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Image-based machine learning methods are becoming among the most widely-

used forms of data analysis across science, technology, engineering, and

industry. These methods are powerful because they can rapidly and

automatically extract rich contextual and spatial information from images, a

process that has historically required a large amount of human labor. A wide

range of recent scientific applications have demonstrated the potential of these

methods to change how researchers study the ocean. However, despite their

promise, machine learning tools are still under-exploited in many domains

including species and environmental monitoring, biodiversity surveys, fisheries

abundance and size estimation, rare event and species detection, the study of

animal behavior, and citizen science. Our objective in this article is to provide an

approachable, end-to-end guide to help researchers apply image-based

machine learning methods effectively to their own research problems. Using a

case study, we describe how to prepare data, train and deploy models, and

overcome common issues that can cause models to underperform. Importantly,

we discuss how to diagnose problems that can cause poor model performance

on new imagery to build robust tools that can vastly accelerate data acquisition in

the marine realm. Code to perform analyses is provided at https://github.com/

heinsense2/AIO_CaseStudy.

KEYWORDS

machine learning, image analysis, deep neural network, underwater imagery, computer
vision, artificial intelligence, distribution shift
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1 Introduction

Imagery from the ocean has long been used to survey marine

environments, quantify physical conditions, and monitor the

inhabitants of marine ecosystems (Longley and Martin, 1927;

Drew, 1977; Beijbom et al., 2015; Lombard et al., 2019; Marochov

et al., 2021). This reliance on imagery as a means of extracting data

from marine systems has only grown with the increasing

accessibility of satellite imagery and the decreasing cost and

increasing quality of imaging systems that can be deployed

directly in the field (Durden et al., 2016; Williams et al., 2019;

Bamford et al., 2020; Rodriguez-Ramirez et al., 2020). Yet visual

data bring with them some unique challenges. Images and video are

expensive to process due in part to the fact that imagery is

inherently high-dimensional; for example, a single grayscale

image of one-megapixel resolution, a coarse image by modern

standards, is a 220-dimensional data object. Researchers who

collect imagery in the course of their work often return from field

campaigns with terabytes to petabytes of such high-dimensional

imagery that must then be processed (Schoening et al., 2018).

The role of image analysis (see Table 1 for glossary of bolded

terms) is to compress high-dimensional visual data into much

lower-dimensional summaries relevant to a particular task or

study objective. As humans, we perform this type of visual data

compression naturally (Marr, 1982). We look at an image and with

proper training, can classify what is present in the image, localize

and count distinct objects, and partition the image into regions of

one type or another. The objective of image-based machine
learning (ML), a subfield of computer vision, is to train computer

algorithms to perform these same tasks with a high level of

accuracy. Doing so can tremendously accelerate image processing

and greatly reduce its cost (Norouzzadeh et al., 2018), while also

providing an explicit, standardized, and reproducible workflow that

can be shared easily among researchers and applied to new

problems (Goodwin et al., 2021; Katija et al., 2022). Despite the

promise of these methods, the expertise required to apply, adapt,

and troubleshoot ML methods using the kinds of image datasets

marine scientists collect still creates a high barrier to entry (Crosby

et al., 2023).

A number of recent articles provide overviews of how modern

image-based machine learning methods work and how these

methods have been applied to problems in marine science (e.g.,

Michaels et al., 2019; Goodwin et al., 2021; Li et al., 2022). Here, we

focus on the practical problem of how to implement image-based

ML pipelines on real imagery from the field. The remainder of this

paper is structured as a sequence of steps involved in defining an

analytical task to be solved, preparing training data, training and

evaluating models, deploying models on new data, and diagnosing

and fixing performance issues. To provide concreteness, we present

a running case study: object detection of marine species using

imagery and software tools from the open source FathomNet

database and interface (Katija et al., 2022). We use this case study

to demonstrate each phase of constructing and troubleshooting a

ML pipeline, and we provide code and guidelines needed to
Frontiers in Marine Science 02
reproduce each step in a github repository: https://github.com/

heinsense2/AIO_CaseStudy.
1.1 Building and using a machine learning
pipeline

Researchers often have a clear idea of how they want to use the

data extracted from imagery. This idea forms the starting point for

designing amachine learning pipeline to automatically extract data

from imagery. Building a machine learning pipeline to solve image

analysis tasks involves a series of steps:

1.1.1 Define an analytical task
This step requires working to define the objective of image

analysis and the target metrics to be extracted from imagery. The

type of imagery to be analyzed should be specified. This step may

also involve defining performance criteria and setting benchmarks

for acceptable performance.

1.1.2 Generate and organize training
and testing datasets

This step involves developing and organizing image libraries for

training, testing, and deploying models. This involves both

organizing imagery with appropriate file structure and, very often,

hand-labeling ground truth data to be used to train and test models.

This step requires software tools that allow a researcher to organize

images and to label, or annotate, imagery so it can be later used to

train and test machine learning models.

1.1.3 Select and train appropriate machine
learning models

This step requires identifying a machine learning model

architecture capable of performing the desired image analysis

task, as well as software and hardware implementations capable

of training and deploying the model to perform inference on

new imagery.
1.1.4 Evaluate model performance
This step involves summarizing and visualizing model

predictions and performance measures, and often comparing

these measures across alternative model architectures or

training schedules.
1.1.5 Diagnose performance issues and apply
interventions to improve performance

This step involves applying a trained model to new imagery and

re-evaluating its performance. If performance is below target levels,

it may be necessary to modify training methods, datasets, or model

architecture to improve performance.

In the following sections, we walk through each of these steps to

illustrate how each is accomplished, and how the steps combine to

produce an adaptable pipeline with robust performance.
frontiersin.org
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TABLE 1 Glossary of terms relevant to image-based machine learning.

Term Definition

Image
analysis

The process of extracting task-relevant information from imagery.

Machine
learning

A body of mathematical and computational methods for extracting information from data to make predictions.

Machine
learning
pipeline

A computer program or set of programs that reads in training data, specifies and trains a ML model, produces model predictions, and provides
performance metrics.

Image
annotation

Process of generating ground truth labels for images, which are typically used to train ML models or evaluate performance.

Ground truth A verified record, often produced by a human annotator, that describes what is contained within the image. Sometimes also called an annotation, or
label.

Image
classification

A task in which a whole image is assigned a class from a list of valid classes.

Object
detection

A task in which objects within a set of classes of interest are detected and localized within an image, typically either within a bounding box, or polygon
region. Many object detection methods also classify objects.

Instance
segmentation

A task in which individual instances of objects in a class or classes of interest are localized within an image. Sometimes used synonymously with object
detection, when objects are localized within polygons rather than bounding boxes.

Semantic
segmentation

A task in which all individual pixels in an image are assigned to a class, but individual instances of objects are not specified.

Supervised
learning

A type of machine learning that involves training a model with example input-output pairs.

Panoptic
labels

A type of annotation that assigns a class to each pixel in an image and delineates the borders of instances of distinct objects of interest.

Few-shot
learning

Machine learning methods designed to achieve good performance by training on few examples.

Deep neural
network
(DNN)

A machine learning method based on networks of interconnected computing nodes called “neurons.” DNNs take data as input, process the data through
one or more sequential layers of processing known as “hidden layers,” and return predictions about the image.

Classification
accuracy

Fraction of class predictions that are correct: (true positives + true negatives)/total number of predictions.

Precision The fraction of positive class predictions that are correct: true positives/total predicted positives.

Recall The fraction of positives present in the dataset that are correctly predicted by a model:
true positives/total positives present in dataset. Sometimes referred to as sensitivity.

F1 score A performance measure that incorporates both precision and recall: 2 (precision x recall)/(precision + recall).

Intersection-
over-union
(IoU)

A measure of spatial localization performance used in object detection and instance segmentation. IoU measures the number of pixels contained within
both the predicted instance location and the ground truth (“intersection” between the two areas), divided by the total number of unique pixels contained
within the predicted instance location, and ground truth (“union” of the two areas).

Mean
average
precision
(mAP)

An average measure of classifier performance when bounding boxes or object instances are classified. Incorporates precision, recall, and IoU.

k-fold cross
validation

A type of model evaluation in which training, validation, and test data are partitioned into k different splits, and performance measures are evaluated on
each split.

Distribution
shift

Systematic differences in image statistics, scene complexity, class identities and distributions, and other relevant features between a training set and a new
dataset to which a model is to be applied.

Image
augmentation

The process of applying random digital alterations to training imagery during the training process to improve model generalization.

Image
resolution

The resolution of the image in pixels. Many ML pipelines reduce image resolution by default to save memory and reduce training and deployment times.

(Continued)
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2 Defining an image analysis task

2.1 Overview

Defining the image analysis task to be solved is the first step in

any machine learning pipeline. Is the goal to assign an image to one

class or another – for example, to decide whether a particular

species is or is not present or a particular environmental condition

is or is not met? Or is the aim instead to identify and count objects

of interest – for example, to find all crustaceans in an image and

identify them to genus? Or is the objective to divide regions of the

image into distinct types and quantify the prevalence of those types

– for example, to partition the fraction of a benthic image occupied

by different algae or coral morphotypes? The answers to these

questions determine how one proceeds with gathering appropriate

labeled data, selecting and training a model, and deploying that

model on new data.
2.2 Technical considerations

Many of the traditional problems marine scientists currently

use imagery to address fall into one of three categories: image

classification, object detection, or semantic segmentation. More

complex tasks such as tracking (Katija et al., 2021; Irisson et al.,

2022), functional trait analysis (Orenstein et al., 2022), pose

estimation (Graving et al., 2019), and automated measurements

(Fernandes et al., 2020) often rely on these more basic tasks as

building blocks.

