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Hybrid quantum-classical
convolutional neural network
for phytoplankton classification

Shangshang Shi †, Zhimin Wang*†, Ruimin Shang, Yanan Li,
Jiaxin Li, Guoqiang Zhong and Yongjian Gu*

Faculty of Information Science and Engineering, Ocean University of China, Qingdao, China
The taxonomic composition and abundance of phytoplankton have a direct

impact on marine ecosystem dynamics and global environment change.

Phytoplankton classification is crucial for phytoplankton analysis, but it is

challenging due to their large quantity and small size. Machine learning is the

primary method for automatically performing phytoplankton image

classification. As large-scale research on marine phytoplankton generates

overwhelming amounts of data, more powerful computational resources are

required for the success of machine learning methods. Recently, quantum

machine learning has emerged as a potential solution for large-scale data

processing by harnessing the exponentially computational power of quantum

computers. Here, for the first time, we demonstrate the feasibility of using

quantum deep neural networks for phytoplankton classification. Hybrid

quantum-classical convolutional and residual neural networks are developed

based on the classical architectures. These models strike a balance between the

limited function of current quantum devices and the large size of phytoplankton

images, making it possible to perform phytoplankton classification on near-term

quantum computers. Our quantum models demonstrate superior performance

compared to their classical counterparts, exhibiting faster convergence, higher

classification accuracy and lower accuracy fluctuation. The present quantum

models are versatile and can be applied to various tasks of image classification in

the field of marine science.

KEYWORDS

hybrid quantum-classical neural network, quantum convolutional neural network,
phytoplankton classification, parameterized quantum circuit, ansatz
1 Introduction

Phytoplankton is the most important primary producer in the aquatic ecosystem. As

the main supplier of dissolved oxygen in the ocean, phytoplankton plays a vital role in the

energy flow, material circulation and information transmission in the marine ecosystem

(Barton et al., 2010; Gittings et al., 2018). The species composition and abundance of

phytoplankton are key factors in marine ecosystem dynamics, exerting a direct influence on
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global environment change. As such, much attention has been paid

to the identification and classification of phytoplankton (Zheng

et al., 2017; Pastore et al., 2020; Fuchs et al., 2022).

With the rapid development of imaging devices for

phytoplankton (Owen et al., 2022), a huge number of

phytoplankton images can now be collected in a short time.

However, it has become impossible to classify and count these

images using traditional manual methods, i.e. expert-based

methods. To increase the efficiency of processing these images,

machine learning methods has been introduced, including support

vector machine (Hu and Davis, 2005; Sosik and Olson, 2007),

random forest (Verikas et al., 2014; Faillettaz et al., 2016), k-

nearest neighbor (Glüge et al., 2014), and artificial neural network

(Mattei et al., 2018; Mattei and Scardi, 2020). In particular,

convolutional neural network (CNN), which achieves state-of-

the-art performance on image classification, has become widely

used in this field in recent years. A variety of CNN-based

architectures have been proposed to identify and classify

phytoplankton with high efficiency and precision (Dai et al., 2017;

Cui et al., 2018; Wang et al., 2018; Fuchs et al., 2022).

To conduct large-scale research on marine phytoplankton,

more powerful computational resources are desired to ensure the

success of machine learning methods for handling the

overwhelmingly increasing volume of data. Along with the

remarkable progress in the field of quantum computing (Arute

et al., 2019; Zhong et al., 2020; Bharti et al., 2022; Madsen et al.,

2022), quantum machine learning (QML) has emerged as a

potential solution for large-scale data processing (Biamonte et al.,

2017). There is a growing consensus that even the near-term NISQ

(noisy intermediate-scale quantum) devices may find advantageous

applications (Preskill, 2018), one of which is the quantum neural

network (QNN) (Jeswal and Chakraverty, 2019; Kwak et al., 2021).

