increasing error in the shape. Therefore, the idea of

saturation value is also applicable to the MHD metric meaning

that the MHD score will increase as the dissimilarity between the

forecast and the control frontal position, due to forecast error,

increases approaching the saturation value. Note that an agreement

between the RMSE and MHD scores is expected, however the MHD

evaluates only the LC and LCE shapes, whereas RMSE provides a

spatially average score for the whole GoM and is less sensitive to

mismatch in the LC frontal position in the forecast and the

control data.

In order to assess predictability of the forecast system, RMSE

and MHD scores are compared against the saturation values. The

estimates of the RMSE saturation value (RMSE∞) and MHD

saturation value (MHD∞) are derived from the SSH fields of the

NEMO NR for 2010 and 2012 (Figure 3). The randomly selected

fields are at least 90 days apart from each other to avoid similar

states of the SSH. The distributions of RMSE∞ and MHD∞ are

symmetric and close to normal with similar mean and median.

Following Dalcher and Kalnay (1987), 95% of the estimated

saturation values (RMSE∞ = 0.178 m and MHD∞ = 66.3 km) are

used in our analysis of the forecast experiments for predictability

assessment. The estimated RMSE∞ agrees well with that of Zeng

et al. (2015) who used a threshold value of 0.7 for spatial correlation

coefficients of predicted and observed SSH to evaluate prediction

skill of the forecasts. According to Zeng et al. (2015), the spatial

RMSE of SSH exceeded RMSE∞ for the forecasts with spatial

correlation <0.7 (Figure 3 in Zeng et al., 2015).

Model forecast skill is defined as forecast performance relative

to the performance of a reference forecast demonstrating added
A

B

FIGURE 3

Statistics of the RMSE and MHD scores characterizing the saturation value. (A) Distribution of the RMSE between two randomly selected SSH fields
form the NEMO NR. (B) Distribution of the MHD scores calculated for the LC/LCE fronts derived from randomly selected SSH fields from the NEMO
NR. At the upper part of the diagrams, the median and IQR with the values are shown. The dashed white line is the expected value with the value
listed at the top.
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value of the forecast (Mittermaier, 2008). If the state of the system at

time t is X(t), where X ∈ Rn, then persistence prediction at lead

time t is  X(t + t) = X(t). In our case, persistence is the initial fields

of the forecast simulation. Persistence is a useful comparison of the

model skill that provides measure of added value relative to some

benchmark. However, no conclusion on predictability of the

forecast system can be usually drawn from this. Also, skill

assessment depends on the choice of the benchmark as a

reference state (Niraula and Goessling, 2021).
3 Observing system experiments

In this first series of the experiments (OSEs), the IAS HYCOM

is nested within the 1/12.5° global HYCOM reanalysis GOFS3.0

(Metzger et al., 2014) and hindcasts of the GoM state during the

time period from 2009 through 2011 are performed using

observational data for constraining the numerical solution used

for the forecasts. The OSEs assimilate sea level anomaly (SLA)

derived from the satellite altimetry observations (AVISO L3 along-

track data downloaded from https://www.aviso.altimetry.fr/en/

data/products/sea-surface-height-products/global.html), gridded

sea surface temperature (SST) fields provided by the Group for

High Resolution Sea Surface Temperature (GHRSST, downloaded

from https://www.ghrsst.org), and temperature and salinity profiles

derived from Argo floats (downloaded from https://usgodae.org/

argo/argo.html) and pressure inverted echo sounders (PIES,

available at http://www.po.gso.uri.edu/dynamics/dynloop/

index.html) observations collected during the Dynamics of the

Loop Current in the U.S. Waters Study from April 2009 to

November 2011 (Donohue et al., 2016a). The array consisted of

25 PIES (locations shown in Figure 1), nine full-depth moorings

and 7 short near-bottom moorings. Three LC eddies were shed

during 2009-2011 ("Ekman" in July 2009, "Franklin" in May 2010,

and "Galileo" in June 2011 based on Horizon Marine denomination;

https://www.horizonmarine.com/loop-current-eddies). The

Dynamic of the Loop Current in the U.S. Waters Study

observations provide temperature (T) and salinity (S) profiles at

mesoscale resolution (30–50 km) within the region spanning 89° W

to 85° W, 25° N to 27° N. Vertical profiles of T, S, and density were

reconstructed from PIES observations using empirically-derived

relations between the round-trip acoustic travel times of the

sound pulse emitted from the PIES and historical hydrography

(Hamilton et al., 2014; Donohue et al., 2016b). To increase the

number of satellite tracks over the GoM and improve the

assimilation, the assimilation algorithm used 4-day composite

satellite tracks (Envisat, Cryosat, Jason 1 interleaved, and Jason 2)

within the domain.
3.1 OSE assimilative hindcasts

Most of the information about the ocean state assimilated into

the analysis is derived from the ocean surface fields that are readily

observed by remote-sensing instruments. Assessment of the

influence of subsurface fields assimilated into the models on the
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LC predictability was one of the UGOS-1 main research objectives.

Particularly, the focus was on the PIES observations that provide

information about subsurface ocean fields in the LC region

(Figure 1). To evaluate the added values of the subsurface T/S

profiles, two OSEs are conducted using the 1/32.5° IAS HYCOM-

TSIS: with and without T/S profiles derived from PIES observations

with all other observational fields being assimilated (SLA, SST,

and Argo T/S profiles). The OSE hindcasts are compared against the

1/12° global HYCOM reanalysis GOFS3.0 (0.08GLB; https://

www.hycom.org/dataserver/gofs-3pt0/reanalysis) and the 1/25°

Gulf of Mexico HYCOM reanalysis (0.04GOM; https://

www.hycom.org/data/gomu0pt04/expt-50pt1 ).

The simulated Yucatan volume transport averaged over 2009–

2011 is similar in the HYCOM-TSIS OSEs (25.3 Sv with PIES and

25.1 Sv with no PIES) and is only slightly lower than in the 0.08GLB

(26.1Sv) and 0.04GOM (25.8 Sv; Figure 4A). The long-term (> 3

months) variability of the transports from the OSE analyses

compares well with the reanalysis estimates. This result is

expected because the low-frequency variability and the mean

Yucatan transport is mostly controlled by the lateral BCs (derived

from 0.08GLB). There is a bigger spread in the daily volume

transport estimates from the hindcasts and the reanalysis data.

The higher-frequency variability is due to local dynamics such as

Caribbean eddies propagating along the Yucatan Channel (Murphy

et al., 1999; Abascal et al., 2003) and changes in the intensity and

position of the currents and countercurrents (Sheinbaum et al.,

2002). These processes are less controlled by the BCs in the

HYCOM-TSIS where domain boundaries are far away from the

Yucatan Channel.