In image classification problems, a computer program is

presented with an image and asked to assign the image to one of

a set of classes. Classes could be defined based on the presence or

absence of particular objects (e.g., shark present or shark absent;

Sharma et al., 2018), or represent a set of categories to which the

image must be assigned, for example on the basis of what kind of

animal is present in the image (Piechaud et al., 2019) or what type of

habitat is represented in the image (Jackett et al., 2023). An

important distinction between whole-image classification and

other common image analysis tasks is that in image classification,

classes are assigned at the scale of the entire image (Chapelle et al.,

1999; Fei-Fei et al., 2004). Thus, objects of interest are not spatially

localized within the image, nor does the model provide information

on the properties of individual pixels or spatial regions within the

image. Whole image classification is appropriate for some tasks,
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species of interest or environmental condition, but is less

appropriate for others, for example, counting individuals of a

particular species when multiple individuals can occur within a

single image (Beery et al., 2021). Nevertheless, this task remains

relevant in many automated image analysis problems (Qin et al.,

2016; Villon et al., 2021; Kyathanahally et al., 2022) and is the

approach of choice for certain types of marine microscopy data

where images are typically stored as extracted region of interest

(e.g., Luo et al., 2018; Ellen et al., 2019).

A second common task involves detecting and spatially

localizing objects of interest within images, a task known as

object detection or instance segmentation. Separating instances of

the same type of object (e.g., there are nine fish identified as Atlantic

cod in this image) in a given image is often crucial if imagery is

being used to estimate abundances (Moeller et al., 2018), and most

object detection pipelines can also be trained to detect objects of

many different classes, which is valuable for analyzing images that

contain multiple objects of interest that belong to different classes

(see Scoulding et al., 2022 for a discussion of limitations at

high density).

A third task, known as semantic segmentation, involves

assigning a class to each pixel in an image. Semantic

segmentation differs from object detection in that one is not

interested in detecting and discriminating instances of a

particular class, but rather in determining the class membership

of each pixel in an image. This can be useful for tasks such as

estimating the percent cover of algae, corals, or other benthic

substrate types (e.g., Beijbom et al., 2015; Williams et al., 2019). If

images are collected in a controlled and standardized way, the

percentage of each image occupied by different species or classes of

object can be estimated by the relative abundance of pixels assigned

to each class.

Image-based ML tools have also been used for a variety of

applications beyond the three tasks described above. Examples

include “structure-from-motion” studies, in which the three-

dimensional structure of objects are inferred and reconstructed

from a sequence of images taken from different locations in the

environment (Francisco et al., 2020), animal tracking and visual

field reconstruction (Hein et al., 2018; Fahimipour et al., 2023),

quantitative measurement and size estimation (Fernandes et al.,

2020), animal postural analysis (Graving et al., 2019), and re-

identification of individual animals in new images based on a set

of previous observations (Nepovinnykh et al., 2020).
TABLE 1 Continued

Term Definition

Background
imagery

Images that do not contain classes of interest.

Class
coarsening

The process of lowering the resolution of classes by grouping several fine classes (e.g., species A, B, C, and D) into coarser classes (e.g., genus 1, genus 2).
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2.3 Case study: species detection
and classification from benthic and
midwater imagery

To provide a concrete example, we consider an object detection

and classification task that seeks to localize and identify marine

animals in deep-sea imagery collected from the Eastern Pacific

within the Monterey Bay and surrounding regions. Images were

collected by the Monterey Bay Aquarium Research Institute

(MBARI) during Remotely Operated Vehicle (ROV) surveys

conducted between 1989 and 2021 (Robison et al., 2017), and are

housed in the open-source FathomNet database (FathomNet.org;

Katija et al., 2022). We focus on six common biological taxa that are

observed broadly across the sampling domain, at a range of depths,

and over several decades of sampling (Figure 1. shows iconic image

of each class): the fish genera Sebastes (Rockfish) and Sebastolobus

(Thornyheads), and the squid species Dosidicus gigas (Humboldt

squid), Chiroteuthis calyx (swordtail squid), Gonatus onyx (black-

eyed squid), and the siphonophore, Nanomia bijuga. Although

classes of interest are sometimes clearly visible in images as

shown in Figure 1, FathomNet contains many images with small

subjects, complex visual backgrounds, heterogeneous lighting, and a

host of other challenging visual conditions (Figure 2) that are

ubiquitous in marine science applications.

We selected the six classes shown in Figures 1, 2 from the much

larger set of classes available in FathomNet based on three criteria:

(i) hundreds to thousands of human-generated labels were available

for each class providing us with a sufficient number of labeled

instances to explore performance of ML models under different

partitions of the data, (ii) images of these classes were collected over

a relatively broad spatial region and/or depth range compared to

many other classes in FathomNet, allowing us to compare

performance across spatial partitions of the data, and (iii) images

of these classes were collected over many years, allowing us to

partition the dataset temporally. Because searchable metadata,

including depth and collection date, are included with the images

in FathomNet, we were able to quickly create these partitions. As

described in “Diagnosing and Improving Model Performance on

New Data” below, we use these spatial and temporal partitions of

the data to illustrate how ML models can fail when applied to new

data, and how to diagnose and address such performance issues. We

will return to this case study at the end of each section to provide a

concrete example of each step involved in constructing and

evaluating a machine learning pipeline.
3 Labeled imagery for training and
evaluating models

3.1 Overview

The image-based ML methods that are currently most widely

applied for marine science applications are based on supervised
learning (Cunningham et al., 2008; Goodfellow et al., 2016). In

supervised learning problems, the user provides a training dataset in
Frontiers in Marine Science 05
which the desired output corresponding to a given input is specified

for a set of examples. For object detection and classification

problems, training data typically consist of a set of images (the

image set) in which objects of interest are localized and identified by

a human annotator. Labels (also sometimes referred to as “ground

truths” or “annotations”) are standardized records of identity and,

in some cases, spatial information describing what is contained

within the image.

To train a supervised ML pipeline to perform image analysis

automatically, one needs a suitable training dataset consisting of

images and corresponding labels. A researcher has two choices for

acquiring labeled data: manually create a set of labels to be used for

training, or use images and labels from a pre-existing database

(Table 2). At present, the number of publicly available annotated

datasets containing marine imagery is relatively small, and the size

and spatial, temporal, and taxonomic coverage of these datasets is

still rather limited. In practice, this means that researchers typically

need to create a new training dataset of annotated imagery de novo.

This custom training set can then be used as a stand-alone training

set or combined with images and labels from existing databases to

fully train a ML model to carry out a specified task (Knausgård

et al., 2021).
3.2 Technical considerations

When building and working with training datasets, there are

several issues a researcher should consider that can help determine

which software tools are most useful, and how to best structure the

labeling process to solve the desired image analysis task.

3.2 1 Label types
The most common method for creating new labels involves

manual labeling of imagery (Mahajan et al., 2018; see Ji et al., 2019

for discussion of unsupervised methods). The type of label used

depends on several considerations. The first consideration is the

type of image analysis task that will allow the researcher to access

the information they want to extract from the imagery (see

“Defining the image analysis task” above).

If the objective is image classification, then labels consist of a

class label assigned to each image in the training set (Figure 3A). For

example, suppose the objective is to take in new images and to

determine which images contain a target species and which do not.

An appropriate training dataset would consist of a set of

representative images from sampling cameras, each of which

would be labeled by a human annotator as containing or not

containing the target species.

If the objective of image analysis is to localize and classify objects

within an image, then manually generated labels must contain

information about the locations and classes of objects of interest

within an image. The most commonly used labeling formats for

object detection are bounding box labels and polygon labels

(Figures 3B, C). Bounding boxes are rectangular regions that

enclose each object of interest and carry the appropriate class ID

for the object (Figure 3B). Polygon labels, sometimes also referred to
frontiersin.org
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as “masks,” are enclosing polygons that outline an object of interest

(Figure 3C). These too are associated with the class label of the object.

If the objective of image analysis is to assign the pixels in an

image to distinct classes (i.e., semantic segmentation), for example

to compute the fraction of the region captured in an image

composed of different types of benthic cover, then labels must

assign the pixels in an image to distinct classes (Figure 3D). This is
Frontiers in Marine Science 06
typically done within labeling software by manually selecting the

borders of local regions within the image and assigning a class to

these regions. Some semi-automated “assisted methods” have been

developed to aid in semantic labeling of images (e.g., Uijlings et al.,

2020, “magic wand” tool in BIIGLE, Langenkämper et al., 2017).

Machine learning-based computer vision libraries such as

Detectron 2 (Wu et al., 2019) and Deeplab v3+ (Chen et al., 2018)
FIGURE 1

Focal species included in case study (iconic images). Focal species included fish in the genera Sebastolobus (A) and Sebastes (B), squid species
Gonatus onyx (C) Chiroteuthis calyx (D), and Dosidicus gigas (E). Panel (F) shows an image of the siphonophore, Nanomia bijuga, alongside a
juvenile C. calyx (F, lower organism in image), which are believed to visually and behaviorally mimic N. bijuga (Burford et al., 2015). Images in panels
(A-F) were selected for clarity and subjects are enlarged for visualization. (Figure 2) shows focal species in images that are more representative of
typical images in FathomNet.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1157370
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Belcher et al. 10.3389/fmars.2023.1157370
contain models that operate on an additional type of label referred to as

a panoptic label. Panoptic labels include both class assignments for

each pixel within an image and instance labels, so that the distinct

pixels belonging to an individual instance of an object, for example, an

individual squid, are grouped together (Figure 3D). We are not aware

of past studies in marine science that have made use of panoptic labels,

however, this type of labeling and segmentation could be useful in cases

where a researcher wants to simultaneously characterize foreground

objects of interest and background or substrate conditions.
Frontiers in Marine Science 07
3.2.2 Labeled data file formats
A variety of formats exist for storing manually generated labels.