The QNN takes the parameterized quantum circuit (PQC) as a

learning model (Benedetti et al., 2019), and can be naturally

extended to a quantum deep neural network with the flexible

multilayer architecture. The quantum convolutional neural

network (QCNN) is a typical model of quantum deep neural

networks that has recently received a lot of attention and

achieved significant developments. QCNN has demonstrated its

success in processing both quantum and classical data, including

quantum many-body problems (Cong et al., 2019), identification of

high-energy physics events (Chen et al., 2022), COVID-19

prediction (Houssein et al. , 2022) and MNIST dataset

classification (Oh et al., 2020).

In this work, we explore the potential of QCNN for performing

phytoplankton classification. There are two typical architectures of

QCNN: the fully quantum parameterized QCNN (Cong et al., 2019)

and the hybrid quantum-classical CNN (Liu et al., 2021). Due to the

large size of phytoplankton images and the limited number of

qubits and quantum operations available on current quantum

devices, it is currently impractical to learn the images using fully

quantum parameterized QCNN. Therefore, we adopt the hybrid

quantum-classical convolutional neural network (QCCNN)

architecture to achieve good multi-classification of the

phytoplankton dataset. QCCNN integrates the PQC into the

classical CNN architecture by replacing the classical feature map
Frontiers in Marine Science 02
with the quantum feature map. This makes QCCNN friendly to

current NISQ devices in terms of both the number of qubits and

circuit depths, while retaining important features of classical CNN,

such as nonlinearity and scalability (Liu et al., 2021).

Moreover, the QCCNN may face challenges such as the barren

plateau problem (i.e. vanishing gradient) and degradation problem

(i.e. saturated accuracy with increasing depth) (Deng, 2021). To

address these issues, we further propose a hybrid quantum-classical

residual network (QCResNet) that incorporates a residual

architecture to enhance the QCCNN’s performance.

It is worth noting that the visual transformer has recently

achieved remarkable performance in image processing

(Dosovitskiy et al., 2020) by identifying long-range dependencies

and obtaining global information. Its success has led to its

application in classifying plankton datasets (Baek et al., 2022;

Dagtekin and Dethlefs, 2022; Kyathanahally et al., 2022; Shao

et al., 2022). In the future, it will be intriguing to develop

quantum visual transformer models based on the quantum self-

attention mechanism (Li et al., 2022; Shi et al., 2023; Zhao et al.,

2022), and explore their potential for phytoplankton classification.

The main contribution of this work is as follows:
(1) For the first time, the feasibility of using quantum deep

neural networks for phytoplankton classification is

demonstrated. This represents a concrete example of the

application of quantum machine learning methods in the

field of marine science.

(2) Several specific architectures for QCCNN and QCResNet

are developed, which are accessible on near-term NISQ

devices. Particularly, the QCResNet architecture is

proposed to enhance the QCCNN’s performance. These

models are versatile and can be directly applied to other

image classification tasks.

(3) The QCCNN and QCResNet models demonstrate

exceptional performance in phytoplankton classification

compared to template CNN and ResNet models.

Moreover, the impact of PQC’s expressibility and

entangling capability on QCCNN’s performance is

explored.
The rest of the paper is organized as follows. Section 2 provides

introduction to the preliminaries of QNN. In section 3, we discuss

the architectures of QCCNN and QCResNet. Section 4 describes the

phytoplankton dataset used in the experiment. Section 5 presents

the experimental results, including the performance of QCCNN

and QCResNet, as well as the impact of ansatz circuit on QCCNN’s

performance. Finally, conclusions are given in section 6.
2 Quantum neural network

QNN is a type of variational quantum algorithm, which is also

the hybrid quantum-classical algorithm. Typically, QNN consists of

four parts: data encoding, forward transformation performed by the

ansatz, quantummeasurement and parameter optimization routine,

as illustrated in Figure 1. It’s worth noting that the first three parts
frontiersin.org
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are implemented on the quantum device, while the optimization

routine is executed on the classical computer, which then feeds the

updated parameters back into quantum device.