The characteristics of the Yucatan Channel flow derived from the

OSE analysis and the reanalysis fields are in good agreement

(Figure 4A). The flow structure captures major features of the flow

(Figures 4B–E) reported from observations (e.g., Sheinbaum et al.,

2002; Abascal et al., 2003). The strong Yucatan current flows

northward with the core located in the upper western part of the

channel with speeds exceeding 1 m s-1. Along the eastern side, there is

a strong surface Cuban Countercurrent. Interestingly, the Cuban

countercurrent in the HYCOM-TSIS OSEs (Figures 4B, C) is stronger

(about 0.2 m s-1) than in both reanalyses (about 0.1 m s-1, Figures 4D,

E). Reported mean speeds in the Cuban Countercurrent exceed 0.2 m

s-1 (Abascal et al., 2003), but it has a large interannual variability

(Sheinbaum et al., 2002). Deep undercurrents in the western and

eastern sides of the channel are also present in the simulations. The

Yucatan Undercurrent – the outflow that follows the Yucatan slope

between 800 m and the bottom – is only weakly pronounced in the

0.08GLB reanalysis (Figure 4D), but is notable in the OSEs and

0.04GOM reanalysis.

The root mean square error (RMSE) is computed between the

SSH fields derived from the OSEs (“PIES” and “noPIES”) and from

the 0.04GOM reanalysis (Figures 4F, G). From a visual inspection,

the impact of the assimilated T/S profiles derived from PIES

observations on the SSH is more notable in 2009 and 2010, and

less in 2011. For both OSEs, the RMSE has comparable values and

spatial distribution over the GoM. During all years, the RMSE of the

OSEs is low (<0.1 m) over the most of the domain, but increases (up

to 0.2 m) in the eastern GoM over the LC region. In this region, the
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OSEs exhibit some differences. In 2009 and 2010, the “noPIES”OSE

has elevated RMSE in the middle of the LC region (between 22°N

and 26°N) that is smaller in the “PIES” OSE. This is the region

where LC “necking” occurs before the LC sheds an eddy, the so-

called “necking-down” separation (Vukovich and Maul, 1985;

Zavala-Hidalgo et al., 2003). Presumably, assimilating PIES

observations improves the LC behavior in this region, although

the PIES sites are located farther north (Figure 1). In 2011, the

“noPIES” OSE has slightly lower RMSE in the LC region compared
Frontiers in Marine Science 08
to the “PIES” OSE. Spatial RMSE of the SSH in the OSE analysis

runs is comparable for all years (Figure 4H).
3.2 OSE forecasts

Added value of the PIES T/S profiles to the predictability of the

LC system is investigated in 3-month forecast simulations

initialized from the “PIES” and “noPIES” OSE hindcasts. The first
A

B C D E

F

G

H

FIGURE 4

(A–E) Flow characteristics in Yucatan Channel from the 1/32.5° IAS HYCOM-TSIS OSEs, 0.08° Global HYCOM+NCODA reanalysis (0.08GLB), and
0.04° Gulf of Mexico HYCOM+NCODA reanalysis (0.04GOM). (A) Yucatan daily volume transport estimates (Sv). The mean volume transports over
2009–2011 are listed in parenthesis in the legend. On the right, RMSE (Sv) of the daily Yucatan transport estimates relative to the 0.08GLB is given.
Vertical section of the mean along-channel velocity component (m s-1, positive northward) in the Yucatan Channel from: (B) the 1/32.5° IAS
HYCOM-TSIS OSE with PIES T/S profiles assimilated in the hindcast; (C) 1/32.5° IAS HYCOM-TSIS OSE without PIES T/S profiles; (D) 0.08GLB
reanalysis; (E) 0.04GOM reanalysis. In (B–E), the horizontal axis is the eastward distance (km) along the section (the Yucatan Shelf is on the left), the
vertical axis is depth (km). (F) Annual RMSE between SSH (m) from the OSE analysis runs with assimilated PIES T/S profiles and from the 0.04GOM
reanalysis for April 2009 – November 2011 (time interval of the PIES observations). (G) Same as (F) but OSE with no PIES T/S profiles. (H) Median and
IQR of the RMSE from “PIES” and “noPIES” OSEs by years.
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3-month forecast starts on May 1, 2009. The other 3-month

forecasts are performed at a one-month interval until December

1, 2010, providing twenty 3-month forecasts for each OSE (“PIES”

and “noPIES”). The predictive skill of the forecasts is then evaluated

based on the RMSE of the daily SSH and the MHD of the LC and

LCE contours derived from the forecast daily SSH fields. The

forecasts are compared against the 0.04GOM reanalysis.

In both forecast groups, the RMSE increases with time as the

forecasts’ accuracy degrades (Figure 5). The most prominent

increase of the RMSE is in the LC region and the error is larger

in the forecasts initialized from “noPIES” OSE. The growth rate of

the mean RMSE is faster during the first several weeks and then

slows down as the error approaches the saturation value

(Figure 6A), in agreement with the forecast error theory (Lorenz,

1965; Dalcher and Kalnay, 1987). There is a wide spread in the

RMSE estimates across the individual forecasts because of the

spread in the initial error. Larger errors grow faster resulting in

the lower predictive skills and shorter predictability of the forecasts.

The monthly mean RMSE in Figures 5, 6B shows that the

forecasts initialized from the OSE assimilating PIES T/S profiles

perform slightly better than the “noPIES” forecasts. The median

(and the mean) RMSE is less than RMSE∞ indicating that most

forecasts from both groups have not lost predictability by the end of

the 3rd month of the forecast cycle. A higher percentage of the

“PIES” forecasts retain predictability by the end of the forecast cycle

(almost 75% “PIES” vs ~63% “noPIES”) suggesting added value of

subsurface T/S profiles from PIES assimilated in the OSE analysis.

Compared to the persistence RMSE, the forecasts from both groups

have similar ratio to persistence skills in the 1st month. In the 2nd

and 3rd months, the RMSE of the forecasts is lower than persistence.

Our OSE forecasts demonstrate longer predictability when
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compared to the results of Zeng et al. (2015) where the number

of forecasts that failed to pass the threshold value for skillful

prediction quickly increased after 4 weeks. In the OSE forecasts,

>75% of “noPIES” forecasts possess predictive skills by the end of

the 2nd month of the forecast window.