Unfortunately, there has been little standardization of the file formats

used to encode labels of marine imagery, nor have researchers included

consistent metadata within these files (Howell et al., 2019; Schoening

et al., 2022). When creating new labels, we recommend choosing from

among several formats that are most widely used in the computer

vision community. These include YOLO text files, Pascal VOC XML

files, and COCO (“common objects in context”, https://
FIGURE 2

Typical images from FathomNet containing focal species. Focal species from Figure 1 shown in the context of more typical images from FathomNet.
The focal class present in each image is noted in the upper right corner. Note complex and variable visual conditions, small size of objects of
interest, clutter, and complex backgrounds. These conditions are typical in marine imagery collected for scientific sampling purposes.
frontiersin.org
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cocodataset.org/) Java Script Object Notation (JSON) formats. Pascal

VOC and COCO formats both allow for convenient storage of

metadata, making them attractive options.
3.2.3 Software for manually labeling imagery
A web search for the term “image labeling” will return many

graphical user interface-based software tools designed to help users

perform manual image labeling. In our experience, many of these

tools work reliably, and are easy for human annotators to learn to

use. Some widely-used, free labeling tools are CVAT (https://

cvat.org), VGG Image Annotator (https://www.robots.ox.ac.uk/
Frontiers in Marine Science 08
~vgg/software/via/), and Annotator J (https://biii.eu/annotatorj).

Tools developed specifically for use in marine environments

include BIIGLE (Langenkämper et al., 2017), VIAME (Richards

et al., 2019), and EcoTaxa (Picheral et al., 2017; see Gomes-Pereira

et al., 2016 for a review). These software tools are typically intuitive

to use, but different tools have different capabilities that are

important to understand when deciding which package to use for

a given project. When selecting a software tool, there are four issues

we suggest considering: (i) the speed and ease with which images

can be loaded, labeled, and the labels exported; (ii) features the

labeling tool offers such as convenient batch loading of images,

zooming in and out, rotating images, assisted labeling, etc.; (iii) the
TABLE 2 Publicly available databases containing annotated images from marine environments.

Dataset Name Subject

Approx.
label
count Label type

Label
file
type

Geographic
location

Published
reference URL

Save the Turtles Turtles 2,000 Bounding box .txt Global NA 1

OzFish Fish 45,000 Bounding box .json Australia
doi: 10.25845/
5e28f062c5097 2

Labeled fish in the wild Fish 1,000 Bounding box .dat California
doi: 10.1109/
WACVW.2015.11 3

Fathomnet
Marine organisms and
objects 75,000 Bounding box .json Global

doi: 10.1038/s41598-
022-19939-2 4

SUIM (Semantic Segmentation of
Underwater Imagery)

Marine organisms and
objects 1,500

Semantic
segmentation .bmp Global arXiv: 2004.01241 5

Fish-Pak Fish 900 Whole image NA Pakistan
doi: 10.17632/
n3ydw29sbz.3 6

Nature Conservancy Fisheries
Monitoring Fish aboard boats 8,000 Whole image NA Global NA 7

CoralNet Coral 94,000,000
Semantic
segmentation NA Global NA 8

LifeCLEF-16 Fish Dataset Fish 9,000 Bounding box .xml Global
doi: 10.1007/978-3-
319-44564-9_26 9

Trash-ICRA19: A Bounding Box
Labeled
Dataset of Underwater Trash

Marine robotics, debris,
fauna 5,500 Bounding box .json Sea of Japan

doi: 10.1109/
ICRA.2019.8793975 10

TrashCan 1.0: An Instance-
Segmentation
Labeled Dataset of Trash
Observations

Marine robotics, debris,
fauna 7,000

Instance
segmentation .json Sea of Japan arXiv: 2007.08097 11

Woods Hole Plankton Dataset Marine plankton 3,500,000 Whole image NA
Woods Hole
Harbor

doi: 10.4319/
lom.2007.5.204 12

Moorea labeled corals (MCL) Corals and non-corals 400,000
Semantic
segmentation NA Mo’orea

doi: 10.1109/
CVPR.2012.6247798 13

RSMAS + EILAT Corals 2,000 Whole image NA Red Sea
doi: 10.17632/
86y667257h.2 14

ZooScan Marine zooplankton 19,000 Whole image NA France
doi: 10.1093/plankt/
fbp124 15

Kaggle Plankton Data Marine plankton NA Whole image NA
Hatfield Marine
Science Center NA 16

Wildfish Fish 55,000 Whole image NA Global
doi: 10.1145/
3240508.3240616 17

(Continued)
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label types the software allows (i.e., whole image labeling, bounding

box labels, polygon labels, semantic labels, panoptic labels); and (iv)

and labeled data file formats the software is capable of importing

and exporting (e.g., Pascal VOC XML, COCO JSON).

3.2.4 Publicly available databases of annotated
imagery from the field

In the computer vision literature, large, publicly available

labeled image datasets such as ImageNet (14.2 million images;

Russakovsky et al., 2015) and COCO (over 320,000 images; Lin

et al., 2014) have been pivotal in driving the development of image-

based ML methods. These datasets provide researchers with a

source of data for quickly testing new model architectures, and

for benchmarking and comparing new models using the same data

sources. However, perhaps not surprisingly, these datasets contain

relatively few images and label classes that are directly relevant to

the use cases of interest to most marine scientists (Qin et al., 2016).

Over the past decade, a number of curated open source databases
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containing labeled imagery from marine environments have begun

to come online. The largest and most thoroughly curated of these

are listed in Table 2. Depending on the specific problem a researcher

is interested in addressing, these datasets may provide useful

resources for model pre-training (Salman et al., 2016; Orenstein

and Beijbom, 2017; Knausgård et al., 2021; Li et al., 2022), or if

classes of interest are contained within one or more of these

datasets, they may contain sufficient examples to train an initial

model that can be deployed on new imagery and fine-tuned with

new labels if needed.

3.2.5 Size of training set and balance among
classes

An obvious question that arises when creating a training dataset

is the question of how many images are required to achieve a

desired level of performance. Several recent studies have sought to

address this question for the tasks of instance segmentation (Ditria

et al., 2020) and whole image classification (Piechaud et al., 2019;
TABLE 2 Continued

Dataset Name Subject

Approx.
label
count Label type

Label
file
type

Geographic
location

Published
reference URL

Labeled fishes in the wild Fish 1,000 Bounding box NA
Southern California
Bight

doi: 10.1109/
WACVW.2015.11 18

DIDSON Imaging Sonar fish dataset Fish 1,500 Whole image NA
Ocqueoc River,
Michigan, USA

doi: 10.1038/
sdata.2018.190 19

OBSEA EMSO Fish, underwater scenes 1,200 Whole image NA
OBSEA-EMSO
testing-site

doi: 10.1038/s41598-
018-32089-8 20

FishCLEF-2015 Fish 14,000
Semantic
segmentation .xml NA

doi: 10.1007/978-3-
319-24027-5_46 21

UNICT Underwater Background Underwater scenes 3,500
Semantic
segmentation .xml NA

doi: 10.1016/
j.cviu.2013.12.003 22

SeaCLEF-17 Dataset Fish, marine animals NA Whole image .xml Taiwan NA 23

Japan E-Library of Deep Sea Images
Organisms, geologic
features, debris NA Whole image NA

Deep-sea
environments NA 24
frontier
1. https://www.kaggle.com/datasets/smaranjitghose/sea-turtle-face-detection?msclkid=2540da87b6dd11eca46690336c5e94aa
2. https://github.com/open-AIMS/ozfish
3. https://swfscdata.nmfs.noaa.gov/labeled-fishes-in-the-wild/
4. https://fathomnet.org/
5. https://github.com/xahidbuffon/SUIM
6. https://data.mendeley.com/datasets/n3ydw29sbz/3
7. https://www.kaggle.com/competitions/the-nature-conservancy-fisheries-monitoring/data
8. https://coralnet.ucsd.edu
9. https://www.imageclef.org/lifeclef/2015/fish
10. https://doi.org/10.13020/x0qn-y082
11. https://doi.org/10.13020/g1gx-y834
12. https://hdl.handle.net/10.1575/1912/7341, https://doi.org/10.4319/lom.2007.5.204
13. https://doi.org/10.1109/CVPR.2012.6247798
14. https://doi.org./10.17632/86y667257h.2
15. https://www.seanoe.org/data/00446/55741/
16. https://www.kaggle.com/c/datasciencebowl
17. https://github.com/PeiqinZhuang/WildFish
18. https://www.st.nmfs.noaa.gov/aiasi/DataSets.html
19. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176783/
20. https://www.nature.com/articles/s41598-018-32089-8
21. https://link.springer.com/chapter/10.1007/978-3-319-24027-5_46
22. https://tinyurl.com/UNICT-Underwater-Bkg-Modeling
23. https://www.imageclef.org/lifeclef/2017/sea
24. https://www.godac.jamstec.go.jp/jedi/e/index.html
Cells labeled "NA" (not applicable) are not applicable to the corresponding dataset.Note that some databases are actively curated and updated over time. Image and label counts are approximate
and current as of October, 2022.
sin.org
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Villon et al., 2021). In these studies, performance metrics often

begin to saturate at around 1,000 and 2,000 labels of a given class,

beyond which point adding additional labeled data results in

diminishing gains in performance. This saturation of performance

around roughly 1,000 labeled instances per class is also consistent

with other analyses of ML model performance on field imagery

(e.g., Schneider et al., 2020 but see Durden et al., 2021). While the

precise number of labels required to provide a desired level of

performance is unlikely to follow a hard and fast rule, such numbers

do provide ballpark estimates of the number of labeled instances per

class one ought to have before expecting high performance from a

ML model. It is worth noting, however, that many studies that

report saturating performance as label count increases compute

these metrics on test sets selected at random from the overall set of

images used to train, test, and validate models (e.g., Ditria et al.,

2020; Villon et al., 2021). As we will show later, the method of test

set construction can have a major impact on measurements of

model performance.

In practice, when constructing training sets, several factors are

likely to influence the number of training labels available for each

class. The first is the time and cost required to manually generate

labels. Whole image classification by humans can be reasonably fast

(e.g., 5 seconds per image, Villon et al., 2018); instance

segmentation tends to be slower (e.g., 13.5 sec per image, Ditria

et al., 2020); and more elaborate labeling such as panoptic is slower

still (e.g., up to 20 minutes per image, Uijlings et al., 2020). How

much time and money might it cost to create a labeled dataset?

Assuming the per-image human instance labeling rate reported by

Ditria et al. (2020), it would take 3.75 hours to label 1,000 images of

a single class, which is not insignificant if objects of many different

classes must be labeled. Katija et al. (2022) performed a more
Frontiers in Marine Science 10
detailed valuation of the data contained within the initial release of

FathomNet and estimated the initially uploaded dataset consisting

of approximately 66,000 images to have taken over 2,000 hours of

expert annotation time at a cost of roughly $165,000 for the labeling

effort alone.