Data encoding is the process of embedding classical data

into quantum states by applying a unitary transformation,

i.e.jx 〉 = Uej0 〉⊗ nwhere jx 〉is proportional to the data vector x.
Data encoding can be regarded as a quantum feature map that

maps the data space to the quantum Hilbert space (Schuld and

Killoran, 2019). QNNs leverage this exponentially large Hilbert

space as the feature space, making it extremely difficult to

simulate using classical resources (Havlıč́ek et al., 2017). One

of the most commonly used encoding method in QNN is the

angle encoding. It embeds classical data into the rotation angles

of the quantum rotation gates. For example, given a normalized

data vector x = (x1,…xN )
T with xi ∈ ½0, 1) , angle encoding can

embed it into

R⊗N
y (x)j0 〉⊗N = ⊗

N

i=1
cos

xi
2
j0 〉 + sin xi

2
j1 〉

� �
; (1)

where Ry is the rotation gate about the ŷ axes, i.e. Ry(xi) =

½cos xi
2 ,   − sin xi

2 ;   sin
xi
2 ,   cos

xi
2 � . For more information on data

encoding strategies, please refer to (Hur et al., 2022).

The ansatz can be seen as a quantum analogue of feedforward

neural network, which utilizes the quantum unitary transformation

to implement the feature map of data. Essentially, the ansatz is a

PQC with adjustable quantum gates. These adjustable parameters

are optimized to approximate the target function that maps features

into different domains representing different classes. Therefore, the

structure of ansatz circuit plays a crucial role in specific learning

tasks. In most cases, the hardware-efficient ansatz is adopted in

QNN, which uses a limited set of quantum gates and a particular

qubit connection topology that is specific to the quantum devices on

hand. The gate set usually contains three single-qubit gates and one

two-qubit gates. An arbitrary single-qubit gate can be expressed as a

combination of rotation gates about the x̂ , and ẑ axes. For

example, using the X-Z decomposition, a single-qubit gate can be

represented as

U1q(a , b , g ) = Rx(a)Rz(b)Rx(g ); (2)

where a, b, and g are the rotation angles. The two-qubit gates

are utilized to create entanglement between qubits. There are fixed

two-qubit gates without adjustable parameters, such as the CNOT
Frontiers in Marine Science 03
gate, and the ones with adjustable parameters, such as the controlled

Rx(q) and Rz(q) gates. A comprehensive discussion of the properties

of different ansatz circuits is presented in (Sim et al., 2019).

Quantum measurement produces an output value that can be

used as a prediction for the data. The measurement operation

corresponds to a Hermitian operator M, which can be decomposed

as M =oiliji 〉 〈 ij , where li is the ith eigenvalue and ji 〉 is the

corresponding eigenvector. When a measurement is performed, the

quantum state jy 〉 will collapse to one of the eigenstates ji 〉 with a

probability pi = j 〈 ijy 〉 j2. Then, the expectation value of the

measurement outcome is

〈M 〉 =oili · pi =oili 〈 ijy 〉j j2: (3)

The most fundamental measurement outcomes are the

probabilities fpig and the expectation 〈M 〉 . The commonly

used measurement in quantum computing is the computational

basis measurement, also known as the Pauli-Z measurement, with

the Hermitian operator

sz = ( + 1)j0 〉 〈 0j + ( − 1)j1 〉 〈 1j: (4)

When performing the sz measurement, a qubit will collapse to

the state j0 〉 ( j1 〉) with the probabi l i ty . p0 = j 〈 0jy 〉 j2
(p1 = j 〈 1jy 〉 j2), and the corresponding eigenvalue is +1 (−1).

The expectation value 〈sz 〉 is a value within the range [-1, 1].

Due to the collapse principle of quantum measurement, in practice

the probability and the expectation value are estimated using s

samples of measurement, where s is known as the number of shots.

Optimization routine is used to update the parameters of the

ansatz circuit. These parameters correspond to the adjustable

rotation angles of gates and are updated based on the data.