Similar to RMSE, the MHD scores increase with lead time due

to degrading accuracy of the forecasts in predicting the LC front

(Figure 6C). The growth rate of mean MHD is slower for “PIES”

forecasts than for “noPIES” but in both cases, the mean does not

exceed MHD∞ during the 3-month forecast time. Statistics (the

median and the IQR) of the MHD scores indicate similar skills in

predicting the LC front for both “PIES” and “noPIES” forecasts

groups during the 1st month (Figure 6D). The difference between

the MHD scores for two forecast groups increases in the 2nd and 3rd

months with “PIES” forecasts on average demonstrating better

skills. In contrast to the RMSE, more forecasts from both groups

(>75% “PIES” and ~70% “noPIES”) still possess predictability by

the end of the 3rd month. Both forecasts groups barely outperform

persistence in predicting the LC front during the 1st month, but

have markedly better skills in the following months.
4 Observing system
simulation experiments

In the second series of the experiments (OSSEs), the IAS

HYCOM solution is relaxed to the GLORYS12 reanalysis outside

of the GoM NEMO NR domain to provide a similar ocean state to

that of NEMO along the NEMO domain. In the OSSE hindcasts, the

assimilated fields are subsampled from the NR (section 2.2) in a

similar fashion to that of the observations (existing or projected), i.e.
A

B

FIGURE 5

Monthly mean RMSE between daily SSH (m) from the OSE 3-month forecasts in 2009–2010 and from the 0.04GOM reanalysis. The forecasts
initialized from the OSE with PIES T/S profiles (top row, A) and the OSE with no PIES T/S profiles (bottom row, B). The RMSE is averaged by the
forecast months (in columns), so that the monthly statistics are derived from roughly 30 days of 20 forecasts.
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at the same locations and with the same temporal and spatial

frequencies. In this series of experiments, the OSSEs are carried out

to assess added value of different types of observations, their

location and spatial coverage to the predictability skills of the

forecasting systems. During the OSSEs, the nature run solutions

are sampled at the space-time locations of satellite SST

measurements, along-track SSH, and PIES T/S profiles to form

daily synthetic observations for assimilation into the numerical

solutions. These OSSEs address the following objectives: (1) assess

the sensitivity of the forecasts to the various types of observations

currently available; (2) evaluate added value to the forecasts from

proposed new types of observations or expansion of observing sites

in the eastern GOM; and (3) evaluate predictability of the LC system

for idealized cases when the information about the true state is

unlimited resulting in smaller error between the true state and

analysis. Two time periods representing active and stable LC states

are selected from the NR for the OSSE data assimilative hindcasts.

During the first time period, June–September 2011, the shape of the

LC changes considerably during several detachments and

reattachments of the LCEs. By contrast, the LC exhibits small

variability with one LCE reattachment during the second time

period, January–May 2012. Note that the model states during

these time periods do not necessarily represent the true ocean

states because the NR is free-running and not data assimilative.
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4.1 Design of the OSSE hindcasts

To address the objectives of the OSSEs, nine hindcasts were

performed with different set of NR fields assimilated into the 1/32.5°

IAS HYCOM-TSIS (Figure 7). The OSSEs can be combined into 3

main groups, following the objectives. The first group of hindcasts

(Figures 7A–D) assimilate types of observations commonly used in

the operational GoM forecasts as well as the PIES observations that

are currently being evaluated for delivering data in near-real-time.

Hindcast “AVISO-PIES-SST” represents the case with the most

complete set of synthetic observations including 4–day composite

SLA from AVISO swath data, T/S profiles from PIES, and SST from

GHRSST gridded fields (Figure 7D). Hindcasts “AVISO-PIES”,

“AVISO”, and “AVISO-1” assimilate reduced information:

withheld SST (Figure 7C), no T/S profiles and no SST

(Figure 7B), SLA from only 1 satellite (Figure 7A).

The second group of OSSE hindcasts evaluates the added value

of assimilating additional T/S profiles provided by expanded PIES

arrays in the LC region (hindcast “AVISO-extdPIES-SST,

Figure 7E). The expansion of the PIES and mooring sites in the

eastern GOM for better observation of the LC and LCE was

proposed at the time of UGOS-1. This experiment is similar to

hindcast “AVISO-PIES-SST” (Figure 7D), except for the additional

PIES T/S profiles that are assimilated during the hindcast.
A

B

C

D

FIGURE 6

(A, B) RMSE (m) between SSH from the forecasts initialized from the “PIES” and “noPIES” OSE analysis runs and SSH from the 0.04GOM reanalysis. (A)
RMSE of the individual 3-month forecasts (light blue) and corresponding persistency prediction (grey lines). The bold blue line is the mean RMSE
over all individual forecasts. The black is the mean RMSE of persistency forecasts. The horizontal red line indicates RMSE∞ (95% of the saturation
value). (B) The median (the colored bars) and the IQR (the black vertical lines) of the RMSE. The RMSE are grouped by the forecast months. The grey
bullet and the vertical lines indicate the median and the IQR of the RMSE between the persistence and the 0.04GOM reanalysis. (C, D) MHD scores
(km) of the OSE forecasts. The MHD is computed for the LC/LCE fronts derived from the SSH fields of the OSE forecasts and the 0.04GOM
reanalysis. (C) MHD scores of the individual 3-month forecasts (light blue) and corresponding persistency prediction (grey lines). The bold blue line is
the mean MHD over all individual forecasts. The black is the mean MHD of persistency forecasts. The horizontal red line indicates MHD∞. (D) Median
(bars) and the IQR (the black vertical lines) of the MHD scores of the OSE forecasts grouped by the forecast months. The grey bullet and the vertical
lines indicate the median and the IQR of the MHD of the persistence.
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The last group combines idealized cases when unlimited

information is available for constraining the 1/32.5° IAS HYCOM

simulation. In hindcast “FULL-SSH”, complete information about

the sea surface height (SLA from the NR) is provided to the data

assimilation algorithm (Figure 7F). In the two other hindcasts

(“TS30-SST” and “TS60-SST”), only subsurface T/S fields and SST

are assimilated and no SLA fields are used. For these hindcasts, the

T/S profiles are derived from the NR at every 30th (Figure 7G) and

60th (Figure 7H) NEMO grid points in the GoM. Thus, the two

hindcasts differ in the density of T/S profiles over the GoM.