A second factor that influences the size of image datasets has to

do with limited availability of images of rare classes. Even relatively

large annotated image databases from the field typically contain

many classes that are represented by far fewer than 1,000 instances

(Schneider et al., 2020). Given the highly skewed distribution of

species abundances documented in ecosystems around the world

(McGill et al., 2007), it is simply expected that few species will be

common, and most species will be far rarer. This distribution of

species abundances is likely to result in image sets that contain

relatively few training images of most species (Villon et al., 2021).

When this is the case, using training routines (e.g., weighted

penalization of errors, Schneider et al., 2020; hard negative

mining, Walker and Orenstein, 2021) and ML pipelines that

enhance performance on rare classes may be the only option. As

an example of the latter, Villon et al. (2021) recently showed that,

few-shot learning models can begin to saturate performance with

tens of training examples per class rather than the thousand or more

required by more conventional ML models. For this reason,

development of few-shot learning methods is likely to be an

important area of research in the coming years.

3.2.6 Scope of training imagery versus
deployment imagery

One common source of underperformance of machine learning

methods on new imagery can be traced to the range of conditions

and class distributions present in the training set relative to new
FIGURE 3

Examples of different label types. (A) Whole image labels assign a class to the entire image, in this case the squid species that occurs in the image.
(B) Bounding box labels bound objects of interest within boxes and assign a class to each box. (C) Polygon labels bound each object of interest with
a polygon and assign a class to each polygon. (D) Semantic segmentation assigns a class to each pixel in an image, in this case, pixels are labeled
either “C. calyx” or “Open water” classes. In panoptic segmentation, pixels are assigned a class, and pixels belonging to the same instance of a given
class are grouped together. Here, pixels assigned to the C. calyx class would be grouped into a single instance.
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datasets on which the model is to be used. A good rule of thumb is

to try to create a training dataset that spans the range of conditions

you expect to sample when deploying the model on new imagery.

For example, if you plan to use an image classifier on shallow water

imagery collected from 30 distinct sampling locations across the

daylight cycle, to the extent possible, train on imagery that contains

the spatial and temporal variation inherent in this target use case.

This does not necessarily mean labeling more imagery, but rather,

labeling images that span the range of conditions expected when the

model is applied to new image data. González et al. (2017) provide a

detailed discussion of strategies for building a training and

validation routines that yields reliable estimates of the future

performance of a trained ML pipeline.
3.3 Case study: bounding box data from
the FathomNet database with species- and
genus-level class labels

As described above, our case study focused on six biological taxa

detected in imagery collected in the Monterey Bay and surrounding

regions of the coastal eastern Pacific. Images and corresponding

labels for the classes used in our case study can be downloaded

programmatically from FathomNet. Labels are downloadable from

FathomNet in the widely-used COCO JSON format, which includes

object bounding box instances corresponding to each image, along

with their classes, and metadata associated with each image.

Because we wished to apply a ML model called YOLO that does

not accept COCO JSON as an input format, we had to convert

labeled data to an admissible input format and create the necessary

directory structure. Code to download and convert images and

organize directories is provided at https://github.com/

heinsense2/AIO_CaseStudy.
4 Selecting and training a machine
learning model

4.1 Overview

After specifying an image analysis task and building a training

dataset, the next step is identifying a particular machine learning

model to train and test. Here, we are focused primarily on modern

computer vision methods for automated analysis, many of which

rely on deep learning – learning algorithms that involve the use of

deep neural networks (DNNs). Deep learning is a form of

representation learning, in which the objective is not only to use

input data (e.g., an image) to make predictions (e.g., the class to

which the image belongs), but also to discover efficient ways to

represent the input data that make it easier to make accurate

predictions (Bengio et al., 2013). Deep learning models are

representation learning algorithms that teach themselves which

features of an image are important for making predictions about

the image. By training on a set of labeled images, these algorithms
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learn a mapping between raw pixel values and the desired output

based on these features.
4.2 Technical considerations

Foundational work in deep learning demonstrated that

networks that are good at representing features useful for

prediction often share common structural features (LeCun et al.,

2015), and this idea has fueled the use of deep neural networks with

convolutional structure (Convolutional Neural Networks or

CNNs), network pre-training, and other practices that help

ensure that networks can quickly be trained to perform a target

task on a new dataset, rather than having to be fully re-designed and

trained de novo for each new application.

4.2.1 Selecting a machine learning model
The field of DNN-based models capable of performing image

classification, object detection, and semantic segmentation is

enormous, and expanding by the day. Table 3 provides a list of

models that have shown promising results on imagery collected

from either marine environments, or terrestrial environments that

present similar challenges to those frequently encountered in

marine environments (e.g., complex backgrounds, heterogeneous

lighting, variable image quality, etc.) that is up to date as of this

publication. Benchmarking sites (e.g., https://paperswithcode.com/

sota/object-detection-on-coco) are another useful resources for

tracking the most recent high-performing models on standard

computer vision tasks.

In a practical sense, choosing which ML model to use in any

particular setting involves first determining which models can

perform the target task (e.g., whole image classification vs. semantic

segmentation). For any given target task, there will be many available

models to choose from. We recommend researchers consider three

things when choosing from among these models: (i) have previous

studies evaluated and compared model performance? Has any study

been done that applied a particular model in a similar setting with

favorable performance? (ii) Is open-source code or a GUI-based

implementation of the model available? If so, how easy does it appear

to be to implement? Is it compatible with the computational

hardware you have available? (iii) How many additional packages,

software updates, and other back-end steps are required to be able to

train and deploy a given model using new data? In our experience,

perhaps the major hurdle associated with applying any given ML

model to a new dataset is the time required to configure the software

and system specifications necessary to run the model code. This

“implementation effort” may ultimately dictate which model an end

user ultimately selects. If a givenMLmodel has been shown to exhibit

good performance, but implementing that model requires significant

knowledge of command-line interfaces, software package installers or

dependencies, virtual environment management, hardware

compatibility, or GPU programming, it may simply require too

much invested time at the outset to be a viable option for

most researchers.
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4.2.2 Hardware implementation: CPU vs. GPU,
local vs. cloud

Another decision a user must make when implementing ML

pipelines is whether to run the computations involved in training,

testing, and deploying the model on a computer’s central processing

unit (CPU) or on the computer’s graphics processing unit (GPU).

Among the technological developments that enabled widespread

use of DNN models is software and hardware innovations that

allow these models to be trained rapidly and in parallel using GPUs.

The technical details of ML implementations on these two distinct

types of hardware are discussed in Goodfellow et al. (2016) and

Buber and Diri (2018). The advantage of training using a CPU is

that any computer can, in principle, be used to perform training

without the need for specialized hardware that some computers

have and others lack. The disadvantage is that, in the absence of

custom parallelization, training a DNN model of any depth using

CPUs can be prohibitively slow. Fortunately, many consumer-grade

workstations now ship with GPUs that are compatible with deep

learning frameworks like PyTorch (Paszke et al., 2019) and

Tensorflow (Abadi et al., 2016), and many universities and

research institutes are investing in shared GPU clusters. Another
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option for accessing machines capable of training ML models is

through cloud computing services such as Google Colab, Amazon

Web Services, Microsoft Azure, and others. Free cloud services

maybe a good option for researchers seeking to perform small pilot

studies of ML model performance on their own datasets. Paid cloud

services may be a particularly good option for researchers who wish

to have access to many GPUs or powerful GPUs for relatively short

periods of time, but who do not need or wish to manage their own

local computing hardware.
4.3 Case study: object detection and
classification with YOLO

Our case study task involves detecting objects of interest, along

with a bounding box and class label for each object. We selected one

of the most widely used object detection and classification pipelines,

YOLO (“You-Only-Look-Once”, Redmon et al., 2016). YOLO is

heavily used in industry and research applications, has fast

deployment times relative to other deep architectures, and is

relatively easy to use. Moreover, various versions of YOLO have
TABLE 3 Machine learning models applied to analysis of field imagery.

Model Study Task type Application
Performance
measures

Test set
construction
(in-domain vs.
out-of-domain)

Code
provided?

Mask R-
CNN Ditria et al., 2020

instance
segmentation,
classification

Identify and segment single fish species
in seagrass meadows

F1 scores,
mAP50

in-domain, out-of-
domain no

DeepMac Beery et al., 2021

instance
segmentation,
classification

Instance segmentation from terrestrial
camera traps

mAP, mean
RMSE, RSSE not reported no

SOLO (v1,
v2) Lv et al., 2021

instance
segmentation,
classification,
panoptic
segmentation

Instance segmentation of camouflaged
animals (terrestrial and aquatic).

Mean absolute
error,
root mean
absolute error not reported yes, 1

R-CNN
Salman et al.,
2020

bounding box
detection,
classification

Fish detection in a variety of field
settings (e.g. crowded, dynamic
background) Average F1 score in-domain yes, 2

Fast R-CNN
Chegini et al.,
2022

bounding box
detection,
classification

Detection and instance segmentation of
weeds.

mAP, precision,
recall, F1 score in-domain

no, some
pseudocode
provided

YOLO
Jalal et al., 2020;
Yusup et al., 2020

bounding box
detection,
classification,
instance
segmentation

Fish detection and classification in
images and video Accuracy in-domain yes, 3

Megadetector Beery et al., 2021

bounding box
detection,
coarse classification

Object detection in terrestrial camera
traps

mAP, RMSE,
RSSE not reported yes, 4

Ensemble
Vision
Transformer

Kyathanahally
et al., 2022

whole image
classification

Whole image classification in several
field imagery
datasets, compared several DNNs/
ensembles

Reduction in
error relative to
other

Varies by dataset,
mostly in-domain
or k-fold in-domain no

(Continued)
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been incorporated into more complex detection and classification

pipelines that have shown promising results on marine imagery (e.g.,

Knausgård et al., 2021; Peña et al., 2021). For all analyses, we used

initial weights provided in YOLO v5 from pre-training on the COCO

dataset (https://github.com/ultralytics/yolov5 ). We selected the

“small” network size as a compromise between network flexibility

and the number of network weights that need to be estimated during

training. Prior to training and testing, we reduced the resolution of

images to 640 x 640 px (the impact of changing resolution is

evaluated below). We included the five classes of squid and fish in

our primary analysis, and reserved images of the siphonophore, N.

bijuga, for a later analysis (see “Distractor classes” below).