Optimizing the parameters q is in fact the process of minimizing

the loss function L(q). Similar to classical models, QNN can use

various loss functions such as mean squared error loss and cross-

entropy loss. For example, the multi-category cross-entropy loss can

be expressed as

L(q) = −
1
No

N

j=1
o
C

c=1
½yjc · f (pi=c)�: (5)

In this equation, N is the batch size; C is the number of

categories; yjc ∈ f0, 1g is the class label; pi=c is the probability of

measuring the eigenstates ji 〉 corresponding to the category c; and

f ( · ) represents the post-processing of the measurement outcome,

which is used to associate the outcome to the label yjc.

Similar to classical neural networks, the parameters in QNN can

be updated based on the gradient of the loss function. For instance,

the gradient descent method can be used to update the ith parameter

qi as follows:

q 0
i = qi − d · ∂ L(q)= ∂ q i; (6)

where d is the learning rate. In quantum computing, there is no

backpropagation algorithm to directly calculate the gradient of the

loss function. Instead, derivatives are typically evaluated using the

difference method or the parameter shift rule on the quantum

devices (Wierichs et al., 2022).
FIGURE 1

Architecture of QNN model. QNN is a hybrid quantum-classical
algorithm. The forward transformation is implemented by the
quantum computer, while the optimization of parameters is done by
the classical computer.
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3 Methods

3.1 Quantum-classical convolutional
neural network

The QCCNN can be constructed based on classical CNN

models. Specifically, using the CNN architecture presented in the

supplementary material (Supplementary Figure 1) as a template, the

QCCNN can be designed by implementing the convolutional layers

with PQC. Figure 2 shows two possible QCCNN architectures. In

Figure 2A, the QCCNN consists of one quantum convolutional

layer and one classical convolutional layer, and Figure 2B shows a

QCCNN with two quantum convolutional layers.

The models in Figure 2A and Figure 2B are named QCCNN-1

and QCCNN-2, respectively. Below, we delve into the details of the

two architectures.

3.1.1 Quantum convolutional layer
The architecture of the quantum convolution layer #1 and

quantum convolution layer #2 used in Figure 2 is illustrated in
Frontiers in Marine Science 04
Figures 3A, B respectively. They consist of similar components as

QNN, including the encoding circuit, ansatz circuit and

quantum measurement.

In the quantum convolution layer #1, the filter window size is

set to 2×2, and the four elements are embedded using four qubits

through four Ry(q) gates; while in the quantum convolution layer

#2, the filter window size is set to 3×3, and the nine elements are

embedded using nine qubits through nine Ry(q) rotation gates. The

ansatz is implemented using two typical hardware-efficient circuits,

as shown in Figure 4. Figure 4A depicts the all-to-all configuration

of two-qubit gates, which has the larger expressibility and

entangling capability but the higher circuit complexity, while

Figure 4B depicts the circuit-block configuration of two-qubit

gates, which has the smaller expressibility and entangling

capability but the lower circuit complexity (Sim et al., 2019). The

expressibility and entangling capability of the ansatz can be

increased by stacking the circuit as multi layers.

Expressibility and entangling capability are two key

characteristics that describe the representative capability of a PQC

in the exponentially large Hilbert space (Sim et al., 2019). It’s
B

A

FIGURE 2

Architecture of the QCCNN with (A) one quantum and one classical convolutional layer (named QCCNN-1) and (B) two quantum convolutional
layers (named QCCNN-2).
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important to note that the Hilbert space serves as the feature space

of QCCNN, which means that the difference in the representative

capability of the ansatz circuit can significantly affect the

performance of QCCNN. However, the specific impact of this
Frontiers in Marine Science 05
difference remains ambiguous. In the experiment section, we

explore this impact in more detail.