The last hindcast (“NEMO-INT”) represents a highly idealized

case imitating a perfect assimilation of the 3D ocean state into the

forecasting system. There are two sources of errors contributing to

forecast error: errors in the initial conditions and errors associated

with numerical models used in the forward simulation. In

complex forecast systems, these two components cannot be

easily separated. One practical way for doing this is to provide

perfect initial conditions and evaluate the forecast error growth. In

order to substantially reduce the uncertainty in the predictive

skills of the model due to errors in the data assimilation process,

the NEMO fields are directly interpolated into the 1/32.5° IAS

HYCOM horizontal grid and vertical layers. Outside the NEMO

domain (Figure 1), the GLORYS12 fields are interpolated onto the

IAS HYCOM grid. This approach significantly reduces the error of

the “analysis” (demonstrated in the following section) providing

the best possible initial state for the OSSE forecast experiments.

Therefore, this experiment provides an estimate of the best
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predictive skill for this configuration of the 1/32.5° IAS

HYCOM if a perfect initial state could be provided by the

analysis. Validation of the SSH, subsurface T/S fields, and the

LC frontal position have shown a very close match of the

interpolated fields to the NR. Hindcast “NEMO-INT” is not a

true analysis run and it is therefore not discussed in the OSSE

hindcasts section 4.2. The forecasts initialized from the

interpolated NEMO fields are analyzed and compared to the

other OSSE forecasts.
4.2 Analysis of the OSSE hindcasts

4.2.1 RMSE analysis
The RMSE is calculated from the daily SSH fields derived from

the HYCOM analysis and NR and averaged over 2011–2012

(Figure 8A). The RMSE maps show conspicuous differences in

the OSSEs depending on the amount of information assimilated in

the analysis. As expected, the hindcast with the lowest quantity of

information (“AVISO-1” using experiments’ notations in Figure 7)

demonstrates the poorest performance with high RMSE over the

GoM compared to other OSSEs. Whereas, the “TS30-SST” forecast

with the most complete set of T/S profiles has the best performance

with the overall lowest RMSE. The hindcast “TS60-SST” that

assimilates T/S profiles with the coarser spatial coverage (half of

“TS30-SST”) has comparable RMSE scores, but the error is elevated

along the eastern side of the LC.
FIGURE 7

Design of the OSSEs. The maps show data fields assimilated into the OSSE hindcasts. Assimilated fields are listed below the maps. (A) SLA from one
(Envisat) satellite (4 days composite). The colored lines show NEMO SSH (Nature Run) on June 1, 2011 interpolated into satellite swaths. (B) Same as (A)
but all available satellites on the analysis day (4 days composite). (C) Same as (B) additionally with T/S profiles derived from PIES observations. (D) Same
as (C) additionally with SST. This experiment replicates the most complete set of observations presently available for assimilated runs. The colored field in
the background shows SST from the NEMO NR (June 1, 2011). (E) Same as (D) but with T/S profiles from extended PIES. (F) Full SSH field from the
NEMO NR (June 1, 2011). (G) T/S profiles at every 30th NEMO grid point and SST. (H) T/S profiles at every 60th NEMO grid point and SST.
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Predictive skills of the OSSE hindcasts are compared in terms of

the median values of the time-averaged SSH RMSE fields

(Figure 8B). The OSSE ranking matches the expectation. The

hindcast constrained by the most complete 3D hydrographic

fields (“TS30-SST”) has the best performance followed by the

hindcast that assimilates 2D SSH provided at every model grid in

the GoM (“FULL-SSH”). Then the hindcast performance degrades

as the amount of the assimilated information decreases. The

hindcast with only 1 AVISO track used as a constraint (“AVISO-

1”) has the poorest performance with distinctly higher RMSE. The

hindcasts ranked from 4 to 7 have very small difference in the RMSE

scores. All these hindcasts have assimilated AVISO SLA, but differ

in the assimilation of SST and PIES T/S profiles. The hindcast that

assimilates T/S profiles from the extended PIES array has a better

skill than that the experiment assimilating data from the actual PIES

array, but the difference is too small to be significant.
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4.2.2 MHD of the LC and LCE frontal positions
The MHD is computed for the LC and LCE fronts derived from

demeaned daily SSH fields to quantify the similarity between the LC

fronts in the OSSE analysis runs versus the NR. Examples of the LC

and LCE fronts from the NR are shown in Figure 2 (top panels). The

OSSE analysis runs are ranked based on the median MHD values

(Figure 8C). There is a good agreement between rankings based on

the MHD scores and RMSE, respectively. Again, the best

performance has the simulations constrained by synthetic T/S

profiles at every 30th grid point (“TS30-SST”) followed by the

“FULL-SSH” and “TS60-SST” hindcasts. The hindcast that

assimilates limited SSH information (“AVISO-1”) has the lowest

predictive skills. Adding subsurface T/S profiles to the satellite

altimetry improves the accuracy of the LC front prediction in the

hindcasts. The only difference between the MHD and the RMSE

rankings is that “AVISO-PIES” swaps places with “AVISO-
A

B

C

FIGURE 8

(A) Maps of mean RMSE (m) between daily SSH fields from the OSSE analysis runs shown in Figure 7 and from the NR (NEMO). The RMSE is averaged
over 2011–2012. The gray contour is the 200-m isobath. The OSSEs are indicated in the maps. (B) RMSE (m) between SSH from the OSSE analysis
runs and the NR over the hindcast period (2011–2012). The colored bars show the median RMSE with colors corresponding to the OSSEs. The
hindcasts are ranked based on the median RMSE. The vertical black lines indicate the IQR. The letters in the bars are for ease of color identification.
(C) MHD scores computed for the LC/LCE contours derived from the OSSE analysis SSH fields versus the NEMO NR. The bars show the median
MHD scores by OSSEs. The hindcasts are ranked based on the median MHD score.
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PIES-SST”; however, in both metrics the scores of these hindcasts

are almost identical making the ranking of these two

experiments uncertain.

4.2.3 Comparison of subsurface frontal positions
Anticyclonic eddies have a distinct signature in the subsurface

hydrographic fields. The LC and LCEs in the GoM are associated

with positive temperature anomalies that are tracked down to

several hundred meters. Isotherms contouring warm water masses

in the subsurface layers effectively delineate LC and LCEs and have

been previously used for the LC/LCE identification and model skill

assessment (Oey et al., 2005). Here, temperature anomalies at 200 m

derived from the OSSEs are compared in order to assess the impact

of different fields assimilated in the analysis on subsurface

hydrographic fields. Temperature anomalies (DT) are computed

from the 200 m temperature fields by subtracting the spatial mean.

Then, DT = 2.5°C is used to contour the LC and LCEs (Figure 9A).