We benchmarked training and deployment of YOLO v5 using

both in-house hardware (a single workstation with four GPUs), and a

cloud-based implementation. For the local hardware implementation,

we used a Lambda Labs Quad workstation running Ubuntu 18.04.5

LTS and equipped with four NVIDIA GeForce RTX 2080 Ti/PCIe/

SSE2 GPUs, each with 11,264 MB of memory. The machine also had

a 24 Intel Core i9-7920X CPUs @2.90GHz with 125.5GiB of memory.

Our cloud implementation used Google Colab (https://

colab.research.google.com ), a cloud-based platform for organizing

and executing Python programs using code notebooks (termed
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“Colab Notebooks”). Our cloud implementation made use of these

resources using a Google Compute Engine backend with a single

NVIDIA K80/Tesla T4 GPU with 16 GB of memory. In both local

and cloud implementations, all models were trained for 300 epochs

(or for fewer epochs when early stopping conditions were met) using

all available GPUs. Run times on our local and cloud

implementations were comparable, with the 4 GPU local machine

performing slightly faster (mean of 19.1 sec per training epoch; 1.59

hours to complete 300 epochs) than the single GPU cloud

implementation (mean of 26.8 sec per training epoch; 2.23 hours to

complete 300 epochs). System specifications, software versions,

training settings and all other details required to repeat our

analyses are described in the accompanying code tutorial at https://

github.com/heinsense2/AIO_CaseStudy.
5 Evaluating model performance

5.1 Overview

After training models, a final step in the model building process

is to evaluate model performance. Many metrics are available for
TABLE 3 Continued

Model Study Task type Application
Performance
measures

Test set
construction
(in-domain vs.
out-of-domain)

Code
provided?

classification
methods

Densenet
169
Convnet
Ensemble Wyatt et al., 2022

whole image
classification

Whole image classification from coral
thumbnails

Data-shifting
accuracy using
Expected
Calibration Error

in-domain, out-of-
domain yes, 5

RetinaNet,
YOLO v5 Katija et al., 2022

bounding box
detection,
classification

Object detection, classification of many
class types
in diverse benthic imagery

Accuracy,
confusion matrix

in-domain, out-of-
domain yes, 6

Inception v3 Allken et al., 2019
whole image
classification Species classification for trawl surveys Accuracy in-domain no

AlexNet Jaüger et al., 2015.
whole image
classification

Spcecies identification of fish from
thumbnails Accuracy, mAP in-domain no

GoogLeNet Villon et al., 2018
whole image
classification

Fish species classification from
underwater
thumbnail images Accuracy in-domain no

CNN-SENet
Knausgård et al.,
2021

bounding box
detection,
classification

Temperate fish detection, classification,
compared several DNNs Accuracy in-domain no

Conv. GANs Zhao et al., 2018
whole image
classification Live fish identification in aquaculture Accuracy in-domain yes, 7
1. https://github.com/aim-uofa/AdelaiDet/
2. https://github.com/ahsan856jalal/Fish-Abundance
3. https://github.com/ahsan856jalal/Fish-detection-and-classification-using-HOGY.git
4. https://github.com/microsoft/CameraTraps/blob/main/megadetector.md
5. https://doi.org/10.5281/zenodo.6317553
6. https://github.com/fathomnet/models
7. https://github.com/Zhaojian123/Transactions-of-the-ASABE
A selection of past models used to perform image analysis tasks on field imagery. Performance measures reported describes which performance measures were reported for test sets in each study.
Test set construction describes whether the statistics reported were computed using a test set derived from the same overall dataset used to train the model (“in-domain”), or whether the test set
was deliberately constructed using data from new spatial or temporal regions (“out-of-domain”). The Code provided column indicates whether the study provided the code used in their analyses.
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measuring the performance of ML models, and the most

appropriate metric in any given application will depend both on

the task the model is trained to execute (e.g., image classification vs.

semantic segmentation), and the relative importance of different

kinds of errors the model can make (e.g., false positives vs. false

negatives), which must, of course, be determined by the researcher.

Goodwin et al (2021) and Li et al (2022) provide approachable

discussions of common metrics, along with formulae for computing

them and the logic that underlies them. Tharwat (2020) provides a

more technical account of classification metrics and their strengths

and weaknesses. In very general terms, one typically wishes to

evaluate the ability of the MLmodel to predict the correct class of an

object, image, or subregion of the image, and, if the method

provides spatial predictions about objects or semantic classes

located in different parts of the image, one would like to know

how accurate these spatial predictions are.
5.2 Technical considerations

For whole image classification, performance metrics seek to

express the tendency of the model to make different kinds of errors

when predicting classes. For example, suppose a researcher has 300

sea surface satellite images, and a model is trained to determine

which images contain harmful algal blooms (HABs) and which do

not (Henrichs et al., 2021). The classification accuracy of the model

is the ratio of images that were assigned the correct class (HAB

present vs. HAB absent) over the total number of images classified:

(true positives + true negatives)/(total images classified). If the

model correctly predicted 100 images that contained HABs, and

correctly predicted 100 images that did not contain HABs, the

accuracy is 200/300 = 0.67. Accuracy is an appealing measure

because of its simplicity but it can be misleading, particularly

when the dataset contains multiple classes and the relative

frequency of classes differs (see discussion in Tharwat, 2020).

Other widely-used metrics including precision, recall, and F1

score, were designed to capture other aspects of model

performance, while avoiding some of the biases of classification

accuracy. The precision of a classifier measures the fraction of

positive class predictions that are correct. If the model classifies 130

images as containing HABs and 100 of these images actually

contain HABs, the precision of the classifier is 100/130 = 0.77.

Recall, sometimes also referred to as “sensitivity,” measures the

ability of a model to detect all images or instances of a given class

that are present in the dataset, thereby expressing how sensitive the

model is to the presence of a class. If the classifier correctly classifies

100 images containing HABs but the dataset contains 160 images

that contain HABs, the model’s recall is 100/160 = 0.63. The F1
score provides a composite performance measure that incorporates

both precision and recall: F1 = 2 (precision x recall)/(precision

+ recall).

For methods that make spatial predictions, there is an

additional question of whether the model’s spatial predictions are

located in the right place. Among the most widely-used methods for

measuring the spatial overlap between predictions and data this
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involves computing the spatial overlap between a prediction from

the model and objects in the labeled image. This is often measured

using the intersection-over-union (IoU): the intersection area of the

predicted borders or bounding box of an object and the borders or

bounding box of the label, divided by the total number of unique

pixels covered by the bounding box and the label. Pairs in which the

predictions precisely overlap labels will have equal intersection and

union, giving an IoU value of one. Complete mismatches, partial

spatial matches, or cases where the predicted and labeled bounding

boxes differ in size will result in a union that exceeds the intersection

and an IoU value less than one, with a minimum of zero when there

is no overlap between predicted and observed bounding boxes.

In object detection and classification tasks, the added

complication of predictions being spatial raises some questions

about how one ought to compute the accuracy of class predictions.

A standard practice is to consider a given bounding box a valid

“prediction” if its IoU value exceeds some pre-specified threshold,

which is often set arbitrarily at 0.5. For bounding box-ground truth

pairs exceeding this threshold, one then evaluates performance

using one or more of the same metrics applied in whole image

classification (e.g., accuracy, precision, recall, F1 score, etc.). A

widely-used metric is the mean average precision (mAP), which

is most commonly calculated from the precision-recall curve as the

average precision of model predictions over a set of evenly spaced

recall values (Everingham et al, 2010), where the precision-recall

curve represents model precision as a function of model recall

across a range of values of a threshold parameter. The thresholds

most often used are the box or instance confidence score and the

IoU of predicted and labeled object detections. By default, YOLO v5

produces two measures of mean average precision: mAP@0.5,

which is the mean average precision of the model assuming

matches constitute all prediction-ground truth pairs with IoU >=

0.5, and a second measure, mAP@0.5:0.95, which is the arithmetic

mean of average precision of the model computed across a range of

threshold IoU values in the set, {0.50, 0.55,0.60,…,0.90, 0.95}.

Different studies and machine learning software implementations

compute mAP slightly differently, so ensuring that you understand

how it is being computed is important when comparing predictions

across studies or ML methods.

5.2.1 Cross validation and performance
evaluation

When evaluating the performance of a model on test images

held out during training, the exact values of performance metrics

will depend on the particular subset of images used during testing.

Because training, validation, and testing image sets are typically

selected at random from the overall image set, random variability in

exactly which images end up in training, validation, and test sets will

invariably introduce stochasticity in performance estimates. One

way to address this is to create several or even many random subsets

of the overall image dataset into training, validation, and test sets.

This is sometimes referred to as k-fold cross validation, where k

denotes the number of training/validation/test splits included in the

analysis. The objective of this type of cross validation is to provide

more robust measures of performance by averaging over multiple
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random partitions of the data into training, validation, and

testing sets.

5.2.2 Non-random partitioning and “out-of-
domain” performance

In addition to cross validation using random partitions of the

data, it is also becoming more common to evaluate model

performance on non-random partitions of data into training/

validation and test datasets (Schneider et al., 2020; Taori et al.,

2020). Typically, this is done to produce test sets that are more

representative of new data on which the ML pipeline is intended to

be used. For example, if one wishes to train an image classifier to

classify coral species from images (Wyatt et al., 2022), and this

classifier is intended to be used at new locations in the future, one

way to test its performance would be to divide the annotated

imagery available into distinct spatial locations, and to construct

the training and validation set from a subset of those locations,

while holding out other locations that the model never sees during

training. This type of model evaluation seeks to determine whether

models are capable of performing well on images that may have

very different statistics than the images on which they were trained.