For the quantum measurement in Figure 3, the four (nine)

qubits are measured individually using the sz operator. The
B

A

FIGURE 3

Architecture of the quantum convolutional layer #1 (A) and #2 (B) used in Figure 2.
B

A

FIGURE 4

Two typical ansatz circuits with (A) all-to-all configuration and (B) circuit-block configuration of two-qubit gates. These circuits are used as a single
layer, i.e. L = 1. Multiple layers can be stacked to increase the expressibility and entangling capability of the circuit.
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resulting probabilities of each qubit collapsing to state j0 〉 are then
used as four (nine) feature channels for the next layer. It’s worth

noting that the quantum convolutional layer does not have an

activation function, and the nonlinearity arises from the process of

data encoding and quantum measurement. This is a significant

difference between QNN and classical models.

3.1.2 Classical operations
The classical operations of QCCNN include classical

convolutional layers, pooling layers, and fully connected layers,

which follow the typical operations of CNN. Specifically, in the

convolutional layers, a window size of 3×3 is used, and the

activation function is the ReLu function. A Max Pooling layer is

employed to reduce the number of trainable parameters. Finally, at

the end of QCCNN, two fully connected layers are used to connect

the convolutional and output layer.
3.2 Quantum residual network

Similar to the method used to design QCCNN, QCResNet can

be constructed based on the template ResNet presented in the

supplementary material (Supplementary Figure 2). Figure 5
Frontiers in Marine Science 06
illustrates two possible architectures for QCResNet. In Figure 5A,

the QCResNet consists of one quantum residual unit and one

classical residual unit, while Figure 5B has two quantum residual

units. The two models are named QCResNet-1 and QCResNet-

2, respectively.

As shown in Figure 5, both quantum residual unit #1 and

quantum residual unit #2 utilize one quantum convolutional layer.

It is worth noting that the quantum convolutional layer in quantum

residual unit #1 uses a filter window size of 3×3, but outputs three

feature channels, which differs from the one shown in Figure 3B.

The architecture of the quantum convolutional layer used in

quantum residual unit #1is presented in the supplementary

material (Supplementary Figure 3). On the other hand, the

quantum convolutional layer used in quantum residual unit #2 is

identical to the one shown in Figure 3B.
4 Datasets and networks

The image dataset of phytoplankton used in this work was

obtained by analyzing water from Woods Hole Harbor using a

custom-built imaging-in-flow cytometer (Sosik and Olson, 2007).

Sampling was conducted between late fall and early spring in 2004
B

A

FIGURE 5

Architecture of the QCResNet with (A) one quantum residual unit (named QCResNet-1) and (B) two quantum residual units (named QCResNet-2).
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and 2005. The dataset consists of 6600 images that were visually

inspected and manually identified, with an even distribution across

22 categories, resulting in 300 images per category. Example images

of the 22 categories are shown in Figure 6. All images were

randomly divided into training set and test set, with each set

containing 150 images for each category. This results in a

balanced distribution of images across the categories.

In the experiment, the QCCNN and QCResNet were simulated

on the classical computer, which required significant computational

resources. As a result, it was not practical to train our quantum

models using the full dataset of 6600 images. To address this issue,

we compiled a sub-dataset consisting of 1200 images across four

categories of phytoplankton, which are DactFragCeratul,

Dactyliosolen, Dinobryon and Ditylum. In addition, to make the

images accessible to the QCCNN and QCResNet models, all images

are resized to 20×20 pixels. It is important to note that these

limitations are only due to the difficulty of simulating the

quantum circuit with a large number of qubits on the classical

computer. The dataset used in the experiments is available on

GitHub (Shi, 2023).

In the experiment, six neural networks are evaluated using the

phytoplankton dataset. These networks include the template CNN

(Supplementary Figure 1), template ResNet (Supplementary

Figure 2), QCCNN-1 and QCCNN-2 (Figure 2), QCResNet-1 and

QCResNet-2 (Figure 5). The specific architectures of these models

are discussed in Section 3. A detailed comparison of their

parameters is presented in the Supplementary Material (Section

3). In general, the quantum convolutional layer uses fewer

parameters than the classical models, resulting in the faster
Frontiers in Marine Science 07
convergence of the quantum models, as demonstrated in the

following experiments.