Next, the MHD metric is employed to compare the OSSE 2.5°C

contours against the NR for 2011–2012 (Figure 9B). The hindcasts

are ranked based on the median of the MHD score. The best and the

worst skills are found in the “TS30-SST” and “AVISO-1” hindcasts,

respectively, similar to the ranking derived from the SSH contours

(Figure 8C). The main difference in the MHD-based ranking

between the surface and subsurface frontal positions is a

decreased ranking of the “FULL-SSH” hindcast, with the ranking

changed from the 2nd best to the 6th. All OSSE analysis runs that

assimilate subsurface T/S profiles outperform the hindcasts

constrained by the surface fields (“FULL-SSH”, “AVISO”, and

“AVISO-1”). The ranking of the “FULL-SSH” analysis is lower

(although insignificantly) than both hindcasts assimilating PIES

and extended PIES T/S profiles. Note substantially better skill

(lower MHD score) of the “AVISO-extdPIES-SST” OSSE

compared to “AVISO-PIES-SST” demonstrating added value of

the extended PIES array.
4.3 Design of the OSSE forecasts

Two time intervals are selected for the OSSE forecast

experiments. The first interval, the NR June-September 2011

time period, corresponds to an active or unstable phase of the

LC characterized by extended position of the LC with potential

LCE detachment (Figures 10A, B, E) or reattachment (Figures 10C,

D). During this time period, the LC shape frequently changes due

to several detachments and reattachments of LCEs (Figures 10A–

E). The second time interval corresponds to the NR January–May

2012 (Figures 10F–J). At the beginning, the LC is in a stable

position being retracted towards the Yucatan Channel in January

(Figure 10F). During February – early March of 2012, the LC

extends farther north (Figures 10G, H) and sheds a LCE in early

March. The eddy reattaches to the LC about a week later

(Figure 10I). Note that the shape and positioning of the LC in

May 2012 is somewhat similar to that in January and February;

this would make persistency with initial state from January or

February a good forecast of the LC state in May as discussed in

section 4.4.
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In the following set of numerical experiments, the three-month

forecasts are initialized from the following OSSE analysis runs:

“FULL-SSH”, “AVISO”, “AVISO-PIES-SST”, “AVISO-extdPIES-

SST”, “TS30-SST” (Figure 7), and “NEMO-INT”. For each of

these OSSE analysis runs, seven forecasts are initialized one week

apart starting from May 1, 2011 until June 15, 2011 and seven

forecasts initialized from January 1, 2012 until February 15, 2012.

Therefore, there are 12 sets of forecasts (six OSSE group runs during

two time intervals) that include seven individual forecasts initialized

with a one-week interval and run forward for 3 months.
4.4 Analysis of the OSSE forecasts

4.4.1 RMSE analysis
The RMSE of the SSH is calculated using daily fields from the

OSSE forecasts and from the NEMO NR. All forecasts within the

same forecast group have been pooled together to provide monthly

average RMSE for months 1 through 3 during 2011 (Figure 11) and

2012 (Figure 12). In all forecasts, the RMSE increases with time with

the errors growing fastest in the LC area. In general, the

predictability of the forecasts follows expectations dictated by the

rankings of the OSSE analysis runs (Figures 8B, C). Forecasts

initialized from the state with the smaller error have lower RMSE

during the first 2 months and, in some cases, during the 3rd month.

For example, the performance of the “NEMO-INT” forecasts

during the first 2 months is markedly better than all other

forecasts, as expected due to the smallest error in the “NEMO-

INT” analysis fields providing initial conditions for these forecasts.

An interesting aspect of the 2011 RMSE maps is notably smaller

errors over the LC region in the “AVISO-extdPIES-SST” during all

3 months of the forecast. The magnitudes and the pattern of the

RMSE in these forecasts are similar to that from the “TS30-SST”

forecasts that are initialized from the analysis more heavily

constrained by the T/S profiles form the NR. Note that the error

magnitude over the LC area is smaller in the “AVISO-extdPIES-

SST” forecasts than that in the “AVISO-PIES-SST”.

The error growth rate in the forecasts is faster at the beginning

of the forecast, then slows down as the error approaches the

saturation value (Figure 13A) again in agreement with the

forecast error theory (Lorenz, 1965; Dalcher and Kalnay, 1987).

The “NEMO-INT” case is different in that the error growth rate is

nearly linear during the 3-month time period. This stems from the

fact that the initial errors in the “NEMO-INT” are very small (<0.01

compared to 0.05–0.08 in the other forecasts), and the time

evolution of the small error is governed by linearized equations

(Lorenz, 1965). Therefore, a linear growth rate is expected for small

errors as nicely demonstrated by the “NEMO-INT” forecasts.

The performance of the OSSE forecasts is ranked based on the

median of the spatially averaged daily RMSE (Figures 13B, C). For

the forecasts started in May-June 2011, the ranking during the first

month of the forecast matches the expectation assuming that the

forecast with the smallest error in the initial state from the analysis

provides a more accurate prediction. Therefore, the ranking of the

OSSE forecasts would be expected to follow the ranking of the

corresponding OSSE analysis runs (Figure 8B). This is true for the
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1st month. The forecasts “NEMO-INT”, initialized from the best

initial conditions with the smallest assimilation error (interpolated

fields), are ranked first demonstrating significantly smaller RMSE

than the other forecasts. The RMSE in this forecast group decreases

and is only slightly smaller than the RMSE of the second-best

forecast by the end of the forecast period. The “TS30-SST” forecasts

have the best second ranking followed by the “FULL-SSH”. The

forecasts in these two groups were initialized from the OSSE

analysis that assimilated the most complete synthetic

observations compared to the other hindcasts. The “AVISO”

forecasts have the lowest score, which is expected given

substantially smaller amount of information constraining the
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solution in the OSSE analysis providing initial state to these

forecasts. Therefore, the ranking for the first month demonstrates

an expected relation between the accuracy of the initial condition

and the quality of the forecast. However, this expected ranking

breaks in the second and third months where the “AVISO”

forecasts have moved two positions up and the “FULL-SSH” to

the end. The order of the forecasts in months 2 and 3 is unexpected

and does not agree with the OSSE analysis ranking in Figure 8B.

This result shows that the error in the forecasts grows at a different

rate, which is evident in Figure 13A.