We will come back to this issue in the following section.
5.3 Case study: performance on
object detection and classification of
underwater imagery

In-domain performance on test imagery. Images of our target

classes in FathomNet were collected at many different physical

locations, and over decades of sampling (32 years spanning 1989-

2021) using remotely operated vehicles equipped with a range of

different types of imaging equipment. This led to an image set with

complex and diverse backgrounds, highly variable visual conditions,

and a wide range of image statistics (Figure 2) – characteristics that
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we expect will also be typical of medium- to long-term image

datasets collected from other locations. Despite this variability, after

training YOLO v5, we were able to achieve high object detection

and classification performance on test imagery selected at random

from the same spatial region or temporal period used to build the

training set (Table 4 “in domain”). Mean average precision (mAP)

of model predictions ranged from 0.67-0.95, and three classes had

mAP values of 0.88 or above. Model F1 scores had an average value

of 0.77, and three classes had F1 scores of 0.81-0.92. To put these

performance metrics in context, Ditria et al. (2020) quantified the

ability of citizen scientists and human experts to detect and classify

a fish species (Girella tricuspidata) in images taken from shallow-

water seagrass beds in Queensland, Australia. Citizen scientists and

experts had mean F1 scores of 0.82 and 0.88, respectively.

Comparing performance of YOLO v5 on our dataset to these

benchmarks implies that our detection and classification results

are in the same range as those of human annotators on a

similar task.

5.3.1 Out-of-domain performance: evidence for
distribution shifts

As noted above, many researchers who wish to use machine

learning pipelines to analyze imagery from the field often intend to

use trained pipelines to analyze new imagery taken at later dates or

different physical locations, rather than focusing solely on images

taken from the same database used to construct the training set

(Beery et al., 2018; Wyatt et al., 2022). To simulate this scenario, we

performed a nonrandom, four-fold cross-validation procedure on

the overall set of annotated imagery available on our classes of

interest in FathomNet. This involved two different kinds of

nonrandom partitioning of the dataset. The first was a temporal

partition, in which we divided all annotated images of our focal

classes into images collected prior to 2012, and images collected

from 2012 through the present. This partitioning resulted in pre-

2012 and post-2012 (2012 onward) image subsets. Splitting the data
TABLE 4 Average performance of YOLO v5 object detection and classification on images selected at random from the same spatial or temporal
partition used to build the training set (“in-domain”), or the partition held out (“out-of-domain”).

in domain out of domain

Class p r mAP F1 p r mAP F1

Average 0.76 0.79 0.81 0.77 0.64 0.61 0.62 0.62

C. calyx (1) 0.90 0.94 0.95 0.92 0.81 0.87 0.89 0.84

D. gigas (2) 0.60 0.64 0.67 0.62 0.62 0.59 0.64 0.60

G onyx (3) 0.80 0.90 0.89 0.85 0.51 0.37 0.38 0.43

Sebastes (4) 0.71 0.63 0.67 0.67 0.53 0.53 0.49 0.53

Sebastolobus (5) 0.81 0.82 0.88 0.81 0.70 0.67 0.71 0.69

Squid (1-3) 0.88 0.92 0.94 0.90 0.78 0.85 0.85 0.81

Fishes (4-5) 0.80 0.77 0.84 0.78 0.77 0.72 0.77 0.74
frontiers
Note near universal decrease in all performance measures in out-of-domain data consistent with distribution shifts across spatial and temporal partitions. Metrics reported are precision (p), recall
(r), mean average precision (mAP), and F1 score (F1). Drops in mAP and F1 between in-domain and out-of-domain sets of greater than 0.10 are bolded. “Squid” and “Fish” rows give results for
class coarsening experiment (see “Class Coarsening” in text), where species and genus-level classes are aggregated into coarser classes, fishes (Sebastes and Sebastolobus) and squid (C. calyx, D.
gigas, and G. onyx). Note mAP and F1 scores on “Fishes” class in out-of-domain data exceeds performance on either of the individual fish genera, indicating an overall enhancement in
performance through class aggregation.
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at 2012 yielded a similar number of labeled instances for most

classes before and after the split. The second partition we performed

was a spatial partition. Images from all sampling dates were pooled

together. But for each class, we divided images either by depth or by

latitude and longitude to ensure that images of each class were

divided into distinct spatial “regions,” defined arbitrarily as region 1

and region 2. This temporal and spatial partitioning resulted in a

four-fold partition of the data: two temporal sampling periods, and

two spatial regions. We measured average performance over the

four data partitions by training on one of the partitions and testing

on the other (e.g., training on pre-2012 images and testing on post-

2012 images).

Figure 4 and Table 4 shows the results of this analysis.

Performance metrics were generally lower in the out-of-domain

partition than in the partition from which training data were drawn

(general trend of decreasing performance evident in Figure 4). This

decrease in performance was particularly extreme for certain

classes. For example, average mAP and F1 scores for the black-

eyed squid, Gonatus onyx, were cut approximately in half – from

0.89 and 0.85, respectively, to 0.38 and 0.43 – when a model trained

on one partition was deployed on the other. As previously suggested
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(Katija et al., 2022), these findings imply that distribution shift
occur in the FathomNet dataset, and that these shifts can

significantly degrade performance when models are trained on

data from one set of locations or time periods and deployed on

imagery from new locations or time periods. This phenomenon

appears to be widespread in imagery collected from the field

(Schneider et al., 2020; Wyatt et al., 2022).
6 Diagnosing and improving model
performance on new imagery

6.1 Overview

Although ML-based frameworks have shown impressive

classification performance on imagery from marine systems (e.g.,

Kyathanahally et al., 2022), inevitably, all models make errors.

Moreover, the degree to which a previously trained model makes

errors when applied to new image datasets can change over time as

new imagery changes relative to the original dataset used to perform

training. Therefore, one key step in building and maintaining a ML
FIGURE 4

YOLO v5 model performance on imagery from FathomNet. Change in mean average precision (left) and F1 score (right) when a model is tested
using out of sample data from the same spatial or temporal partition from which training data was selected (“in-domain”), and when the same model
is tested using data from a different spatial or temporal partition (“out-of-domain”). Colors indicate different classes, and lines connect points from
the same spatial or temporal partitioning of the data to indicate trends.
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pipeline for automated image analysis is diagnosing performance

problems and finding ways to fix them (Norouzzadeh et al., 2018).

In this section, we address issues that can degrade performance of a

ML pipeline, and suggest approaches for remedying these issues.

Many such issues can be traced back to the problem of distribution

shift (Beery et al., 2018; Schneider et al., 2020; Taori et al., 2020). A

distribution shift occurs when the imagery on which a ML pipeline

is trained differs in some systematic way from the imagery on which

the pipeline is deployed – that is, the new imagery the ML method is

being used to analyze. The term “distribution shift” refers to a

generic set of differences that may occur between one set of images

(the “in-domain” set) and another (the “out-of-domain” set),

including things like differences in lighting, camera attributes,

image scene statistics, background clutter, turbidity, and the

relative abundances and appearances of different classes of objects

(Taori et al., 2020; Scoulding et al., 2022; Wyatt et al., 2022).

Many existing ML methods perform poorly under distribution

shifts without careful training interventions (Beery et al., 2018;

Schneider et al., 2020; Taori et al., 2020). Despite this, human

labelers exhibit similar performance on original and distribution

shifted datasets (Shankar et al., 2020), suggesting that distribution

shifts do not reduce the information needed to accurately identify

objects per se, but rather that the structure and training of ML

models cause them to fail on distribution shifted imagery (Taori

et al., 2020). Given that distribution shifts are documented here

(Figure 4, Table 4), and in past studies of imagery from the field

(e.g., Beery et al., 2018; Schneider et al., 2020; Katija et al., 2022), a

natural question is whether there are steps that can be taken to

reduce their effects on model performance.
6.2 Technical considerations

A wide array of methods have been proposed to improve the

performance of ML models on new imagery that is distribution

shifted relative to training images. These range from training

interventions like digitally altering (i.e., “augmenting”) training

imagery to destroy irrelevant features that can result in

overtraining (Bloice et al., 2019; Buslaev et al, 2020; Zoph et al.,

2020), to the use of more robust inference frameworks such as

ensemble models, which combine predictions of multiple machine

learning models (Wyatt et al., 2022). To provide a sense for how

some of these methods work, we applied a suite of training

interventions to our case study dataset.

Image augmentation is a widely used method for improving

model performance on out-of-sample and out-of-domain imagery

(Bloice et al., 2019; Buslaev et al, 2020; Zoph et al., 2020). Image

augmentation involves applying random digital alterations of

training imagery during the training process to help avoid over-

fitting ML models to specific nuances of training imagery that are

not useful for identifying objects of interest in general.

Augmentation of training images is used by default in many ML

pipelines (including YOLO v5) as part of the training process, but

augmentation parameters are often tunable, so having some

understanding of how different types of augmentation affect

performance on field imagery is useful.
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Increasing image resolution is another straightforward training

intervention. Due to the computational and memory demands of

training DNN-based ML models, it is common to reduce image

resolution during training, testing, and deployment (e.g.,

Kyathanahally et al., 2022). However, if objects of interest

constitute relatively small regions of the overall image (e.g.,

Figure 2), reducing resolution can coarsen or destroy object

features that can be important for detection and classification.

The loss or degradation of these features during training and

deployment, mean that they cannot be used to accurately detect

and classify objects in new imagery that is distribution shifted

relative to the training set. It may, therefore, be beneficial in some

applications to maintain higher image resolutions during training

and deployment.

Training using background imagery is another intervention

that is relatively easy to implement. While it can be costly to label

new imagery for the reasons discussed above, it can be relatively

cheap to identify “background images,” defined simply as images

that do not contain objects of interest. Training a ML model by

deliberately including background imagery in the training set has

been proposed as one method for helping models to better

generalize to new image sets (Villon et al., 2018).