In this work, the quantum and classical neural networks are

implemented using the PennyLane software (Bergholm et al., 2018)

and Pytorch framework, respectively. PyTorch-compatible

quantum nodes in PennyLane are used to construct the hybrid

quantum-classical neural networks. The loss function used is the

cross-entropy function, as shown in Eq. (5). The parameters in the

quantum and classical layers are trained together and updated based

on the SGD method. The number of shots used in the quantum

measurement is set to 1500, as discussed in the Supplementary

Material (Section 4). The six neural networks have learning rates

ranging from 0.05 to 0.1, with a batch size of 15 and trained for 50

epochs each.
5 Experimental results and discussions

5.1 Training loss and classification accuracy

To compare the performance of classical and quantum models,

we first analyze the models’ training loss and classification accuracy.

Figure 7 displays the curves of the training loss and test

classification accuracy of the template CNN and QCCNN models.

It is clear from the curves that the QCCNN model converges much

faster than the CNN model. Furthermore, the classification

accuracy of QCCNN-1 is 93.67%, which is almost the same as

that of CNN. However, the accuracy fluctuation of QCCNN is

much smaller, indicating that QCCNN has better generalization.
FIGURE 6

Example images of the 22 categories of phytoplankton: (A), Asterionellopsis; (B), Chaetoceros; (C), Ciliate; (D), Cylindrotheca; (E), DactFragCeratul;
(F), Dactyliosolen; (G), Detritus; (H), Dinobryon; (I), Dinoflagellate; (J), Ditylum; (K), Euglena; (L), Guinardia; (M), Licmophora; (N), Nanoflagellate; (O),
other cells< 20mm; (P), Pennate; (Q), Phaeocystis; (R), Pleurosigma; (S), Pseudonitzschia; (T), Rhizosolenia; (U), Skeletonema; (V), Thalassiosira.
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The stronger performance of QCCNN can be attributed to the

unique feature space of QCCNN, that is, the exponentially large

Hilbert space created by the quantum circuit. This quantum feature

space enables QCCNN to capture more abstract information from

the data and generalize better. As the number of qubits and depth of

quantum circuit increase, the quantum feature space will become

completely intractable for classical computers, leading to a quantum

advantage for QCCNN.

In addition, it’s interesting to note that the accuracy of

QCCNN-1 is higher than that of QCCNN-2. The experiments

show that adding more quantum convolutional layers to QCCNN

does not necessarily improve the model’s performance. This is likely

because more quantum convolutional layers significantly increase

the feature space, making it more difficult to train the model.

Therefore, the number and position of quantum convolutional

layers used in QCCNN should be optimized for the specific

learning tasks. Similar results have also been observed in the

quantum-inspired CNN (Shi et al., 2022).

The curves for the training loss and test classification accuracy

of the template ResNet and QCResNet models are shown in

Figure 8. Similar to the findings for QCCNN, QCResNet exhibits

similar features. QCResNet converges faster than ResNet; the

classification accuracy of QCResNet-1 is 94.5%, which is higher
Frontiers in Marine Science 08
than ResNet’s 91.5%; QCResNet shows much smaller fluctuations

in accuracy compared to ResNet. The larger fluctuations in the

training loss and accuracy curves of ResNet, compared to CNN, can

be reduced by increasing the depth of the networks. Additionally,

the performance of QCResNet-1 is better than that of QCResNet-2,

indicating that the number and position of quantum convolutional

layers used in QCResNet should be optimized for the specific

learning tasks, as it is for QCCNN.
5.2 Confusion matrix and other
evaluation metric

In order to conduct a more comprehensive evaluation of the

model’s classification performance, we compute the confusion

matrices of the results obtained by the six neural networks, as

shown in Figure 9. A confusion matrix is an N × Nmatrix, where N

represents the number of target categories. It summarizes the

correct and incorrect predictions generated by the models on the

multiple-class classification task.