In 2012, the “NEMO-INT” and “TS30-SST” forecasts also have

persistently higher rankings as in 2011. Again, the “FULL-SSH”
A

B

FIGURE 9

(A) Temperature anomaly (DT) at -200 m on July 9, 2011 from the NEMO NR and OSSE analysis. The contours delineate DT=2.5 °C isoline that tracks
anticyclones and the LC. (B) MHD scores computed for the 2.5 °C contours of DT at -200 m (2011-2012) derived from the OSSE analysis fields and
the NEMO NR. The colored bars are the medians with colors corresponding to the OSSE hindcasts. The hindcasts have been ranked based on the
median MHD. The vertical black lines on top of the bars indicate the IQR.
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forecasts ranking unexpectedly decreases by the end of the forecast

period, whereas “AVISO” forecasts are third best in the second and

third months. Rankings of “AVISO-PIES-SST” and “AVISO-

extdPIES-SST” are inconsistent. In 2012, the prediction skills of

“AVISO-extdPIES-SST” forecasts are not as high as during 2011

when compared to the other forecasts, although the difference in

RMSE among some of them is small.
Frontiers in Marine Science 15
Similar to the OSEs, the OSSEs (except for “NEMO-INT”)

struggle to outperform persistence during the 1st month in 2011.

The only two forecast groups that outperform persistence in terms

of the SSH RMSE during all forecast months in 2011 and 2012 runs

are “NEMO-INT” and “TS30-SST”. In 2011, the skills of other

forecasts are lower than persistence in the 1st month, higher in the

3rd month, and mixed in the 2nd month. In 2012, all forecasts have
A F

G

C H

D

E

I
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B

FIGURE 10

Daily SSH fields (m) from the NEMO NR. The left column (A–E) are SSH fields from May (A) – September (E) 2011 corresponding to the active state
of the LC with several detachments and reattachments of the LCE. The right column (F–J) are SSH fields from the time interval January (F) –May (J)
2012 during which the LC is in a more stable position. Contours are every 0.2 m starting from 0. The red line is the 0.17 m contour used as a
definition of the LC and LCE fronts.
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better skills than persistence in 1st and 2nd months. During the 3rd

month, the forecasts are ranked lower than persistence except for

“NEMO-INT” and “TS30-SST”. The persistence-based estimate of

the forecast skills is somewhat inconsistent with the assessment of

predictability of the forecasts. In all cases (except for “FULL-SSH”

in month 3 of 2011), the median RMSE and the upper IQR are less

than RMSE∞ indicating that the model predictive skills exceed 3

months in 75% forecasts.
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4.4.2 MHD of the LC and LCE fronts
The forecast skills of the 1/32.5° IAS HYCOM in predicting the

LC front are assessed employing the MHD that is computed for the

LC and LCE fronts derived from daily SSH fields in the OSSE

forecasts and the NR. An example of the LC/LCE contours derived

from SSH fields of one of the OSSE forecasts and NR is shown in

Figure 14. The MHD scores are computed between the LC/LCE

contours from the forecasts and the NR (the MHD score is listed in
A

B

D

E

F

C

FIGURE 11

Monthly mean RMSE between SSH (m) from the 3-month OSSE forecasts started in May – June 2011 and the NEMO NR. The RMSE for months 1
through 3 are in the columns. The OSSE forecast groups are shown in the rows (A–F) with the forecast names shown in the maps.
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blue), as well as between the forecast and the persistence (grey).

Scores greater than MHD∞ (6.3 km) demonstrate a lack of skills in

predicting the LC/LCE frontal position.

Compared to the RMSE, the MHD scores of the OSSE forecasts

exhibit more oscillating behaviour superimposed on the overall

increasing trend (Figure 15A). The oscillations of the MHD scores

are due to the rapid changes in the shape of the LC front during

eddy detachment–reattachment events, the timing of which is not

correctly predicted by the forecast. Nevertheless, the overall trend in

the MHD scores meets the expectation and agrees with the RMSE
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results. The MHD time series demonstrate degrading forecast skills

of predicting the LC frontal position with time. In 2011, the mean

MHD of all forecast groups has exceeded or reached MHD∞ after

~60 days. By contrast, the mean MHD stays below MHD∞ through

the end of the runs for the all forecast groups. The difference in the

forecast performance is due to different LC phases (Figure 10). In

2011, the NR LC was active with several eddy detachment-

reattachment events. Whereas in 2012, the NR LC was less active

resulting in a more accurate forecasts of the LC front. Note the

decreasing mean MHD for persistence during 2012 by the end of
A

B

D

E

F

C

FIGURE 12

Monthly mean RMSE between SSH (m) from the 3-month OSSE forecasts started in January – February 2012 and the NEMO NR. The RMSE for
months 1 through 3 are in the columns. The OSSE forecast groups are shown in the rows (A–F) with the forecast names shown in the maps.
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the 3-month period in contradiction to the expected increase. The

decreasing MHD is a consequence of similar LC shapes at the

beginning and end of the forecast time period (Figures 10F, J) by

chance making persistence a good prediction of the LC front.
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There is a good agreement in the rankings based on the RMSE

(Figures 13B, C) and the MHD metrics (Figures 15B, C). “NEMO-

INT” forecasts have the best predictive skills and are ranked first for

all months in both forecast time periods (2011 and 2012). The
A

B

C

FIGURE 13

RMSE between SSH from the OSSE forecasts and the NR. (A) Daily RMSE for individual forecasts and persistence from the OSSE forecast groups
during 2011 (left column) and 2012 (right column). The bold solid lines are the mean RMSE estimates for the forecasts (blue) and persistence (black).
The horizontal red line indicates 95% of the saturation value (RMSE∞ = 0.178 m). The bar diagrams (B, C) show median RMSE (m) of the forecasts by
the OSSE forecast groups during months 1 through 3 started in May-June 2011 (B) and January-February 2012 (C). Within each month, the OSSE
forecast groups are ordered according to the ranks based on the median RMSE. The vertical black lines on top of the bars indicate the IQR. The grey
line and the bullet show the IQR and the median, respectively, of the persistence corresponding to the OSSE forecast group. The horizontal red line
indicates RMSE∞.
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“TS30-SST” forecasts are second best, in agreement with the

expectation. Similar to the RMSE metric, the “FULL-SSH”

forecasts quickly loose predictive skills moving to the last (2011)

and second last (2012) rankings at the end of the forecast period. By

contrast, the “AVISO” forecasts unexpectedly improve rankings in

the 2nd and 3rd months. The “AVISO-extdPIES-SST” forecasts have

better predictive skills than the “AVISO-PIES-SST” forecasts after

the 1st month.