A fourth type of intervention is known as class coarsening.
Intuitively, objects that are visually similar are likely to be harder to

discriminate than are objects that look very different. Given this,

one potential solution to improve model predictions under

distribution shifts is to coarsen class labels in a way that results in

similar looking classes being aggregated into a single super-class

(Williams et al., 2019; Katija et al., 2022). In biological applications,

this may result in aggregating classes with finer phylogenetic

resolution (e.g., species or genus-level classes) into classes with

coarser resolution (e.g., family or order-level classes or coarse

species groups). For instance, rather than requesting individual

species of sea fan and corals, one might simply specify “sea fans”

and “corals” as classes (but see Howell et al., 2019 for a discussion of

the need to aggregate with care). Whether this is a suitable training

intervention obviously depends on the ultimate goal of the image

analysis and whether coarser class labels are acceptable.

A final intervention we consider is training on images that

include objects in distractor classes. The definition of the term

“distractor” in the computer vision literature has varied (e.g., see

Das et al., 2021 vs. Zhu et al., 2018). Here, we define a distractor

class as a class of object that shares visual characteristics with a

target class and could reasonably be confused with the target class

during classification. This working definition is consistent with the

way the term “distractor” is used in the visual neuroscience

literature (e.g., Bichot and Schall, 1999). When training ML

models to detect a certain class or small set of classes, it is

common to train models using labels of only the class or classes

of interest. However, if distractor classes are regularly present in

new imagery, they can degrade model performance. Deliberately

including images of distractor classes in the training set is a form of

adversarial training that may improve model performance when

distractor classes occur in new imagery.

In addition to these simple training interventions, a variety of

other solutions to improve model robustness on new imagery have
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been proposed. These include the use of ensemble models, where

predictions are derived not from just one deep neural network, but

from many networks whose predictions are combined to make an

overall class prediction (Wyatt et al., 2022), adversarial training,

sometimes also called “active learning,” in which models are re-

trained with images on which they previously made errors (Mathis

et al., 2020), training on synthetic data (Schneider et al., 2020), and

stratified training in which the relative abundance of classes in the

training set are modified by excluding or including extra examples

of one class or another (Schneider et al., 2020). There are related

methods that seek instead to analyze the output of automated

systems at the sample level, rather than the individual level, to

correct errors and detect changes in new domains (González et al.,

2019; Walker and Orenstein, 2021). We refer the reader to the

research cited in this section, and to Taori et al. (2020); Schneider

et al (2020) and Koh et al. (2021) for further reading on methods for

improving performance under distribution shifts.
6.3 Case study: training interventions and
performance on out-of-domain imagery

6.3.1 Image augmentation
To test whether and how augmentations might improve model

performance on new imagery, we applied three kinds of augmentation

to images during training: orientation augmentations, in which the

training image and corresponding bounding box is scaled or flipped by

a random amount, color space augmentations, in which the color

attributes of the training image are randomly perturbed during

training, and mosaic augmentation, in which sets of training images

from the training set are randomly selected, cropped, and recombined

to form a new composite “mosaic” image used in training. We tested

the impact of each of these augmentation types by starting with all of

them active, then dropping one augmentation type at a time. For each

of these augmentation “treatments,” we computed performance

metrics on the out-of-domain testing set, averaging over all four

partitions of the data. Augmentation parameters and parameter

values are defined in the case study code accompanying

this manuscript.

Applying no augmentations at all resulted in the poorest

performance (Table 5), whereas the best performance occurred

when all augmentations were applied. However, the effects of
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augmentations were highly variable among different partitions of

the data, and among classes. These results suggest that

augmentation may indeed be a way to improve generalization on

new imagery, but that effect of augmentation may differ from one

class to another. We did not observe a systematic decrease in

performance under any augmentation scheme. However, Tan

et al. (2022) recently reported such decreases in performance in

the context of marine benthic imagery, emphasizing that it is

important to choose augmentation routines with care.

6.3.2 Image resolution
To explore the impact of changing image resolution in our case

study, we modified the default resolution specified in YOLO v5 (640

px x 640 px) to a higher resolution (1280 px x 1280 px). Between 91%

and 98% of images available in FathomNet for each class have a

resolution equal to or greater than 640 pixels along at least one axis.

Images with resolution lower than 1280 x 1280 were loaded at full

resolution and padded at the borders to reach the desired training

resolution. Effects of increased image resolution were not large. For

example, the average change in mean average precision on out-of-

domain data across the four partitions was 0.04, and the largest

performance increase was only 0.05 (for G. onyx), while performance

on C. calyx actually dropped slightly when we used higher resolution

imagery. It is worth noting that differences in resolution between

training and testing data can cause degraded performance (Recht

et al., 2019), which may have contributed to a lack of improvement in

performance in some of the partitions (e.g., pre-2012 vs. post-2012

splits, for which image resolution systematically differed).

6.3.3 Training on background imagery
To test whether training on background imagery could improve

out-of-domain performance, we re-trained YOLO v5 using the post-

2012 partition as a training set, but we also included background

images from the pre-2012 and post-2012 partitions in the training

imagery. Including background imagery improved performance on

all classes (Table 6), with the largest increases in performance for

Dosidicus gigas and Gonatus onyx, the classes with the fewest labels in

the training set (n = 42, and n = 84 labeled instances, respectively).

6.3.4 Class coarsening
To explore whether class coarsening improved performance

under distribution shifts, we coarsened class labels from the species
TABLE 5 Effect of image augmentation on performance of YOLO v5 on out of domain set.

Augmentation type p r mAP F1

No augmentation 0.38-0.62 0.17-0.72 0.20-0.67 0.22-0.62

No mosaic 0.47-0.79 0.37-0.84 0.34-0.85 0.36-0.81

No orientation 0.51-0.77 0.34-0.84 0.36-0.84 0.39-0.8

No color space 0.54-0.84 0.36-0.86 0.41-0.89 0.42-0.85

All augmentations 0.54-0.83 0.41-0.88 0.45-0.90 0.47-0.85
fron
Metrics reported are precision (p), recall (r), mean average precision (mAP), and F1 score (F1). Each cell reports the range of values across classes after averaging performance of each class over
spatial and temporal partitions. “No augmentation” used only raw training images to train model. “No mosaic” used orientation augmentations and color space augmentations only. “No
orientation” used color space and mosaic augmentations only. “No color space” used mosaic and orientation augmentations only, and “All” used mosaic, orientation, and color space
augmentations. A description of these augmentation types is given in the text, and specifics of implementation in YOLO v5 and parameter values are provided in the case study code: https://
github.com/heinsense2/AIO_CaseStudy.
tiersin.org
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(Gonatus onyx, Chiroteuthis calyx, and Dosidicus gigas) and genus

level (Sebastes and Sebastolobus) to the coarse categories of squids

and fishes. Table 4 shows performance of YOLO v5 when trained

and tested on these coarser classes. As expected, coarsening classes

resulted in a smaller average drop in model performance when

models were applied to out-of-domain data. For the squid class, out-

of-domain performance was higher than for any individual class in

the fine class model except for C. calyx (class for which the model

had the highest performance). Out-of-domain performance for the

fish class was higher than performance on either of the individual

fish genera in the analysis where genera were treated as

separate classes.

6.3.5 Training with distractor classes
To quantify the impact of training with distractor classes on

model performance, we restricted our analysis to two classes: the

swordtail squid, Chiroteuthis calyx, and the siphonophore,

Nanomia bijuga. In particular, we sought to determine whether a

trained ML model could discriminate images of juvenile swordtail

squid in an image set containing images of juvenile C. calyx and

imagery of N. bijuga, a distractor class that is a mimicked both

morphologically and behaviorally by juvenile C. calyx (Burford

et al., 2015). Because the spatial distributions and habitat use of

these two species overlap, a researcher interested in C. calyx would

likely need to contend with images containing N. bijuga, either by

itself or in the same image as the target class C. calyx (e.g. as in

Figure 1F). A naïve approach for training a ML model to detect

juvenile C. calyx, would be to train only on images of this target

class, and then to deploy the model on new images containing one

or both of the two classes.

Table 7 shows performance of YOLO v5 trained to detect

juvenile C. calyx using this naïve approach. Mean average

precision is relatively poor as are precision and recall scores (e.g.,

mAP = 0.54). Moreover, 22% of the instances of N. bijuga in test

data were erroneously classified as C. calyx, indicating that the

model often mistook the distractor class for the target class. To

determine whether training on both the target and distractor class

could help remedy this issue, we re-trained YOLO v5 with a training
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set containing labeled imagery of both juvenile C. calyx and N.

bijuga. We then applied this model to test imagery. Training on

both classes resulted in a pronounced increase in all performance

metrics to levels that match or exceed reported performance of

human labelers in similar tasks (precision = 0.86, recall = 0.9, mAP

= 0.87). Moreover, despite the strong morphological resemblance

between N. bijuga and juvenile C. calyx (Figure 1F), the model

trained on both classes never classified new images of C. calyx as N.

bijuga or vice versa (0% misclassification rate). A third approach to

improving model performance in the presence of distractor classes

that is less costly than manually labeling distractor classes is to

include in the training set images that contain the distractor, but to

treat these as unlabeled “background” imagery. That is, if an image

contains only the distractor class, it would be included in the

training set with no instance labels. To test this approach, we

used the same images of C. calyx and N. bijuga used to train the

two-class model, but we included no labels for the N. bijuga class.

Performance using this approach was only slightly lower than

performance of the model trained on labels of the distractor

(Table 7), indicating that such training be a viable alternative to

building a full dataset containing labels for distractors as well as the

target class.

6.3.6 Summary of training interventions and their
effects on performance on new imagery

The image set and number of classes used in our case study was

intentionally limited, so our findings should also be taken with this

in mind. Overall, we found that image augmentation (improvement

in mAP of 0.18-0.25, F1 of 0.04-0.25), and class coarsening (average

improvement in mAP of 0.21-0.25, F1 of 0.13-0.19) provided

improvements in performance on new imagery in all or most

classes in the dataset. Training distractors also resulted in large

improvements in performance for the target class used in the

distractor analysis (improvement in mAP of 0.25-0.33, F1 of 0.22-

0.33). The impact of training on background imagery was more

variable, but still resulted in overall improvements in performance

for most classes (improvement in mAP of 0-0.08, F1 of 0.01-0.11).