Furthermore, based on the confusion matrices, we calculate

additional evaluation metrics, in addition to classification accuracy,

to analyze the generalization ability of the six neural networks.
BA

FIGURE 7

Curves of the training loss (A) and test classification accuracy (B) of CNN and QCCNN for phytoplankton classification.
BA

FIGURE 8

Curves of the training loss (A) and test classification accuracy (B) of ResNet and QCResNet for phytoplankton classification.
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These metrics include precision, recall, F1-score, specificity, false

positive rate (FPR), false discovery rate (FDR) and false negative

rate (FNR). The definitions of these metrics can be found in the

Supplementary Material (Section 5). Table 1 presents the results,

where the metrics are computed as the arithmetic mean of the

metric values for each class, namely the macro metric, as illustrated

in the supplementary.

Now we can analyze the performance of the six neural networks

in greater detail, based on the confusion matrix in Figure 9 and the

evaluation metrics presented in Table 1. Firstly, QCResNet-1

outperforms the other models in all evaluation metrics, indicating

that the use of a residual architecture effectively enhances the

performance of QCCNN. In particular, when compared to

ResNet, QCResNet-1 exhibits significantly stronger performance
Frontiers in Marine Science 09
on type IV phytoplankton (i.e. Detritus), as shown in Figure 9.

However, QCResNet-1 performs poorly on type III phytoplankton

(i.e. Dinobryon) when compared to the CNN and QCCNN-1

models. In general, QCResNet-1, QCCNN-1 and CNN models

achieve comparable performance in terms of evaluation metrics;

however, their classification outcomes differ significantly across the

four phytoplankton categories.

Secondly, the QCCNN-2, QCResNet-2 and ResNet models

exhibit poor performance, which is consistent with the results

shown in Figures 7 , 8. As per Figure 9, the primary weakness of

QCCNN-2 is its poor performance on type III phytoplankton, with

a prediction accuracy that is approximately 10 percentage points

lower. On the other hand, QCResNet-2 performs poorly on type IV

phytoplankton. In future work, it would be interesting to compare
TABLE 1 Results of the eight evaluation metrics for the six neural networks.

Metrics CNN QCCNN-1 QCCNN-2 ResNet QCResNet-1 QCResNet-2

Accuracy 0.94 0.9367 0.8983 0.915 0.945 0.91

Precision 0.9407 0.9368 0.8981 0.915 0.9458 0.9110

Recall 0.94 0.9367 0.8983 0.915 0.945 0.91

F1-Score 0.9403 0.9367 0.8982 0.915 0.9454 0.9105

Specificity 0.98 0.9789 0.9661 0.9717 0.9817 0.97

FPR 0.02 0.0211 0.0339 0.0283 0.0183 0.03

FDR 0.0593 0.0631 0.1019 0.085 0.0557 0.0891

FNR 0.06 0.0633 0.1017 0.085 0.055 0.09
B C

D E F

A

FIGURE 9

Confusion matrix of the results obtained by the six neural networks, namely (A) template CNN, (B) QCCNN-1, (C) QCCNN-2, (D) template ResNet,
(E) QCResNet-1 and (F) QCResNet-2. The classes I, II, III and IV represent DactFragCeratul, Dactyliosolen, Dinobryon and Detritus, respectively.
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the performance of these models on other datasets and

learning tasks.
5.3 Influence of ansatz circuit for QCCNN

The quantum convolutional layer is a crucial element of both

QCCNN and QCResNet. Its primary function is to utilize the ansatz

circuit, i.e. a PQC, as a filer to perform the forward transformation

in CNN. Therefore, the features of the ansatz circuit have a

significant impact on the performance of QCCNN and

QCResNet. Analyzing this relationship can help improve the

performance of QNN models.

The ansatz circuit can be quantitatively characterized by its

expressibility and entangling capability (Sim et al., 2019).