The MHD scores indicate similar predictive skills of the OSSEs,

although there is a bigger difference in the performance during the

3rd months across OSSEs in 2011 and 2012. During a more active

LC (year 2011), predictability of the forecasts is lost during the 3rd

month in >50% of cases except for the “NEMO-INT”. By contrast,

>75% of the OSSE forecasts demonstrate high predictive skills of the

LC by the end of the 3rd month.
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The “NEMO-INT” forecast group is the only one that

outperforms persistence in 2011 and 2012, except for the 3rd

month in 2011 when the scores are similar. In 2011, other

forecasts struggle to outperform persistence during the first

month and substantially outperform the persistence in the 2nd

and 3rd months. In 2012, the forecasts outperform the persistence

for the first two months and underperform during the last month of

the forecast window. In 2011, the initial state of the LC quickly

evolves into an unstable state in the forecasts, whereas it remains

nearly unchanged for several weeks in the NR, as demonstrated by

the example in Figure 14A. At the beginning of the forecast, the LC

front in the “NETMO-INT” perfectly matches the LC contour in the

NR. In the other forecasts, there is a notable difference in the initial

LC shapes compared to the NR. In 2011 after 30 days, the forecasts

tend to predict LCE shedding (except for the “NEMO-INT” and
A

B

FIGURE 14

Example of the LC/LCE contours (fronts) from one of the OSSE forecasts in each forecast group (in columns) and corresponding contours from the
NEMO NR during 2010 (A) and 2011 (B). The blue contours correspond to the OSSE forecasts and the orange contours are from the NR. The grey
contours show persistence prediction. In the first row in (A, B), the initial state (day 1) is shown. The LC contours from the OSSE forecasts and
persistence coincide demonstrating a perfect match of the initial contours from the “NEMO-INT” and the NR. The numbers are MHD scores for the
shown contours from the forecast - NEMO NR (blue) and persistence - NEMO NR (orange).
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“FULL-SSH”), whereas the LC has not shed an eddy in the NR. In

this case, persistence has a better match with the NR in terms of the

LC front. By the end of the second month, the LC in the NR sheds

an eddy. Now, the forecasts that have predicted an eddy shedding
Frontiers in Marine Science 20
have a better resemblance with the NR and lower MHD score than

those that have not. Persistence, on average, has higher MHD score

(lower predictive skill) than the OSSE forecasts because its LC does

not change and has not shed an eddy. By the end of the forecast
A

B

C

FIGURE 15

MHD scores for LC/LCE fronts derived from OSSE SSH forecasts and the NR. (A) Daily MHD scores for individual forecasts and persistence from the
OSSE forecast groups during 2011 (left column) and 2012 (right column). The bold solid lines are the mean MHD scores for the forecasts (blue) and
persistence (black). The horizontal red line indicates 95% of the saturation value (MHD∞ = 66.3 m). The bar diagrams (B, C) show median MHD score
(km) from forecasts within the forecast group (shown with colors and letters corresponding to the OSSE forecast groups) during forecast months 1
through 3 started in May-June 2011 (A) and January-February 2012 (B). Within each month, the OSSE forecast groups are ranked based on the
median MHD score. The vertical black lines on top of the bars indicate the IQR. The grey line and the bullet on the line show the IQR and the
median of the persistence corresponding to the OSSE forecasts. The horizontal red line indicates MHD∞.
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cycle (day 90), the LC in the NR has an extended shape protruding

far west. In fact, the 0.17 m contour combines several small

anticyclones that form a chain of intense anticyclonic eddies

within the LC. The forecasts (except the “NEMO-INT”) fail to

predict exactly this shape of the LC. However, the forecasts have

several LCEs that follow the LC extended shape and persistence

does not. This explains a better predictive skill for the forecasts

during the 3rd month.

In 2012, the forecasts follow closely the NR during the 1st

month, and even after 60 days, most of the forecasts have good

predictive skills of the LC frontal position. By the end of the forecast

cycle, the forecasts predict eddy shedding or a more extended LC

than it is in the NR. Whereas, in the NR the LC returns to a shape

that is similar to the initial state. This explains better scores for

persistence during the 3rd month.
5 Discussion

The analyses of the OSEs and OSSEs presented here provide

information about time scales of predictability for the 1/32.5° IAS

HYCOM-TSIS forecast system. The predictability estimates

discussed here depend on the choice of the skill metrics and

parameters used for skill assessment. The assessments of

predictive skills are based on RMSE and MHD and the concept of

saturation value (Lorenz, 1965; Lorenz, 1982). The metrics are

compared to the 95% of the saturation values for RMSE and

MHD scores (RMSE∞ and MHD∞) to estimate the model

predictability of the LC system. Both OSE and OSSE forecasts

demonstrate that the forecast system has predictive skills sufficient

for medium-range predictions of the LC system. In the OSEs in

>75% the model produces reliable forecasts at least for 2 months

with <50% by the end of 3 months. The RMSE and MHD scores

averaged over the forecasts approach saturation values by the end of

3 months, suggesting that the limit of the predictability is about 90

days for this system with this set of observations assimilated during

the analysis. A similar estimate of the model predictability is

suggested by the OSSEs.

As expected, the best predictability is demonstrated by the

forecasts initialized from the interpolated NR fields (“NEMO-

INT”). Even by the end of the forecast window, >50% of the

forecasts still have predictive skills of the LC. The overall forecast

error depends on the initial error, the modeling system itself (that

defines an “error matrix” controlling the error growth rate,

following Lorenz, 1965), and the model error (imperfect model

scenario which is different from Lorenz “perfect model”). Results of

“NEMO-INT” demonstrate that initial error is the main source of

uncertainty in the forecast and the primary contributor to the

forecast error. Therefore, minimizing error in the initial forecast

fields provides the most prominent improvement of the long-range

forecasts of the LC system. Whereas, improvement in the model

numerics might have smaller impact on the forecast predictability

within the 2–3-month range. After 3 months, model errors

dominate suggesting that models with improved ability to

simulate the LC system would be needed for reliable long-

range forecasts.
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The derived estimate of the model predictability is hard to

compare with the estimates reported in earlier studies (e.g., Oey

et al., 2005; Mooers et al., 2012) because of the disagreement in

selected metrics, predicted characteristics, criteria of predictability.

Results from our study can be compared to Zeng et al. (2015) who

used a different metric for evaluation of predictability, but their

selection criterion (based on the spatial cross-correlation) would

provide a similar decision on the model predictability in terms of

RMSE metric used in our study. Zeng et al. (2015) estimated that

reliable forecasts could provide reliable predictions of the LC

variability up to 4 weeks and in some cases up to 6 weeks (the

duration of their forecast window). The IAS HYCOM-TSIS system

described here can provide reliable forecast of the LC system for 2

months and up to 3 months demonstrating better predictability. It

should be noted again that the estimated predictability depends

on the choice of the predicted characteristics. For example,

predicting the LCE shedding events is a more challenging task

than predicting the frontal position. The predictability of the

shedding events would likely be smaller than 2–3 months.