Training and deploying the model on high-resolution imagery (as
TABLE 6 Effect of including background imagery on performance of YOLO v5 on out of domain imagery (temporal partitions).

No BG images BG images

class
num. labels
in training set p r mAP F1 p r mAP F1

C. calyx 351 0.84 0.88 0.90 0.86 0.87 0.88 0.90 0.88

D. Gigas 229 0.48 0.46 0.51 0.47 0.57 0.60 0.59 0.58

G. onyx 94 0.66 0.53 0.57 0.59 0.76 0.51 0.60 0.61

Sebastes 445 0.67 0.54 0.61 0.60 0.65 0.60 0.63 0.62

Sebastolobus 1178 0.74 0.82 0.83 0.78 0.76 0.82 0.84 0.79
frontiers
“No BG images” shows performance of standard training in which no background images are included in the training set. “BG images” shows statistics for training runs in which background
images from pre-2012 and post-2012 periods that did not contain any classes of interest were included in the training set. Metrics reported are precision (p), recall (r), mean average precision
(mAP), and F1 score (F1). Bolded mAP and F1 score values in “BG images” show cases where these statistics improved relative to training without background images. Results from the two
temporal partitions are averaged.
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opposed to images with reduced resolution) had the smallest and

most variable effect on performance (e.g., change in mAP of -0.04-

0.05), but this should be taken with the caveat that our image set

consisted of a mix of high- and low-resolution imagery, and that

resolution mismatches between training and testing data can

sometimes result in poor performance (Hendrycks and Dietterich,

2019; Recht et al., 2019).
7 Recommendations and conclusions

Image-based machine learning methods hold tremendous

promise for marine science, and for the study of natural systems

more generally. These methods can vastly accelerate image

processing, while also greatly lowering its costs (Gaston &

O'Neill, 2004; MacLeod et al., 2010; Norouzzadeh et al., 2018;

Katija et al., 2022). In doing so, they could fundamentally change

the spatial coverage and frequency of sampling achieved by field

research and monitoring efforts. Our objective in this work has been

to provide a guide for researchers who may be new to these

methods, but wish to apply them to their own data. If image-

based machine learning methods are to be more widely adopted and

fully exploited, the current high barrier to entry associated with

these methods must be lowered (Crosby et al., 2023). We therefore

conclude with four suggestions for the research community that we

believe could help expand the use of, and access to image-based

machine learning tools across marine science.
7.1 Open sharing of labeled image datasets
from the field

At present, the ability of researchers to test and engineer ML

methods relevant to the tasks marine scientists want to perform on

imagery is constrained by the limited publicly available data for

training and testing these methods. Thus, among the most

important steps that can be taken to improve ML models for use

in the marine domain, is to increase the availability, coverage,

quality, and size of domain-relevant labeled image datasets, as well

as the standardization of label formats and class naming

conventions across those datasets. As Table 2 shows, available

datasets focus rather heavily on tropical fishes, benthic habitats,

coral, and marine phytoplankton, whereas imagery of other kinds of

objects of interest and imagery from other habitats is not as well
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represented. Researchers who generate manually labeled image

datasets in the course of their work would contribute much to the

community by making those datasets available in a form that is

easily readable by ML pipelines. The issue of readability extends

beyond using standard file formats and labeling methods, it also

means using class naming conventions that are interpretable and

useable by other researchers in the future (Schoening et al., 2022).

Idiosyncratic class definitions – for example the use of project- or

institution-specific operational taxonomic units – are one major

factor that limits the utility of many existing image datasets (Howell

et al., 2019). The more standardized and interoperable such datasets

become, the more tractable it will be to fully exploit the tremendous

volume of ocean imagery currently being collected (Schoening

et al., 2022).

Good methods for releasing and publicizing datasets include

stand-alone publications (e.g., Saleh et al., 2020; Ditria et al., 2021),

publication of datasets as part of standard research publications

(e.g., Sosik & Olson, 2007), or contributing datasets to existing open

image repositories such as FathomNet (Katija et al., 2022) and

CoralNet (Williams et al., 2019). Of course, constructing labeled

image datasets requires funding, domain expertise, and a significant

commitment of personnel time. It is therefore crucial that

researchers who generate such datasets and the funding sources

that support them receive credit. This will involve a shift in

perspective from viewing labeled imagery as simply a means to an

end, to viewing these kinds of datasets as valid research products in

their own right (Qin et al., 2016; Ditria et al., 2021; Koh et al., 2021).

Fortunately, this shift in perspective is already beginning to occur,

and we expect funding agencies, tenure and promotion committees,

and the broader research community will continue to move in the

direction of recognizing the value of producing and sharing high-

quality labeled image datasets.
7.2 Sharing of open source code for
repeating analyses

A second recommendation is aimed at researchers who are

developing and testing ML methods for analyzing imagery from

the field. It is now commonplace among the larger computer

vision community for preprints, conference publications, and

journal publications to include links to code repositories that

contain the code necessary to repeat analyses. We encourage

researchers who are developing ML methods to solve problems
TABLE 7 Effects of distractor class on model performance.

p r mAP F1 Misclassification frequency

Train without distractor 0.49 0.68 0.54 0.56 0.22

Train with distractor as background 0.88 0.70 0.79 0.78 0.008

Train with distractor
labels

0.86 0.90 0.87 0.89 0
Precision (p), recall (r), mean average precision (mAP), and F1 score are shown along with misclassification frequency, the fraction of labeled instances of the distractor class, N. bijuga, that were
erroneously classified as the target class, C. calyx.
Detection of an object class of interest – in this case, juveniles of the swordtail squid, C. calyx – in imagery containing the class of interest and a distractor class, N. bijuga, that closely resembles the
target class (see Figure 1F).
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in marine science to follow this same practice. Providing the code

that accompanies work described in publications can accelerate

research. While newer studies are beginning to follow this

practice, it is still not as widespread among researchers working

in marine science as it is in the broader machine learning

community (Table 3). Code can be efficiently shared, for

example, through GitHub repositories or through “model zoo”

features of existing image repositories (e.g., https://github.com/

fathomnet/models). The machine learning community is adopting

standards to further enable model sharing via model and dataset

cards, resources that allow users to understand at a glance what

they are downloading (Mitchell et al., 2019). Applying similar

standards in the marine science community would help ensure

that code and accompanying data is structured and benchmarked

consistently across studies.
7.3 Develop and adopt standards for model
evaluation that accurately capture
performance in common use-cases

At present, there has been little standardization of model

performance metrics reported in papers that apply image-based

machine learning to problems in marine science. Different papers

report different metrics that often include just one or a few of the

performance measures described in “Evaluating model performance”

above. The most commonly reported metric across studies is

classification accuracy (Table 3), but, as noted above, this metric is

subject to biases that inherently make comparisons across studies

problematic (Tharwat, 2020). Another less obvious issue is that

different studies compute performance metrics from test data sets

that are built in very different ways. For example, some studies

compute performance from a single random partition of the data into

training, validation, and test sets. Others perform several random

partitions of the overall dataset using a k-fold cross-validation

procedure. Others still report true out-of-domain statistics

computed on test data from specific locations or time periods that

were held out during training (see Table 3). The manner in which test

imagery is selected (e.g., at random from in-domain data vs. from

out-of-domain data) can have a major impact on performance

measures, and any fair comparison between methods clearly

requires that performance statistics of competing methods be

computed in the same way.

In the end, the most appropriate performance measures will be

the ones that best reflect how a model will perform at the task for

which it is ultimately intended to be used (González et al., 2017). At

the same time, adopting a standard will likely be necessary if

performance is to be compared among studies. To achieve this

compromise, it will be productive for the community of developers

and users of image-based machine learning methods to begin a

conversation about the most appropriate standards for evaluating

models and comparing model performance among studies, with the

goal of identifying metrics that meet the needs of researchers. One

potentially fruitful question that could guide this conversation is

how the standard performance measures used to evaluate machine

learning models (e.g., precision, recall, F1) relate to widely-used
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statistics scientists often want to compute using image data (e.g.,

abundance, species richness, measures of ecological community

composition, Durden et al., 2021).
7.4 Develop open source, GUI-based
applications that implement full image
analysis pipelines

A full pipeline for applying image-based ML models in a versatile

way requires software to carry out tasks ranging from image labeling

and curation to visualizing results of ML model predictions. The

transition from largely manual analysis of imagery to ML-based

automated analysis is already taking place in other fields, and the

availability of free, GUI-based, and actively maintained software

packages that integrate all of these tasks has helped facilitate this

transition. We point to the DeepLabCut package (Mathis and Mathis,

2020; Mathis et al., 2020, https://github.com/DeepLabCut/

DeepLabCut) developed for the study of neuroscience and

quantitative behavior from laboratory videos as a potent example of

how easy-to-use software can rapidly increase use of ML methods

within a field. Although some efforts are underway to produce similar

“all-in-one” packages for analyzing imagery from marine

environments (e.g., the VIAME project; Richards et al., 2019), and

several application-specific packages are already in use (e.g. CoralNet,

Lozada-Misa et al., 2017; ReefCloud, ReefCloud, 2021), most research

groups that apply image-based ML models to data from the field still

use custom software pipelines that often combine many packages and

software modules (see references in Table 3). We believe that creating

software architectures that allow users to easily build their own

annotated image libraries and to quickly test and evaluate

performance of a suite of widely used ML methods may be the

single biggest step that can be taken to encourage broader adoption of

these methods in marine science.
8 Conclusions

The evolving research needs of the marine science community will

undoubtedly lead to new priorities, and we do not intend these

suggestions to be exhaustive. Yet, we believe these steps would go a

long way toward making image-based machine learning easier to use,

more reliable, and more accessible. As we move toward these goals, it

will be crucial to create an open dialogue between researchers who are

developing and testing image-basedMLmethods and researchers who

are collecting, labeling, and analyzing imagery from the field. Such a

dialogue will help fuel the development of novel methods that

empower marine scientists to use machine learning to study the

ocean in ways that were never before possible.
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