Expressibility refers to the ability of a circuit to generate states

that are highly representative of the Hilbert space. One way to

calculate expressibility is by comparing the distribution of states

generated by sampling the PQC’s parameters to the uniform

distribution of states in the Haar-random state ensemble. On the

other hand, entangling capability describes the correlation between

multiple qubits, that is, the inherent correlation within the quantum

state. The entangling capability of an ansatz circuit can be

quantified using the entanglement measures, such as the Meyer-

Wallach measure. Generating highly entangled states with low-

depth circuits can provide significant advantages for QNN, such as

the ability to capture non-trivial correlations in quantum data.

There should be a relationship between the expressibility and

entangling capability of the ansatz circuit and the performance of

the corresponding QNNs. Below, we use QCCNN-1 as the basic

model to exploit this dependence. Note that in the experiments

discussed above, QCCNN-1 uses the circuit shown in Figure 4A as

its ansatz. As mentioned in Section 3.1.1, Figure 4A circuit has

higher expressibility and entangling capability, while Figure 4B

circuit is lower but can be stacked to increase its expressibility

and entangling capability. By replacing the ansatz of QCCNN-1

with multiple layers of Figure 4B circuit, we obtain five versions of

QCCNN-1.

The classification accuracy of the five versions of QCCNN-1 is

shown in Figure 10. The figure shows that QCCNN-1 using

Figure 4A circuit as the ansatz achieves higher accuracy

compared to that using Figure 4B. This suggests that higher

expressibility and entangling capability of the ansatz circuit can

indeed result in better performance of the QCCNN model.

However, for QCCNN-1 using multi-layers of Figure 4B as the

ansatz, the accuracy does not always increase with the number of

layers. Specifically, the accuracy of QCCNN-1 with 2 layers is the

highest, while those with 1, 3 and 4 layers are close. Note that the

circuit using 4 layers of Figure 4B achieves similar expressibility and

entangling capability as that of Figure 4A, as presented in (Sim et al.,

2019). Therefore, this suggests that in addition to the properties of

expressibility and entangling capability, there are other influential

factors on the models’ performance.

One such factor is the number of trainable parameters. When

the number of layers is increased, the expressibility and entangling

capability increase, but so does the number of trainable parameters.
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More parameters make the model more difficult to train, which can

decrease its generalization and offset the positive effect of increasing

the expressibility and entangling capability. Another factor is the

topological structure of the ansatz circuit. A quantitative method for

characterizing the architecture of PQC and its correlation to the

performance of the corresponding QCCNN need to be exploited in

detail. We leave this for future work.
6 Conclusion

In this work, we develop several hybrid quantum-classical

convolutional and residual neural networks and demonstrate their

efficiency for phytoplankton classification. The QCCNN and

QCResNet models are constructed by incorporating quantum-

enhanced forward transformations into classical CNN and ResNet

models. These hybrid architectures strike a good balance between

the limited functionality of current NISQ devices and the large-size

images of phytoplankton.

QCResNet outperforms classical models in terms of prediction

performance, while QCCNN performs comparably to its classical

counterparts. More remarkably, both QCCNN and QCResNet

exhibit much faster convergence and more stable classification

accuracy curves, with less fluctuation. We also find that the

performance of QCCNN and QCResNet depends on several

factors, including the expressibility, entangling capability and

topological structure of the ansatz circuit, as well as the number

of training parameters. By considering all these factors, the model’s

performance can be improved. Our QCCNN and QCResNet

models are versatile and can be easily expanded for other image

classification tasks.

In the future, we plan to optimize the architecture of QCCNN

and QCResNet from both quantum and classical perspectives. This

includes optimizing the structure of quantum convolutional layer

and the template CNN and ResNet architecture. Additionally, due

to computational resources limitations, in this work we construct a
FIGURE 10

Classification accuracy of the five versions of QCCNN-1, which
utilize the circuit of Figure 4A and 1, 2, 3 and 4 layers of Figure 4B as
the ansatz.
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mini model of QCNN and evaluate its performance using a

relatively small dataset. In the future, it will be necessary to

demonstrate the scalability of our models and find practical and

advantageous applications in more marine science tasks.
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