The OSEs and OSSEs clearly demonstrate that the forecast

predictive skills of the LC system are controlled by the magnitude of

initial error and the growth rate of the error. The result is in

agreement with many previous studies starting from Lorenz (1965).

The initial error depends on assimilation techniques and amount of

information constraining the numerical solution in the analysis that

provides the initial state for the forecast run. In the highly idealized

case (“NEMO-INT”) with minimal initial error, the predictive skill

of the 1/32.5° IAS HYCOM convincingly exceeds 2 months with

very small spread in RMSE and MHD scores across the individual

forecasts. The magnitude of the initial error impacts the growth rate

of the error. In the presented forecasts, the smaller error has slower

growth rate and in the forecast initialized from the interpolated NR

fields (“NEMO-INT”), the growth rate is close to linear. The

experiments demonstrate different predictive skills for the LC in a

stable and unstable phase. In general, the forecasts have shorter

predictability for unstable LC.

One of the unexpected results in the OSSEs is the quick decrease

of predictive skills in the “FULL-SSH” forecasts (Figures 13B, C,

15B, C). The forecasts are initialized from the analysis constrained

by complete SLA fields from the NR producing accurate initial fields

(Figures 13A, 15A). Despite the fact that the forecast has small

initial error (~0.05 m), the growth rate of the forecast error is on

average higher than in the other OSSE forecasts resulting in a lower

performance than some other forecasts initialized from less accurate

analysis after one month. Also, the “FULL-SSH” forecasts have

higher RMSE along the LC front than the “T30-SST” forecasts,

which do not use SLA to constrain the SSH. This can be related to

errors introduced by the SLA interpolation technique projecting

SLA information into subsurface layers. HYCOM-TSIS employs a

layerized version of the Cooper and Haines (1996) algorithm to

ingest altimetry SLA by adjusting the layer thicknesses of the

isopycnic layers using potential vorticity conservation. This

approach indirectly impacts the T/S structure in the subsurface

layers that is less precise than direct ingestion of T/S profiles in the

“TS30-SST”. Therefore, the T/S fields in the “TS30-SST” are better

constrained and provide more accurate vertical baroclinic structure
frontiersin.org

https://doi.org/10.3389/fmars.2023.1153824
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Dukhovskoy et al. 10.3389/fmars.2023.1153824
of the mesoscale features in the Gulf resulting in better long-term

predictions than in the “FULL-SSH”, which is also true for other

forecasts where T/S profiles are directly assimilated (Figure 9B).

The added value of an extended PIES array is demonstrated in

the OSSE analysis fields during 2011 and 2012 (Figures 8B, C).

Nevertheless, predictive skills of the forecasts with “AVISO-

extdPIES-SST” initial fields are different in 2011 and 2012

(Figures 13, 15). This suggests that T/S profiles are useful when

they provide information about the baroclinic structure of the LC at

critical locations and times. During 2011, synthetic T/S profiles

derived at extended PIES locations provide additional information

about the LC and LCE shedding improving the forecasts. In 2012,

when the LC is in a more stable position, this information is not

essential and the added benefit of this information is low. The idea is

further supported by the RMSE analysis discussed in section 4.2.1

demonstrating good predictive skills of the “AVISO-extdPIES-SST”

forecasts when compared to the other forecasts in 2011, but not in

2012 (Figures 11–13). These results demonstrate that adding more

data to a data assimilative system does not always result in notable

improvement of the forecasts because data have different

informative value for the forecasting system. Collection of

observational information and its delivery to the prediction

systems can be optimized via an automated process of adaptive

sampling (Lermusiaux et al., 2006; Lermusiaux et al., 2017) based on

optimal timing and location of observational platforms. Adaptive

sampling predicts what type of observation available over the

sampling time period to be collected and at what location to

provide the most critical information for predicted ocean variable

(Lermusiaux et al., 2017). Adaptive sampling combined with OSE/

OSSEs can be utilized to infer information about the most optimal

way to complement existing observational sites with observations

collected by autonomous platforms and sensors.

Predictability estimates depend on the choice of skill assessment

metrics. In our study, the two metrics we use are based on different

norm definitions and focus on different aspects of the analyzed data,

yet there is good agreement between them for the model skill

assessment. The RMSE is the most utilized metric for model

predictability evaluation with its advantages and limitations (e.g.,

Schneider and Griffies, 1999). The MHD is robust metric that is

particularly useful for quantitative comparison of N-dimensional

shapes or contours and is useful for comparison of oceanic frontal

positions. For best performance, the metric requires unambiguous

definition of the contours (fronts) being compared. The LC front

definition based on the 0.17m contours of SSH fields is not optimal for

our study because it results in instantaneous substantial changes of the

LC frontal position during LC and LCE detachment and reattachment

leading to large errors in the forecast if the timing of the process is not

exact in the forecast. This artificially degrades the forecast skill. Such

definition of the LC front would work best for evaluating predictability

of the LCE shedding event using the MHD metric, but it is less useful

for our purposes. A better definition of the LC front (e.g., Laxenaire

et al., 2023) can provide more consistent scores, thus reducing the

spread of the scores in the individual forecasts.
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6 Summary

The presented study evaluates the forecast skill of the 1/32.5°

IAS HYCOM-TSIS based on the OSE/OSSEs. Existing high-

resolution models can provide skillful forecasts of the LC system

up to 2 months when initialized with near-real time available

observations and data assimilation techniques. Predictability

limits depend on activity state of the LC, with active LC

configurations presenting more challenges for the model

forecasts. Results also suggest that substantial improvements in

forecasts out to 3 months can be achieved with increased accuracy

of initial conditions derived from analysis. This further suggests

that the short-range and medium-range (up to 3 months)

forecasts of the LC system can be improved through adding

observational information and better assimilation techniques.

However, adding more observational data does not always

improve the forecasts. The numerical experiments have

demonstrated the added value of T/S profiles that provide

information about vertical baroclinic structure of the mesoscale

features in the Gulf. However, the impact of T/S profiles on the

forecasts is notable when the information is provided at critical

locations and times. In other cases, additional information derived

from the T/S profiles has minor impact on the model forecasting

skills. Therefore, we argue that optimization of observational

information via adaptive sampling may play a crucial role in the

improvement of the short- and medium-range forecasts. The

impact of the initial error or the accuracy of the initial state on

the forecast accuracy is less obvious after 3 months when model

errors start dominate. Hence, additional observations assimilated

into analysis providing initial state for the forecasts may have little

impact on the forecast skills after 3 months. Increased accuracy of

the long-range forecasts can be achieved with improved

modeling techniques.
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